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Abstract— In this paper, we present a state-feedback re-
ceding horizon control (RHC) for discrete-time fuzzy systems
with input constraints. The models of the fuzzy systems are of
Takagi-Sugeno type, which is suitable to model a large class
of nonlinear systems. To find the control, we first derive an
optimization problem involving parameterized linear matrix
inequalities (PLMIs) that depend on the current and one-
step past information on the time-varying fuzzy weighting
functions. Since the PLMIs need to be checked for all values of
the weighting functions, for solvability, we convert the PLMIs
into a finite number of LMIs by suggesting a special structures
for the variables of the PLMIs. Then, it is shown that the
closed-loop system with the designed control is stable if the
converted optimization problem is feasible at the initial time. A
numerical example is presented to illustrate the performance
of the controller.

I. INTRODUCTION

Receding horizon control(RHC), also known as model
predictive control(MPC), has received much attention in
control societies because of its good tracking performance
and many applications to industrial processing systems [1],
[2], [3], [4], [5]. The RHC is also a suitable control strategy
for time-varying systems including periodic systems and has
a merit that constraints may be directly incorporated into the
on-line optimization [6], [7], [8].

On the other hand, TS fuzzy model is widely used
because it is suitable to model a large class of nonlinear
systems and has been studied extensively in the last decades
[9], [10], [11], [12]. In the TS fuzzy model, a nonlinear
plant is represented by a set of linear models interpolated by
membership function (TS fuzzy model) and then a model-
based fuzzy controller is developed to stabilize the TS fuzzy
model. Therefore, one can utilize a large amount of results
for linear systems in solving nonlinear problems. This story
is also applicable to the area of RHC.

In this paper, we present a state-feedback receding hori-
zon control (RHC) for discrete-time fuzzy systems with
input constraints. The models of the fuzzy systems are of TS
type, which is suitable to model a large class of nonlinear
systems. To find the control, we first derive an optimization
problem involving PLMIs [13], [14] that depend on the
current and one-step past information on the time-varying
fuzzy weighting functions. Since the PLMIs need to be
checked for all values of the weighting functions, for solv-
ability, we convert the PLMIs into a finite number of LMIs
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by suggesting a special structures for the variables of the
PLMIs. Then, it is shown that the closed-loop system with
the designed control is stable if the converted optimization
problem is feasible at the initial time. A numerical example
is presented to illustrate the performance of the controller.

The rest of the paper is organized as follows. Section
II states target systems, assumptions, the associated prob-
lem. Section III derives an optimization problem involving
PLMIs that depend on the current and one-step past infor-
mation on the time-varying fuzzy weighting functions. For
solvability, the PLMIs are converted into a finite number of
LMIs by suggesting a special structures for the variables of
the PLMIs. Then the closed-loop system stability is showed.
Finally, concluding remarks are given in Section V. The
notation of this paper is fairly standard. In symmetric block
matrices, we use(∗) as an ellipsis for terms that are induced
by symmetry.

II. PROBLEM STATEMENTS

Consider a general discrete-time TS fuzzy system such
as

xk+1 =
r∑

i=1

θi(ηk) [Aixk + Biuk] , (1)

subject to input constraints

−u ≤ uk ≤ u, k = 0, 1, ...,∞ (2)

wherexk ∈ Rn is the state,uk ∈ Rm is the control input,
r is the number of system rules,ηk = [ηk1, · · · , ηkp]
is the premise variable vector that may depend on states
in many cases, andθi(ηk) denote normalized time-varying
fuzzy weighting function (FWF) for each rule at timek. In
general, the FWFsθi(ηk) have the following conditions for
all time k (see [11], [12]) :

0 ≤ αi ≤ θi(ηk) ≤ βi ≤ 1, for i = 1, 2, · · · , r

|θi(ηk)− θi(ηk−1)| ≤ δi ≤ 1, for i = 1, 2, · · · , r, (3)
r∑

i=1

θi(ηk) = 1.

Sinceθi(ηk) are measurable in current timek, the system
(1) belongs to a special class of LPV systems whose state-
space matrices are assumed to depend on a time-varying
parameter vector. Hence, we can rewrite the discrete-time
TS fuzzy system (1) as

xk+1 =A(Θk)xk + B(Θk)uk, (4)



where

[A(Θk)|B(Θk)] =,
r∑

i=1

θi(ηk)[Ai|Bi], (5)

andΘk ∈ Rr denotes a time-varying FWF vector consisting
of the time-varying FWFsθi(ηk).

The goal of this paper is to find a new state-feedback
RHC for fuzzy systems with input constraints, which de-
pends on both the current-time FWF vectorΘk and the
one-step-past FWF vectorΘk−1 at timek (see [15]):

uk = K(Θk,Θk−1)xk, (6)

where K(Θk, Θk−1) is dependent onΘk and Θk−1. To
find the state-feedback RHC of (6) for system (4), at each
sampling timek, we consider the following cost function

J0,∞(k) = xT
k|kQxk|k + uT

k|kRuk|k +
∞∑

j=1

(xT
k+j|k

×Qxk+j|k + uT
k+j|kRuk+j|k)

= xT
k|kQxk|k + uT

k|kRuk|k + J1,∞(k), (7)

and the corresponding optimization problem

min
uk+j|k, j∈[0,∞)

max
[A(Θk+j)|B(Θk+j)]

J0,∞(k), (8)

subject to

xk+j+1|k = A(Θk+j)xk+j|k + B(Θk+j)uk+j|k, (9)

−u ≤ uk+j|k ≤ u, (10)

for j = 0, ...,∞, whereQ, R are positive definite symmetric
weighting matrices for all admissibleΘk. We denote that
xk+j|k anduk+j|k are predicted variables of state and input
at the timek respectively, withxk|k = xk.

III. RHC DESIGN FORTS FUZZY SYSTEMS

Following the approach given in [8] where the quasi-min-
max MPC algorithms for LPV systems are presented, it is
easy to derive an upper bound on the worst value of the cost
function J0,∞(k). Consider an FWF dependent quadratic
function [15])V (x, Θ) = xT P (Θ)x, P (Θ) > 0 of the state
with V (0,Θ) = 0. At sampling timek, supposeV satisfies
the following inequalities for allxk+j|k, uk+j|k, j ≥ 1
satisfying (10), and for anyΘk+j−1 and Θk+j satisfying
(2):

V (xk+j+1|k, Θk+j)− V (xk+j|k,Θk+j−1)

≤ −[xT
k+j|kQxk+j|k + uT

k+j|kRuk+j|k]. (11)

For the performance function to be finite, we must have
x∞|k = 0, and henceV (x∞|k, Θk+j−1) = 0. Summing
(11) from j = 1 to j = ∞, we get

−V (xk+1|k, Θk) ≤ −J1,∞(k). (12)

Thus,

max
[A(Θk+j)|B(Θk+j)]

J0,∞(k)

≤ xT
k|kQxk|k + uT

k|kRuk|k + V (xk+1|k,Θk)

= xT
k|kQxk|k + uT

k|kRuk|k + xT
k+1|kP (Θk)xk+1|k.

(13)

This gives an upper bound on the cost. Thus the goal has
been redefined to design, at each sampling timek, an FWF
dependent state-feedback control law (6) to minimize this
upper bound.

A. Unconstrained FWF dependent RHC design

First, we present an optimization problem from which
we may obtain an FWF dependent state-feedback control
law for unconstrained system. The problem is same as that
in Theorem 1 of [8] except thatp(k), Ai, Bi, X(k), Y (k)
are replaced by Θk, A(Θk+j), B(Θk+j , X(Θk+j−1),
Y (Θk+j , Θk+j−1) respectively, hence the derivation is
omitted for clarity. We shall omit the derivation procedure
for clarity.

min
γ,uk|k,X(Θk+j),X(Θk+j−1),X(Θk),Y (Θk+j ,Θk+j−1),j≥0

γ

(14)
subject to




−1 (∗) (∗) (∗)
M21 −X(Θk) (∗) (∗)

Q1/2xk|k 0 −γI (∗)
R1/2uk|k 0 0 −γI


 ≤ 0, (15)




−X(Θk+j−1) (∗) (∗) (∗)
Q1/2X(Θk+j−1) −γI (∗) (∗)

M31 0 −γI (∗)
M41 0 0 −X(Θk+j)


 ≤ 0,

(16)

wherej ∈ [1,∞], and

M21 = A(Θk)xk|k + B(Θk)uk|k, (17)

M31 = R1/2Y (Θk+j , Θk+j−1), (18)

M41
4
= A(Θk+j)X(Θk+j−1)

+ B(Θk+j)Y (Θk+j , Θk+j−1), (19)

X(Θk+j−1) = γP−1(Θk+j−1), (20)

K(Θk+j ,Θk+j−1) = Y (Θk+j , Θk+j−1)X−1(Θk+j−1).
(21)

If this problem is solvable and feasible, the control input
sequenceUk is given by

Uk = {uk|k, uk+j|k = K(Θk+j , Θk+j−1)xk+j|k, j ≥ 1}.
(22)

Unfortunately, the above optimization problem cannot be
solved because of unknownΘk+j andΘk+j−1 contained in
the infinite number of LMIs in (15) and (16). Therefore, it is
important to develop a finite number of solvable conditions
from (15) and (16).



B. Relaxation of the proposed controller using LMIs

From this point on, we shall develop a relaxed LMI
conditions for (15) and (16), based on the polynomial
dependency of the FWFs for the discrete-time TS fuzzy sys-
tem, using the the convex relaxation techniques of general
fuzzy systems. To this ends, let us first select the structures
of the variables in (15) and (16) as follows:

X(Θk+j) =
r∑

i=1

θi(ηk+j)Xi,

X(Θk+j−1) =
r∑

i=1

θi(ηk+j−1)Xi, (23)

Y (Θk+j , Θk+j−1) =
r∑

i=1

θi(ηk+j)Yi1 +
r∑

i=1

θi(ηk+j−1)Yi2,

where Xi, Yi1, and Yi2 are constant matrices, that is,
X(Θk+i), X(Θk+i−1), and Y (Θk+i, Θk+i−1) are poly-
nomially dependent onΘk+i and Θk+i−1. Furthermore,
by using constraint-elimination methods for the conditions
(2) of the current-time FWFθi(ηk+N ) and the one-step-
past FWFθi(ηk+N−1) with the S-procedure, we relax the
conservatism of the proposed controller (6).

Theorem 3.1:The optimization problem (14) subject to
(15) and (16) is feasible if the following optimization
problem involving a finite number of LMIs is feasible

min
γ,uk|k,Xi,Yi1,Yi2,Λi,Σi,Ξi,Λ,Σ

γ, (24)

subject to



−1 (∗) (∗) (∗)
M21 −Xi (∗) (∗)

Q1/2xk|k 0 −γI (∗)
R1/2uk|k 0 0 −γI


 ≤ 0, i = 1, ..., r, (25)




Υ (∗) · · · (∗) (∗) · · · (∗)
Γ1 ∆11 · · · (∗) (∗) · · · (∗)
...

...
. . .

...
... · · ·

...
Γr ∆r1 · · · ∆rr (∗) · · · (∗)
Ω1 Π11 · · · Π1r Ψ11 · · · (∗)
...

...
. . .

...
...

. . . (∗)
Ωr Πr1 · · · Πrr Ψr1 · · · Ψrr




≤ 0, (26)

Xi ≥ 0, γ > 0, (27)

Λi + ΛT
i ≥ 0, Σi + ΣT

i ≥ 0, Ξi + ΞT
i ≥ 0, (28)

where

M21 = Aixk|k + Biuk|k,

Υ , Υsub −
r∑

i=1

αiβi{(Λi + ΛT
i ) + (Σi + ΣT

i )}

− (Λ + ΛT )− (Σ + ΣT ) +
r∑

i=1

δ2
i (Ξi + ΞT

i ),

Γi , Γisub
+ (αi + βi)Λi + (Λ + ΛT ),

∆ii , Disub
− (Λi + ΛT

i )− (Λ + ΛT )− (Ξi + ΞT
i ),

∆hi , ∆hisub
− (Λ + ΛT ), h 6= i,

Ωi , Ωisub
+ (αi + βi)Σi + (Σ + ΣT ),

Πhi ,
{

Πhisub
+ (Ξi + ΞT

i ) i = h
Πhisub

i 6= h
,

Ψii , − (Σi + ΣT
i )− (Σ + ΣT )− (Ξi + ΞT

i ),

Ψhi , − (Σ + ΣT ), h 6= i,

Υsub ,




0 0 0 0
0 −γI 0 0
0 0 −γI 0
0 0 0 0


 ,

Γisub
,




0 0 0 0
0 0 0 0

R
1
2 Yi1 0 0 0
0 0 0 − 1

2Xi


 ,

Disub
,




0 0 0 Y T
i1 BT

i

0 0 0 0
0 0 0 0

BiYi1 0 0 0


 ,

∆hisub
,




0 0 0 0
0 0 0 0
0 0 0 0

BhYi1 + BiYh1 0 0 0


 ,

Ωisub
,




− 1
2Xi 0 0 0

Q
1
2 Xi 0 0 0

R
1
2 Yi2 0 0 0
0 0 0 0


 ,

Πhisub
,




0 0 0 0
0 0 0 0
0 0 0 0

AiXh + BiYh2 0 0 0


 ,

Proof: The proof for a similar problem to (26)-(28) can be
found in [15], [16], so not discussed any more here. And
we can obtain (25) from (15) that includesX(Θk) since
Θk is known at timek.

C. Constrained FWF dependent RHC design

Input constraints can be expressed as LMIs and therefore
included in the RHC problem. The input constraints (10) is
satisfied if the following conditions are satisfied

[ −X(Θk+j−1) Y (Θk+j ,Θk+j−1)
Y T (Θk+j , Θk+j−1) −Z

]
≤ 0, (29)

Zii ≤ u2
i , i = 1, 2, ...,m,

whereui is defined byui = min(−ui, ui) and ui and ui

are theith elements ofu andu, respectively. It is a simple
extension of the result in [17], hence the derivation process
from (10) to (29) is omitted.

By the relaxation technique used in the previous section,
the inequality (29) can also be relaxed to the following



LMIs


Ῡ (∗) · · · (∗) (∗) · · · (∗)
Γ̄1 ∆̄11 · · · (∗) (∗) · · · (∗)
...

...
.. .

...
... · · · ...

Γ̄r ∆̄r1 . . . ∆̄rr · · · · · · (∗)
Ω̄1 Π̄11 · · · Π̄1r Ψ̄1 · · · (∗)
...

...
...

...
...

.. .
...

Ω̄r Π̄r1 · · · Π̄rr Ψ̄r1 · · · Ψ̄r




≤ 0, (30)

where

Ῡ , Ῡsub −
r∑

i=1

αiβi{(Λ̄i + Λ̄T
i ) + (Σ̄i + Σ̄T

i )}

− (Λ̄ + Λ̄T )− (Σ̄ + Σ̄T ) +
r∑

i=1

δ2
i (Ξ̄i + Ξ̄T

i ),

Γ̄i , Γ̄isub
+ (αi + βi)Λ̄i + (Λ̄ + Λ̄T ),

∆̄ii , −(Λ̄i + Λ̄T
i )− (Λ̄ + Λ̄T )− (Ξ̄i + Ξ̄T

i ),

∆̄hi , −(Λ̄ + Λ̄T ),

Ω̄i , Ω̄isub
+ (αi + βi)Σ̄i + (Σ̄ + Σ̄T ),

Π̄hi ,
{

Π̄hisub
+ (Ξ̄i + Ξ̄T

i ) i = h
Π̄hisub

i 6= h
,

Ψ̄ii , −(Σ̄i + Σ̄T
i )− (Σ̄ + Σ̄T )− (Ξ̄i + Ξ̄T

i ),

Ψ̄hi , −(Σ̄ + Σ̄T ),

Ῡsub ,
[

0 0
0 −Z

]
, Γ̄isub

,
[

0 0
Yi1 0

]
,

Ω̄isub
,

[ − 1
2Xi 0
Yi2 0

]
,

Λ̄i + Λ̄T
i ≥ 0, Σ̄i + Σ̄T

i ≥ 0, Ξ̄i + Ξ̄T
i ≥ 0.

We present the following theorem without proof, which
yields an optimized constrained input sequence at certain
time k.

Theorem 3.2:The optimization problem (14) subject to
(10), (15) and (16) is feasible if the following optimization
problem involving a finite number of LMIs is feasible

min
γ,uk|k,Xi,Yi1,Yi2,Λi,Σi,Ξi,Λ,Σ,Λ̄i,Σ̄i,Ξ̄i,Λ̄,Σ̄

γ, (31)

subject to (25)-(28), (30).

If the above problem is feasible, the constrained input
sequence is given by

Uk = {uk|k, uk+i|k = K(Θk+j , Θk+j−1)xk+i|k}, (32)

where

K(Θk+j , Θk+j−1) =

{
r∑

i=1

θi(ηk+i)Yi1

+
r∑

i=1

θi(ηk+i−1)Yi2

}{
r∑

i=1

θi(ηk+i−1)Xi

}−1

. (33)

By the RHC strategy, only the first controluk|k among
the control sequenceUk from the optimization problem in
Theorem 3.2 is applied to the system at each timek. Then

the procedure is repeated at the next timek + 1. In the
following theorem, we show that the closed-loop system
with the control is stable.

Theorem 3.3:If the control input from the optimization
problem in Theorem 3.2 is applied to the TS fuzzy system
(1) with input constraints (2) according to the RHC strategy,
the closed-loop system is asymptotically stable.
Proof: The proof is omitted since a similar proof can be
seen in [8].
Remark 1: The proposed RHC scheme is similar to that
of [8] in many respects. However, there are also some
differences. The most important differences are that: 1)
while [8] adopted a parameter dependent state-feedback
control law, this paper adopt both the current and one-step
past FWF dependent state-feedback control law. 2) while
we adopt both the time and parameter-dependent quadratic
function of state to bound the infinite horizon cost function,
but [8] adopted only a time-dependent quadratic function.
As a result, the conservatism of [8] is much more enhanced
in this paper.

IV. NUMERICAL EXAMPLE

Consider the system (1) with the following matrices

A1 =
[

1 0.1
−0.5 0.8

]
, A2 =

[
1.49 0.1
−0.4 0.5

]
,

B1 =
[

0.50.1
]
, B2 =

[
0.5
0.1

]
(34)

Simulation parameters are sa follows:x0 = [1.2 − 0.2]T ,

Q =
[

1 0
0 0.5

]
, R = 1e−9, |u(k)| ≤ 3. Fuzzy weighting

functions are given asθ1(ηk) = 1 − 2∗abs(xk(1))
π and

θ2(ηk) = 2∗abs(xk(1))
π whereabs(A) means absolute value

of A. Figure 2 shows simulation results, where we can see
that the proposed RHC stabilizes the closed-loop system.
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Fig. 1. State trajectories.

V. CONCLUDING REMARKS

In this paper, we presented a state-feedback RHC for
discrete-time TS fuzzy systems with input constraints. We
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first derived an optimization problem involving PLMIs that
depend on the current and one-step past information on the
time-varying fuzzy weighting functions. Since the PLMIs
need to be checked for all values of the weighting functions,
for solvability, we converted the PLMIs into a finite number
of LMIs by suggesting a special structures for the variables
of the PLMIs. Then, it was shown that the closed-loop
system with the designed control is stable if the converted
optimization problem is feasible at the initial time.
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