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Abstract— Multi parametric quadratic programming gives a
full off-line solution to a time varying quadratic programming
(QP) problem arising during constrained predictive control.
However, coding and implementation of this solution may be
more burdensome than solving the original QP. This paper
presents a two degree of freedom algorithm, which achieves a
large decrease in both the online computation and data storage
requirements with negligible deterioration of performance.
Extensive simulation results are given to back this claim.
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I. INTRODUCTION

This paper assumes the acceptance and widespread use
of predictive control (e.g. [3], [4], [9]) and asks: what
are the obstacles to wider applications of model predictive
control (MPC)? Two of many answers: (i) the computational
demand and (ii) the lack of transparency of the control
action due to the use of an online optimization. These form
the underlying motivation for this paper.

Typical MPC algorithms [3] are based on the minimiza-
tion of a quadratic performance index subject to linear
constraints, that is a quadratic programming (QP) problem.
In many cases, due to structural limitations [13], it is not
possible to solve a QP online and hence the control law must
have a simpler implementation. Moreover, the QP itself can
require a large number of iterations for convergence and
although this is rarely needed, it must be allowed for if
the algorithm is to perform properly. Hence there are two
obstacles to applications arising from the need for a QP: (i)
coding limitations may make a QP optimizer inpractical and
(ii) the upper limit on computational time for convergence
may make implementation on fast systems impossible.

This paper considers a recent contribution [1] to this
problem, denoted multi parametric quadratic programming
(MPQP). The basic idea is to solve, off-line, all possible QP
problems that can arise on line. It is straightforward to show
that within certain regions of the state space the optimum
predicted input trajectory has a known affine dependence
on the current state. MPQP finds all possible active sets
and the associated regions and control trajectories. The
solution of the QP can then be replaced by set membership

tests; if the state is inside region ‘r’, then one should use
the associated control trajectory. Though the MPQP boasts
several advantages, the number of computed regions may
grow exponentially in the prediction horizon [1], making it
unsuitable for large problems.

The aim of this paper is to consider how one can reduce
the data storage requirements and also the implementation
time for the MPQP algorithm by allowing for a small degree
of sub-optimality. The proposed procedure is based on two
interpolations (e.g. [12], [10]) of input sequences which
provide feasibility and stability for the closed-loop system.
We will henceforth refer to this procedure as Interpolation
MPQP (IMPQP) control.

II. BACKGROUND

A. Modelling and MPC

For convenience of exposition this paper makes use of
state-space models, e.g.

xk+1 = Axk + Buk (1)

where x,u,y are the state, input and output respectively.
Associated to the model are constraints:

u ≤ uk ≤ u; x ≤ xk ≤ x (2)

The performance index [15] to be minimised, in this paper,
takes the form

minuk, k=0,...,nc−1 J =
∑∞

k=1
xTkQxk + uTk−1

Ruk−1

s.t.

{

(1, 2) ∀k ≥ 0
uk = −KLQRxk, k ≥ nc

(3)
where KLQR is the optimal unconstrained feedback gain
minimising J in the absence of constraints (2). It is noted
that, in general, practical limitations imply that only a finite
number, that is nc, of free control moves can be used.
For these cases, (3) is implemented by imposing that the
state xnc

must be contained in a polytopic control invariant
set XI = {x0 ∈ R

n|x ≤ xk ≤ x, u ≤ KLQRxk ≤
u, xk+1 = Axk + Buk, ∀k ≥ 0} in order to guarantee
constraint satisfaction. In order to also guarantee asymptotic
stability, it is necessary to impose a terminal cost V (xnc

) =



x′nc
Pxnc

, such that V (xnc
) is a local Lyapunov function

for the set XI [9].
For convenience (e.g. [14]), the degrees of freedom can

be reformulated in terms of a new variable ck

uk = −KLQRxk + ck; k = 0, ..., nc − 1
uk = −KLQRxk; k ≥ nc

(4)

and hence the equivalent optimisation to (3) can be written
as:

minC J = CTSC + x0FC, s.t. NC + Mx0 − v ≤ 0
C = [cT0 , · · · , c

T
nc−1]

T

(5)
Details of how to compute positive definite matrix S,
matrices N, M and vector v are omitted as by now well
known in the literature (e.g. [9], [14]).

Definition 1: We denote with XN
f ⊆ R

n the set of initial
states x0 for which the optimal control problem (5) is feasi-
ble and with XI the maximum admissible set corresponding
to C = 0 [5]:

XN
f = {x0 ∈ R

n|∃C ∈ R
ncm,

NC + Mx0 − v ≤ 0},
XI = {x0 ∈ R

n, Mx0 − v ≤ 0}.

m denotes the number of inputs and nc the prediction
horizon in (3). The feasible set XN

f can also be expressed
as XN

f = {x ∈ R
n|Mmaxx ≤ dmax}.

Remark 2.1: The MPC algorithm is given by solving the
QP optimisation (5) at every sampling instant and then
implementing the first component of C, that is c0 in the
control law of (4). When the unconstrained control law is
not predicted to violate constraints, the optimising C is zero
so the control is given as u = −KLQRx; this is the case
whenever x ∈ XI .

B. Multi parametric quadratic programming

Here only a summary of the key conclusions in [1]
is given. Where implicit, the subscript (.)k is omitted
hereafter.

Define the regions Si = {x : Mix−di ≤ 0}, i = 0, 1, ...
such that within each region the active set is the same and
hence the C optimising (5) has a known affine dependence
on x, that is, x ∈ Si ⇒ C = −K̂ix + ti. Hence the
optimal control action to be used in (4) can be determined
from

x ∈ Si ⇒ c = eT1 (−K̂ix + ti) ⇒ u = −Kix + pi

Ki = KLQR + eT1 K̂i, pi = eT1 ti
(6)

where eT1 = [I, 0, 0, ...], I an identity matrix with the input
dimension.

III. THE IMPQP ALGORITHM

In this section we will present a novel interpolation
control scheme based on MPQP which exhibits significantly
lower complexity in its on-line application at the cost of

suboptimal closed loop performance. However, extensive
simulation results in the next section will illustrate that the
performance decrease incurred by IMPQP control is not
significant, in general.

IMPQP makes uses of two interpolations; we address
each of these separately in the following subsections before
concluding this section with an overview of the properties
of IMPQP control.

A. IMPQP: Interpolation 1

Rather than using the individual control values
uk, k = 0, 1, ... in the optimisation of performance, the
first interpolation of the IMPQP controller uses a mixture
of input trajectories arising from two possible control laws.
The major difference to earlier interpolation approaches
(e.g. [12]) is the selection of the input trajectories;
here we make use of some of the MPQP regions Si to
define one of the trajectories and hence this trajectory
is guaranteed feasible for x ∈ XN

f . More precisely the
optimal unconstrained input sequence is interpolated with
the input sequence which would be used if a given state
was projected onto the nearest facet. The following lemma
can be used to establish the nearest facet to a given state
x.

Lemma 3.1: (i) Define the polytopes Pj to be the mini-
mal volume polytopes containing both the jth facet of XN

f

and the origin. (ii) Normalise the inequalities defining XN
f

according to

Mmaxx−dmax ≤ 0; dTmax =







1
1
...






; Mmax =







mT
1

mT
2

...







(7)
(iii) Compute the values γj = mT

j x and compute j for
which γj is a maximum. Then x lies in polytope Pj . The
proof is obvious.

Theorem 3.1: Given x ∈ Pj and γj = mT
j x find the

region Si such that x/γj ∈ Si. Then the control move

u = −KLQRx + eT1 C; C = −K̂ix + γjti (8)

is the first move of a predicted control law with convergent
predictions. Moreover, this control move is optimal if x

lies on a facet of XN
f .

Proof: Given (7), the value γj is the normalised distance
from the origin to state x (points on the facet giving γj = 1).
Hence control law (8) is a scaled version of what would be
used if x were on the facet which by linearity must therefore
give rise to feasible predictions which remain inside XN

f (or
in fact a region of identical shape to XN

f but scaled by γj).
tu

Having established some of the solution properties, we
will now introduce Interpolation 1 of the proposed IMPQP



control procedure.

Algorithm 3.1: IMPQP Interpolation 1:
1) Off-Line: Solve (5) as an MPQP and remove all

regions which are not located on the boundary (see
Figure 1).

2) On-Line: For an initial state x, compute γj =
mT

j x, j = 1, 2, ... and find j such that γj is a
maximum.

3) On-Line: From the regions on the jth facet, find i
such that x/γj ∈ Si and compute the corresponding
sequence C from (8).

4) On-Line: The optimal C for the unconstrained LQR
controller is C = 0, so one will be interpolating
between C and zero.

5) On-Line: Perform the minimisation

min
α

α s.t.

{

N(αC)− (d−Mx) ≤ 0
0 ≤ α ≤ 1

; (9)

to obtain C1 = αC.
The resulting closed-loop sequence is feasible and has

the property of recursive feasibility1 by design. However,
convergence to XI and hence to the origin cannot be
guaranteed in general [11]. We therefore add a second
interpolation [10] in the next section which will guarantee
the closed loop trajectory to be convergent and stabilizing.

B. IMPQP: Interpolation 2

The key reason why stability is not automatic in
Level 1 of IMPQP control is the lack of predictability
in the input sequence. The classic approach of ‘shifting’
the input sequence of the previous time step in order
to prove stability [9] does not apply here. That is,
it is not possible in general to make the choice for
Ck+1 = [cT

k+1|k, c
T
k+2|k, · · · , ck+nc−1|k, 0]

T . Without the
tail in the class of possible predictions, one cannot easily
argue that the cost J is monotonically decreasing and in
fact one can easily find Level 1 simulations with excellent
performance (and convergence) but where, nevertheless, J
does not change monotonically. The result of the following
Lemma is well known in the literature (e.g. [9]).

Lemma 3.2: If the input sequence Ck+1 =
[ck+1|k, ck+2|k, · · · , 0]

T is in the class of possible
predictions at time k + 1 for problem (3), this is sufficient
to guarantee stability in the nominal case.

However, interpolation 1 of the IMPQP scheme may
not include the shifted input sequence. The proposal here
is to add a second degree of freedom (e.g. [10]) which
corresponds to an interpolation of the input sequence C1 of
algorithm 3.1 and the ‘tail’ of the input sequence which was
obtained at the previous time step. This will automatically

1Satisfaction of (9) implies the existence at the next sampling instant of
a valid C such that x ∈ XN

f
.
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(c) Closeup of IMPQP Controller.
Fig. 1. Controller partition for a standard controller compared to the
IMPQP controller.

provide for a proof of stability for the IMPQP scheme
and may also serve to improve closed-loop performance.
Next, the on-line interpolation 2 of the IMPQP controller
is defined.

Algorithm 3.2: IMPQP Interpolation 2:

1) At time k−1, store the input sequence obtained with
Level 1 according to

Ctail = [cTk|k−1, c
T
k+1|k−1, · · · , c

T
k+nc−2|k−1, 0]

T

(10)
2) At time k, define a linear interpolation between the

optimal C1 obtained by Level 1 and the tail Ctail

Cmix = (1− β)C1 + βCtail; 0 ≤ β ≤ 1 (11)

3) Minimise the predicted cost over the prediction class



in (11).

minβ J = CT
mixSCmix = β2f + 2βg + h

s.t.







0 ≤ β ≤ 1
f = [Ctail −C1]

TS[Ctail −C1]
g = [Ctail −C1]

TSC1

(12)
4) Implement the control law u = −KLQRxk +

eT1 Cmix.

β will be zero unless the solution obtained with Level 1
can be improved upon by moving towards Ctail.

C. Complexity and Properties of IMPQP Control

Some properties of IMPQP control are stated next.

Theorem 3.2: Algorithm IMPQP has a guarantee of
both recursive feasibility and stability in the nominal case.

Proof: By construction both C1 and Ctail are feasible and
therefore, from convexity arguments, Cmix must also be
feasible. Also, because Ctail is in the class of possible
predictions, Lemma 3.2 must apply, and hence comes the
guarantee of stability. tu

The computational burden of IMPQP control is signifi-
cantly smaller than comparable algorithms [1] and MPQP.

• It is only necessary to store regions which lie on a
facet of XN

f , thus reducing the storage effort.
• A simple lookup table which associates facets to

regions can be created which reduces the number of
set-membership tests significantly.

• The additional on-line computations in (9) and (12)
are also negligible since the implied minimizations are
over scalars and thus are trivial.

It should be noted however, that the necessary off-line
computation effort for IMPQP is not negligible. In the worst
case it is necessary to solve fXN

f
·
∑R

r=1
fr LPs where fXN

f

and fr denote the number of facets of the set XN
f and

region Pr, respectively. This requirement places a practical
limit on the size of the problems IMPQP is applicable to.
However, this also holds for other schemes which aim at
simplifying the feedback solution through post-processing
of the controller partitions.

IV. NUMERICAL EXAMPLES

This section presents an extensive comparison of the
IMPQP algorithm with traditional MPQP controllers. The
infinite horizon controller presented in [6] (contained in the
MPT toolbox [8]) is used as a basis for comparison. Both
controllers cover the maximum control invariant set XN

f

and provide stability and feasibility properties. Hence it is
necessary only to compare complexity and performance.

The comparison is based on 40 random systems with
2 − 3 states and 2 inputs. The inputs for all systems were
constrained to −1 ≤ u1,2 ≤ 1 and the states were limited
to −10 ≤ xi ≤ 10 (i = 1, 2, 3).

Two different variations on the performance objective of
(3) were considered: that is the cases of small and large
weights on the input, i.e., R1 = 0.1I and R2 = 10I . Q = I
was used throughout. For consistency with other work, the
cases considered are identical to those presented in [7]; a
comparison with the complexity reduction obtained in [7]
is also discussed briefly at the end of the section.

A. Complexity comparisons

Figure 2 gives a comparison of the complexity of IMPQP
versus the controller in [6]. The dotted lines/dashed lines
display the number of regions which need to be stored for
[6] and IMPQP respectively and the dash-dot lines display
the maximum number of regions on any facet. The on-line
effort for the set-membership test in [6] is proportional to
the total number of regions whereas the IMPQP only needs
to check the regions associated to the facet identified in step
3 of Algorithm 3.1.

• The average reduction in storage requirements for the
IMPQP algorithm is 55%.

• The average reduction in on-line computation associ-
ated to set membership identification for the IMPQP
algorithm is 89% (reduction by a factor of 10) .

B. Performance comparisons

Figure 3 gives a comparison of the performance (calcu-
lating J of (3) for the closed-loop trajectories) of IMPQP
versus the controller in [6]. Performance was evaluated
by gridding the feasible state space and summing up all
the closed loop trajectory cost. The average performance
decrease over all runs is merely 2%.

C. Summary of comparison

As can be gathered from Figures 2 and 3, IMPQP control
exhibits a significant decrease in complexity in storage
and set-membership test at virtually no cost in terms of
performance. The authors in [7] obtained a decrease in
complexity in storage and identification of 69% at the cost
of a performance reduction of 0.01%, but their runtime
results clearly indicated that the procedure is not applicable
for medium size systems. Hence, IMPQP is the superior
alternative if run-time and not storage space is the limiting
factor in application. On the other hand, similar to other
simplification techniques [16], [2], the IMPQP procedure
relies on the a priori computation of the explicit control law,
which may be prohibitive for large problems. Note that the
procedures in [16], [2] may be used in combination with
IMPQP to obtain further reductions in complexity.

V. CONCLUSION

A novel interpolation based control scheme was presented
which allows for significant simplification of the on-line
set-membership test necessary for MPQP control [1]. The
procedure is based on two interpolations, the first of which
aims at optimality while the second guarantees stability.
In extensive simulations it was shown that the procedure
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Fig. 2. Comparison of IMPQP complexity versus standard MPQP [1] for 20 second-order systems.
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Fig. 3. Comparison of IMPQP performance versus standard MPQP [1] for 20 second-order systems.



can reduce the necessary on-line effort for set-membership
identification by a factor of 10 at the cost of minor perfor-
mance degradation, making it an attractive option for fast
processes. The necessary additional on-line optimization of
a scalar is trivially implemented and does not require a
significant amount of computation time. Future work will
focus on the possibility of storing only one input per facet
which will simplify storage and online computation even
more.
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