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Abstract— We propose a new probabilistic framework for
nonparametric identification and estimation of dynamic sys-
tems. Under the parametric paradigm, a model of the system
and a set of observations are given and the parameter space
of the model is searched to optimize an objective function.
However, if we are uncertain about the model, the parametric
approach can easily overfit data and lead to risky decisions. In
nonparametric estimation, the model uncertainty is introduced
in a systematic manner to find both the model and associated
parameters of the system. In this paper, we consider a dynamic
system consisting of a varying number of subsystems with
noisy observations. The objective is to identify the subsystems
at each time step and estimate the associated parameters
such that the observations are explained the best. We develop
an efficient algorithm based on Markov chain Monte Carlo
methods and apply our approach to multiple target tracking
problems. We address the issues with the subsystem initiation
and termination and initial state estimation. In simulation our
algorithm shows excellent performance for tracking a varying
number of maneuvering targets with nonlinear dynamics. In
some cases our algorithm outperforms any linear filtering
algorithm with perfect associations.

I. INTRODUCTION

In parametric estimation problems, we are given a set
of (noisy) observations from a known model and the goal
is to estimate the parameters of the model such that some
objective function is maximized (or minimized). For exam-
ple, in linear regression, we minimize the sum of squared
errors. In many practical problems the method of maxi-
mum likelihood provides a good solution for parametric
estimation problems. However, if there is uncertainty about
the model, the parametric estimation methods, such as the
maximum likelihood estimation, can easily overfit data and
lead to risky decisions. The recognition of the limitations
of parametric methods led to the surge of nonparametric
methods such as an information criterion [1], Bayesian
information criterion [21], minimum description length [10]
and Bayes factors [13]. But difficulties in formulating the
prior models and testing for different models make them
difficult to be applied to complex problems.

Solving complex problems by sampling methods such
as Markov chain Monte Carlo (MCMC) has become more
tractable due to increased computational power. MCMC-
based algorithms now play a significant role in many fields
such as physics, statistics, economics, and engineering [4].
In some cases MCMC is the only known general algorithm

which finds a good solution in polynomial time [12]. For
interested readers we refer to [4], [2], [8]. However, due
to measure theoretic issues, standard MCMC is limited to
problems with a fixed dimension, i.e., parametric estimation
problems, and cannot be readily extended to problems with
varying dimensional parameters, i.e., nonparametric estima-
tion problems. Reversible jump MCMC (RJMCMC) solves
this issue by introducing reversible jumps between dimen-
sions using deterministic dimension-matching transforma-
tions [9]. This method differs from other nonparametric
methods, in that it allows the comparison among different
models simultaneously while estimating parameters associ-
ated with each model. The different models are considered
simultaneously based on the evidence at hand so that the
models not supported by the evidence are not considered
as frequently as the models supported by the evidence. In
addition, the method provides numerical values representing
confidence in different models and bypasses the model
choice structure of the other nonparametric methods, which
require prior modeling and testing for the different models
[19].

In this paper, we develop a probabilistic framework
for nonparametric identification and estimation of dynamic
systems. We consider a dynamic system with noisy obser-
vations, which consists of a varying number of subsystems.
Our goal is to identify the subsystems at each time step and
estimate the associated parameters, including the dynamics
of each subsystem, such that the observations are explained
the best. Each subsystem can be either present or absent
at each time step following a Markov transition probability
independently from the other subsystems. In addition the
initial state of a subsystem is unknown when it appears
or reappears. The main difficulty lies in the identification
of subsystem initiation and termination times. We take a
Bayesian hierarchical modeling approach [18] to formulate
a general framework. Under our framework, observations
are partitioned into subsystems to which they belong, and
thus, it becomes a trivial task to use the existing efficient
parametric methods to estimate the parameters of subsystem
dynamics.

The multiple target tracking problem is a good ex-
ample of the dynamic system we have described. Un-
der the most general setup, a varying number of targets
are moving around in a region with continuous motions,



and the positions of these moving targets are sampled at
random intervals. The position measurements are noisy,
with detection probability less than one, and there is a
noise background of spurious position reports (false alarms).
Targets appear at random in space and time. Each target
persists independently for a random length of time and then
ceases to exist. A track of a target is defined as a path
in space-time traveled by the target. The seminal paper by
Sittler [22] introduced the major concepts about multiple
target tracking and a method to evaluate tracks. He pointed
out two major problems in multiple target tracking: data
association and state estimation. However, in the worst
case, one has to search over all possible tracks, which is
equivalent to searching over the collection of all partitions
of observations. This combinatorial optimization problem is
NP-hard since it is a multidimensional assignment problem
[16]. Subsequently, more computationally efficient algo-
rithms have been proposed using heuristics to reduce the
size of the search space [23] [17]. The multiple hypothesis
tracker (MHT) introduced in [17] uses heuristics such as
pruning, gating andN -scan-back logic but at the expense
of accuracy.

As opposed to finding the optimal association, there is an
alternative suboptimal approach for data association, called
the joint-probabilistic data-association filter (JPDAF) [3].
The main limitations of JPDAF are that it assumes a fixed
number of targets at all times and it cannot initiate or
terminate tracks. On the other hand, probabilistic multi-
hypothesis tracking (PMHT) uses probabilistic associations
between observations and targets to avoid the maintenance
of a hypothesis tree [24]. But PMHT also assumes a fixed
number of targets and does not allow track initiation and
termination. Our framework can be considered as a full
statistical extension of PMHT for tracking an unknown
number of targets. With the development of particle filters,
multitarget tracking algorithms have been extended to non-
linear dynamics. In [11], PMHT is applied with particle
filters, but this method requires suboptimal estimation of
the states of targets. JPDAF is used in [20] with particle
filters, but the described limitations of JPDAF remain the
same. See [6] for more detail information about multitarget
tracking algorithms.

This paper provides a probabilistic framework for lay-
ered dynamic systems and an efficient RJMCMC based
algorithm. We are able to construct an efficient sampler
by taking the advantages of the structure of the prob-
lem and proposing targeted local moves. We apply this
method to multitarget tracking problems, and demonstrate
the robustness of the algorithm against outliers. In some
cases, when we apply our algorithm to nonlinear dynamics,
it outperforms any linear filtering algorithm with perfect
associations.

The remainder of this paper is structured as follows. Sec-
tion II presents a probabilistic framework for nonparametric
identification and estimation of dynamic systems, called the
dynamic Bayesian model selection. Section III describes an

RJMCMC algorithm for solving the nonparametric identifi-
cation and estimation problems. We also describe an online
version of the algorithm. In Section IV, the algorithm is
applied to track a varying number of targets moving with
nonlinear dynamics, and the performance of the algorithm
is analyzed.

II. DYNAMIC BAYESIAN MODEL SELECTION

Let us consider a discrete-time dynamic systemS com-
posed of subsystemsSi for i = 1, . . . ,K whereK is the
total number of subsystems. Each subsystem can be either
present or absent at any given time. When a subsystem is
present over consecutive times, its state evolves according to
unique dynamics independently from other subsystems. Let
Rn be the state space of each subsystem. LetXi

t ∈ R ⊂ Rn

be the state ofSi andU i
t ∈ Rp be a control input toSi for

t = 1, . . . , T . R has a finite volumeVR. The dynamic of
Si is F i : Rn × Rp → Rn. Let F = {F i : 1 ≤ i ≤ K}.
The state transition is noisy such that

Xi
t+1 = F i(Xi

t , U
i
t ) + V i

t ,

where V i
t ∈ Rn is a noise process. When there is no

confusion we will denote the subsystemSi as the subsystem
i. Let M i

t ∈ {0, 1} be a Markov chain denoting the status
of the subsystemi, such thatM i

t = 1 if the subsystemi
is present; otherwiseM i

t = 0. Let pi(j, k) for j, k ∈ {0, 1}
be the transition probability ofM i

t . Using the independence
assumption, we can combineM i

t into a single Markov chain
Mt ∈ {0, 1}K on a product state space with the transition
probability

P (Mt+1 = mt+1|Mt = mt) =
∏K

i=1 pi(mi
t,m

i
t+1).

Let A be the transition matrix forMt and the i-th
row of A be distributed from the Dirichlet distribution
D(α1

i , . . . , α
2K

i ), whereα ∈ [0, 1]2
K×2K

. Since we do not
assume that the transition matrixA is known in advance,
a prior model onA allows us to estimateA based on
observations.

Let Xt be the state ofS at time t such thatXt =
(Xi1

t

T
, . . . , X

ikt
t

T
)T ∈ Rn×kt , wherekt = #{i : M i

t =
1, 1 ≤ i ≤ K} and M ir

t = 1 for r = 1, . . . , kt. Ut is
defined similarly. Letf i be the conditional density of the
next state of the subsystemi given its current state and
control. Then the conditional probability ofXt+1 is given
by

P (Xt+1 ∈ dxt+1|Xt = xt, Ut = ut,Mt = mt,Mt+1 = mt+1)

=
∏K

i=1

 f i(dxi
t+1|xi

t, u
i
t) if mi

t+1 = 1,mi
t = 1

pi
0(dxi

t+1) if mi
t+1 = 1,mi

t = 0
1 otherwise,

where pi
0(x) is a priori density of the initial state of the

subsystemi.
Let Y j

t ∈ Rm be an observation vector forj = 1, . . . , nt.
The observation model is

Y j
t = H(Xi

t) + V ′j
t ,



where V ′j
t ∈ Rm is a noise process. Leth(y|x) be the

density of the observationy given the statex. Now we
assume that the observationsYt = {Y 1

t , . . . , Y nt
t } are

distributed according to the mixture model such that

Y j
t ∼

∑kt

r=0 wir
t h(·|xir

t ) for j = 1, 2, . . . , nt,

where wir
t is the weight of the subsystemir and∑kt

r=0 wir
t = 1. The weightwi

t can be interpreted as the
chance that a randomly chosen observation is generated
from the subsystemi. Let Wt be random variables asso-
ciated with the weightswt. We assumeWt are distributed
from the Dirichlet distributionD(δ0

t , . . . , δkt
t ) and indepen-

dent over time, i.e.,Wt is independent ofWs for s 6= t.
As in [18], we define allocation variablesZt such that

Zj
t = ir if j-th observation comes from the subsystemir

andZj
t are drawn from the distributionsP (Zj

t = ir) = wir
t

for r = 0, 1, . . . , kt. We associate all observations that
are not generated from the known subsystems with clutter
and let w0

t be its weight. The observations from clutter
are uniformly distributed overRm ⊂ R. Let VRm be
the volume ofRm. We consider these observations as
outliers. If the j-th observation is generated from clutter,
we setZj

t = 0. Hence given the allocation variableZt, the
observations are distributed as

P (Y j
t ∈ dy|Zt = z,Xt = x) =

{
h(dy|xzj

), zj 6= 0
dy/VRm , zj = 0,

independently forj = 1, . . . , nt. We note that this mixture
model formulation is similar to the probabilistic associations
of PMHT [24].

We assumeV i
t is a white Gaussian process with zero

mean and a covariance matrixΣi. Σi have the scaled
inverseχ2 distribution, i.e.,Σi

(l,l) ∼ Inv-χ2(νil, σ0il
2) for

l = 1, . . . , n [7]. The hyperparameterνil is called the degree
of freedom andσ0il

is the scale parameter. We also assume
V ′j

t is a white Gaussian process with zero mean and a
covariance matrixΣy, and the hyperparameters are assigned
similarly.

Now to make an inference on the described model, we
need to estimate the dimensionalitykt and a set of parame-
ters associated withkt for everyt. However, since at eacht,
explicit associations between parameters att−1, t andt+1
are required for the state transitions of subsystems, we con-
sider each instance of the subsystem status as a model. So
there are2K possible models at eacht. The model labeling
is explicit in our formulation and we work with the union
spaceC =

⋃
k∈K Ck, where Ck is a parameter subspace

associated with thek-th model andK = {1, . . . , 2K}. In the
following sections we show that this highly complex model
selection problem is efficiently solved by reversible jump
MCMC. Lastly, the joint distribution of all the variables
(except those for noise models) can be expressed as

P (M1:T , X1:T , U1:T , Y1:T , Z1:T ,W1:T , δ1:T , A, α, F )
= P (F )P (α)P (A|α)P (X1,M1)P (U1:T )
×

∏T−1
t=1 P (Mt+1, Xt+1|Mt, Xt, Ut, F, A)

×
∏T

t=1 P (Yt|Zt, Xt)P (Zt|Wt,Mt)P (Wt|δt,Mt)P (δt),

where x1:T = {x1, . . . , xT }. Hence our main objec-
tive is to estimateP (M1:T |Y1:T ), P (X1:T |M1:T , Y1:T ),
P (U1:T |M1:T , Y1:T ), P (A|Y1:T ), F |Y1:T and so on.

III. ALGORITHM

A. MCMC and Reversible Jump MCMC

Many practical problems are involved with high-
dimensional, high-complexity probability distributions. In
order to make an inference or prediction, one must integrate
over these complex distributions, but there is rarely a
closed-form analytical expression for the high-dimensional
integrals. Markov chain Monte Carlo (MCMC) is a family
of stochastic algorithms that uses Markov chains to estimate
the integrals which have no closed-form analytical expres-
sions.

In MCMC, an irreducible and aperiodic Markov chain
is constructed such that its stationary distribution is the
posteriorπ(θ) whereθ is the set of parameters of interests.
Then given the current stateθ, the sampler proposes a
candidate stateθ′ from a proposal distributionq(θ, θ′). Then
the proposal is accepted with probability

min
{

1, π(θ′)q(θ′,θ)
π(θ)q(θ,θ′)

}
so that the detailed balance of the Markov chain is pre-
served. Then, by the ergodic theorem, one can estimate
Eπ(θ)[f(θ)] of a bounded functionf(·) by

f̄ = 1
n−m

∑n
i=m+1 f(θi)

whereθi is the state of the Markov chain at thei-th iteration
[8]. The firstm samples are burn-ins and discarded for the
estimate calculations. For more detail, see [4], [2], [8].

The standard MCMC is limited to problems with fixed
dimension and cannot be easily extended to problems
with varying dimension parameters due to the measure
theoretic issues. The reversible jump MCMC (RJMCMC)
resolves this issue by introducing reversible jumps between
dimensions using deterministic dimension-matching trans-
formations [9]. In RJMCMC, different types of moves are
considered to traverse across the combined parameter space
C. If the MCMC sampler proposes a move typem and a
new stateθ′ from θ, the move is accepted with probability

min
{

1, π(θ′)jm(θ′)qm2(u
′)

π(θ)jm(θ)qm1(u) ·
∣∣∣∂gm(θ,u)

∂(θ,u)

∣∣∣} ,

wherejm(θ) is the probability of choosing the move typem
when in stateθ; qm1(u) andqm2(u′) are the proposal den-
sities ofu andu′, respectively; andgm is the deterministic
dimension-matching bijection such thatgm(θ, u) = (θ′, u′)
and g−1

m (θ′, u′) = (θ, u). The Jacobian arises from the
change of variables from(θ, u) to (θ′, u′) [18].

B. DBMS RJMCMC

We now present an RJMCMC algorithm for solving
DBMS problems. Letθ be the set of the unknowns of which
we are interested in finding the posteriorπ(θ) given y0:T .



In construction of the algorithm we assume thatδ = δ0
t =

· · · = δkt
t for all t and bothδ andα are held fixed.

Each MCMC step consists of the following moves: (a)
track split, track merge or track update move on randomly
selectedt, (b) weight update move forWt, (c) allocation
update move forZt, (d) transition matrix update move for
A, (e) covariance matrices update move, and (f) dynamics
update move. The track split and merge moves of (a) are
dimension-varying moves while the other moves are within
the same dimension. The moves (b) and (c) are the Gibbs
moves onWt and Zt for t selected in (a). In moves (a)-
(c), we propose a new stateθ′ which differs fromθ only
at some timet. Since only a small neighborhood oft is
affected by this move, the acceptance probability is high
and computed efficiently. Since it is required to consider
parameters at all times for the moves (d)-(f), we choose the
moves (d)-(f) with some small probabilitypall while the
moves (a)-(c) are chosen with probability (w.p.)1 − pall.
The moves (b)-(f) are routine, and we refer the readers to
[18], [7].

Now we describe the dimension varying moves of (a).
We choose a track split move w.p.bn0 and a track merge
move w.p.dn1 such thatbn0 + dn1 < 1 wheren1 =

∑
kt

and n0 = KT − n1. A track update move is chosen w.p.
1−bn0−dn1 . For the convenience of our discussion below,
we define submove types. We say the move at(i, t) has the
submove type: (i) ifM i

t−1 = M i
t+1 = 0, (ii) if M i

t−1 = 0
andM i

t+1 = 1, (iii) if M i
t−1 = 1 andM i

t+1 = 0, and (iv)
if M i

t−1 = M i
t+1 = 1. The track update move is similar to

the track split move described below, except the dimension
stays the same. We choose timet and a subsystemi and
update its state at timet. For the sake of space, we omit
the description of the track update move. For details about
the algorithm, see [15].

1) Track split and merge moves:Let G1 = {(i, t) :
M i

t = 1, 1 ≤ i ≤ K, 1 ≤ t ≤ T}. For a split move, we
select(i, t) w.p. pb(θ, (i, t)), wherepb(θ, (i, t)) > 0 on GC

1

andpb(θ, (i, t)) = 0 on G1, and propose a new subsystem
at (i, t) by splitting the weight of clutterW 0

t into W ′0
t and

W ′i
t . The move is rejected ifW 0

t = 0 or |n0
t | = 0 where

n0
t = {j : Zj

t = 0} since such move is not reversible.
For a merge move, we select(i, t) w.p. pd(θ, (i, t)), where
pd(θ, (i, t)) > 0 on G1 and pd(θ, (i, t)) = 0 on GC

1 , and
merge the subsystem at(i, t) into clutter.

In a track split move, we take the following steps to
proposeθ′:

1) Proposeη1 from Beta distribution,η1 ∼ Be(2, 2);
2) SetW ′0

t = W 0
t η1 andW ′i

t = W 0
t (1− η1);

3) SetM ′i
t = 1 andM ′r

t = Mr
t for r 6= i;

4) Proposeη2 for X ′i
t . The proposal ofη2 is different

for each submove type and it is described below;
5) Propose the allocation variablesZ ′j

t ∈ {0, i} for j ∈
n0

t using the posterior ofZt given the other variables.
The remaining variables are unchanged.

There are three different split (merge) moves: placement
split (merge), forward split (merge), and backward split

(merge). For submove (i), we choose the placement split;
for submove (iii) and (iv), the forward split; and for sub-
move (ii), the backward split. In general, the acceptance
probability is min(1, R) with an acceptance ratioR =
π(θ′)
π(θ) RmRp1Rp2Rj whereRm = dn1+1pd(θ′,(i,t))

bn0pb(θ,(i,t)) , Rp1 =

1/(q(η1)q(Z ′
t)), Rp2 = 1/q(η2), and Rj =

∣∣∣ ∂g
∂(·)

∣∣∣. q(x)
denotes the proposal density ofx. A similar merge move
is applied for each submove type and a merge move is
accepted w.p.min(1, R−1) with appropriate substitutions.
We also define

Rt =
P (yt|Z′

t,X
′
t)AMt−1M′

t
AM′

tMt+1
P (Z′

t,W
′
t |M

′
t,δ)

P (yt|Zt,Xt)AMt−1MtAMtMt+1P (Zt,Wt|Mt,δ)

where P (Z′
t,W

′
t |M

′
t,δ)

P (Zt,Wt|Mt,δ)
= (W ′0

t )δ−1+l0 (W ′i
t )δ−1+li

(W 0
t )δ−1+l0+liB((kt+1)δ,δ)

and l0 = #{j : Z ′
t
j = 0, j ∈ n0

t} and li = #{j : Z ′j
t =

i, j ∈ n0
t} andB(·) is the Beta function.

Placement Split: Propose a new stateX ′i
t ∼

1
nt

∑nt

j=1N
(
·|yj

t ,Σy
)

. The acceptance ratio becomesR =

Rt
pi
0(X

′i
t )

1 RmRp1
1

q(X′i
t )

W 0
t .

Forward Split: For the forward split, a new stateX ′
t
i is

proposed fromF i(Xi
t−1, U

i
t−1)+η2 whereη2 ∼ N (·|0,Σi).

For the submove type (iii),R = RtRmRp1W
0
t and for the

submove type (iv),R = Rt
fi(Xi

t+1|X
′i
t )

pi
0(X

i
t+1)

RmRp1W
0
t .

Backward Split: This move is available when
(F i

X)−1 exists and is differentiable whereF i
X is

a coordinate function ofF i for the state variable
X. We sample η2 ∼ N (·|0,Σi) and set X ′i

t =
(F i

X)−1(Xi
t+1 − η2). The acceptance ratio becomesR =

RtRmRp1

∣∣∣∂(F i
X)−1(Xi

t+1−η2)

∂η2

∣∣∣ W 0
t .

IV. SIMULATION RESULTS

We use a unicycle dynamic model for our simulations.
The state vector isx = (x, y, θ)T where(x, y) is a position
of a vehicle in a plane andθ is a heading of a vehicle.
The continuous state equation isẋ = (ϕ cos θ, ϕ sin θ, ω)T

where ϕ is a directional velocity andω is an angular
velocity.ϕ andω are control inputs. Ifϕ andω are constant
over the sampling periodTs, its discretized state equation
(with noise) is

xt+1 = xt + 2
ωt

ϕt sin(ωtTs

2 ) cos(θt + ωtTs

2 ) + vt,1

yt+1 = yt + 2
ωt

ϕt sin(ωtTs

2 ) cos(θt + ωtTs

2 ) + vt,2

θt+1 = θt + ωtTs + vt,3,

whereVt = (vt,1, vt,2, vt,3)T are white Gaussian noises.
Now suppose there is more than one target moving with

the dynamics described above and the type of target can
be classified by its directional velocity. We haveXi

t+1 =
F i(Xi

t = (xi
t, y

i
t, θ

i
t), ϕ

i, ωi
t) + V i

t and eachϕi is constant.
Let ϕ = (ϕ1, . . . , ϕK). But we letωi

t be a random variable
uniformly distributed over[−π/4, π/4]. So the targets are
free to change their heading at any time as they desire
and the tracking algorithm is required to distinguish them.
We assume that the initial state of a target is uniformly



distributed overR = [0, L]2 × [−π, π]. Hencepi
0(x) =

1
2πL2 for each i. We usebn0 = n0

KT and dn1 = .5n1
KT as

the probabilities for split and merge moves.pb(θ, (i, t))
is assigned such that(i, t) positioned before or after an
established track is weighted three times higher than the
remaining(i, t) ∈ GC

1 .
We consider a linear observation model

Y j
t = HXi

t + V ′j
t where H =

[
1 0 0
0 1 0

]
if j-th observation comes from the targeti. The co-
variance matrices for the noise processes areΣi =
diag((.05Tsϕ

i)2, (.05Tsϕ
i)2, (.2π

8 )2) for eachi and Σy =
diag((.2Ts)2, (.2Ts)2). The transition matrixA is held fixed
such thatAjk ∝ 10K−d1(j,k) where d1 is the Manhattan
distance between two statesj and k in their binary repre-
sentations. So the number of targets varies according toA.
The false alarms are uniformly distributed over the region
R2 = [0, L]2 and the number of false alarms has a Poisson
distribution with meanλVR2 . The Dirichlet prior on weights
is δ = 1. The detection probability is.9.

Assessing the convergence of MCMC algorithms is usu-
ally a difficult task. It is especially challenging in our case
since the dimension of the parameter space changes [5].
We can measure the distance between the true tracks and
the estimated tracks since we are working in a simulation
environment. LetM∗

1:T andX∗
1:T be the parameters of true

tracks. LetM̂1:T be the estimate with maximum posterior
and letX̂1:T be the estimate of states given̂M1:T . We use
two metrics:

dm(M∗
1:T , M̂1:T ) = 1

KT

∑T
t=1

∑K
i=1 I(M∗i

t 6= M̂ i
t )

to measure the distance between models and

dx(X∗
1:T ,M∗

1:T , X̂1:T , M̂1:T )
= 1− 1

KT

( ∑T
t=1

∑K
i=1 I(M∗i

t = M̂ i
t = 0)

+I(M∗i
t = M̂ i

t = 1)e−
1
2 (X∗i

t −X̂i
t)

T (32Σi)−1(X∗i
t −X̂i

t)
)

to measure the distance between the models and states
simultaneously. HereI(·) is an indicator function. We
used the first two components ofXi

t to evaluatedx in
experiments below.

A. Experiment I - Convergence

We setK = 3, T = 20, L = 100, Ts = 1, λVR2 = 1
andϕ = (4, 6, 8). We generated ten random scenarios then
ran each scenario ten times (the first 20,000 samples are
used as burn-ins). All observations are assigned to clutter
at the initial state of the sampler. Figure 1 showsdm and
dx averaged over 100 runs against the number of MCMC
samples. Any tracks with length less than three time steps
are discarded from the estimates. We note that the metric
dx is very conservative and visual inspection shows that any
distance less than .1 is almost a perfect match.

Fig. 1. Experiment I:dm, dx vs. number of MCMC samples

B. Experiment II - DBMS vs. Optimal Linear Filter

We have compared the performance of our algorithm
against the optimal linear filter using Kalman filters on the
same scenarios used in Experiment I. The multiple tracking
algorithm such as MHT uses Kalman filters, hence, if the
observations are correctly partitioned, i.e., when the data
association is correct, MHT will give the optimal estimates
according to the linear dynamics. For each scenario, we first
partitioned the observations into the original tracks from
which the scenario was generated. We then run Kalman
filters on each track and compareddx estimated from
Kalman filters against the estimates from DBMS. For the
Kalman filters, we use the usual linear model for tracking
[14]. The state vector isx = [x, y, ẋ, ẏ]T where(x, y) is a
position on a plane and(ẋ, ẏ) is a velocity vector. Letδ be
the sampling interval. Then the dynamic and measurement
models are

xt+1 = Axt + Gwt

yt = Cxt + vt,

where

A =


1 0 δ 0
0 1 0 δ
0 0 1 0
0 0 0 1

 , G =


δ2

2 0
0 δ2

2
δ 0
0 δ

 , and

C =
[

1 0 0 0
0 1 0 0

]
.

Here wt and vt are Gaussian noise processes with zero
mean and covarianceQ and R, respectively. We used
Q = αmx × diag(1, 1) and R = αmy × diag(1, 1), where
mx = maxi,j,k(Σi

j,k) andmy = maxj,k(Σy
j,k). We varyα

to check if the estimates are influenced by the changes in
covariance.

Table I summarizes these results. Note that the observa-
tions are not partitioned for DBMS and the estimates for
DBMS are averaged over ten repeated runs. The estimates
from the optimal linear filter are not influenced by the



TABLE I

DBMS VS. OPTIMAL L INEAR FILTER

Test DBMS Optimal Linear Filter
Case dx dx (α = 1) dx (α = 5) dx (α = 10)

1 0.1205 0.1200 0.1233 0.1243
2 0.1319 0.1637 0.1660 0.1666
3 0.1605 0.2253 0.2277 0.2281
4 0.1206 0.1051 0.1034 0.1032
5 0.1480 0.2606 0.2610 0.2612
6 0.1223 0.1648 0.1675 0.1680
7 0.2085 0.2260 0.2283 0.2289
8 0.1688 0.2000 0.2018 0.2022
9 0.1371 0.1225 0.1238 0.1241
10 0.2007 0.1397 0.1437 0.1445

Fig. 2. An example of the inaccuracy of the optimal linear filter (true
trajectory - straight line; optimal linear filter estimates - dotted line with
crosses; DBMS estimates - dashed line with diamonds)

changes in covariance. In some cases, DBMS outperforms
the optimal linear filter (shown in boldface). This means,
in these cases, DBMS outperforms any linear filtering
algorithm even if the linear filtering algorithm is given
perfect information about data association. Since we can
directly apply the nonlinear dynamics with DBMS, it does
not suffer from the approximation error of the linear filters.
In addition, MHT is unlikely to achieve the values listed in
Table I, since it is not possible to have perfect associations
in all cases due to heuristics required for MHT such
as gating,N -scan-back and pruning. Figure 2 shows an
example of such estimation error. We note that MHT with
3-scan-back completely fails to track the turning object in
Figure 2.

C. Experiment III - False Alarms

We apply different rates of false alarms to assess the
robustness of the algorithm against outliers. The setup is
the same as Experiment I but we varyλVR2 from 1 to
10. We first randomly generated ten scenarios and then,
for each scenario, different false alarm rate was applied to
generate a test case. So we have a total of 100 test cases.
We ran each test case 10 times (the first 20,000 samples are
used as burn-ins). Figure 4 and 3 show that the algorithm

Fig. 3. Experiment III:dm vs. number of MCMC samples

Fig. 4. Experiment III:dx vs. number of MCMC samples

is robust against false alarms (results forλVR2 = 2, 4, 6, 8
are shown).

D. Experiment IV - Online DBMS RJMCMC

The algorithm described in Section III-B is a batch
algorithm. A suboptimal online version of the algorithm can
be easily implemented by sliding a window of lengthTw.
The setting is the same as Experiment I exceptT = 500 and
L = 250. A single scenario was randomly generated. Three
different window sizesTw = 10, 20, 30 are considered and
windows are forwarded by a single time step. At each online
step, the algorithm is run for a fixed number of MCMC
samples. For each window size, we have tried three different
numbers of MCMC samples (2000, 4000, and 8000). So
there are nine cases and we ran each case 10 times. The
average performance of our algorithm (written in Matlab on
a PC with a 2.6-GHz Intel processor) is shown in Table II
wheredm anddx are measured over the whole durationT .
The performance improves as we increase the window size
and number of MCMC samples at the expense of increasing
execution time. Note that the average values ofdx anddm

in Table II are smaller than the values reported in earlier



TABLE II

PERFORMANCE OFONLINE DBMS RJMCMC

Tw MCMC samples dm dx sec /
(burn-ins) time step

2000 (1000) 0.1208 0.1467 5.1654
10 4000 (2000) 0.0739 0.0987 10.2112

8000 (4000) 0.0444 0.0663 20.2626
2000 (1000) 0.1117 0.1379 5.7962

20 4000 (2000) 0.0675 0.0928 11.4747
8000 (4000) 0.0453 0.0666 22.8454
2000 (1000) 0.0987 0.1261 6.3159

30 4000 (2000) 0.0671 0.0934 12.5211
8000 (4000) 0.0507 0.0732 25.0049

experiments. This is because for this lengthy scenario there
are intervals in which no targets are present and when
the algorithm correctly identifies that there are no targets,
the resultingdx and dm are zeros in those intervals, thus
lowering the overall averages.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a dynamic Bayesian model selection
framework for layered dynamic systems in which the model
selection problems are solved sequentially. An efficient
algorithm based on reversible jump Markov chain Monte
Carlo is described and extended to online computations. The
multitarget tracking problem is formulated as an instance of
the dynamic Bayesian model selection problem. We have
shown that the algorithm is robust against outliers. In some
cases, when we apply DBMS to nonlinear dynamics, DBMS
outperforms any linear filtering algorithm with perfect asso-
ciations. This framework can be easily generalized to other
applications such as signal processing and computer vision
by using it as a general dynamic pattern recognizer. We
are currently working on extending the algorithm for the
identification and estimation of hierarchical systems and
hybrid systems.
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