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Abstract— This paper presents a new formulation of a stable
receding horizon controller (RHC) for the minimum time
trajectory optimization problem with a vehicle flying in a
complex environment with obstacles and no-fly zones. The
overall problem is formulated using Mixed-integer Linear Pro-
gramming (MILP). The RHC uses a simple vehicle dynamics
model in the near term and an approximate path model in the
long term. This combination gives a good estimate of the cost-
to-go and greatly reduces the computational effort required
to design the complete trajectory, but discrepancies in the
assumptions made in the two models can lead to infeasible
solutions. This paper extends our previous RHC formulation
to ensure that the on-line optimizations will always be feasible,
while eliminating the binary variables associated with feasible
turns. Novel pruning and graph-search algorithms are also
integrated with the new MILP RHC, and these are shown to
significantly reduce the computation time. A worst case analysis
is performed to obtain an upper bound on the planning horizon,
and the resulting controller is analytically shown to guarantee
finite-time arrival at the goal.

I. INTRODUCTION

Path planning problems have been well studied in the
robotic field, and several approaches such as visibility graph,
potential field, roadmap method, and cell decomposition
have been proposed [1]. These traditional approaches are
typically either computationally intensive and not suitable for
real-time applications, or can produce suboptimal solutions
that cannot guarantee arrival at the goal. These approaches
includes the kinematics but further extension is required to
capture the dynamics of the aircraft (e.g., speed constraints,
turn limitations).

Our approach address this problem by using a hybrid
approach. Our receding horizon controller (RHC) uses a
simple model of the aircraft dynamics [2], [3] model over
the planning horizon in the detailed trajectory generation
phase, and a simple kinematic model (i.e., collision free
straight line segments) beyond it [4]. Although replanning
can typically find a dynamically feasible trajectory near
the line segment path, the trajectory optimization problem
can become infeasible if there is a large difference in the
assumptions of the vehicle capabilities. Fig. 1 illustrates the
case where kinodynamically infeasible straight line segments
lead to an infeasible trajectory design [5]. One approach to
avoid this situation is to place a turning circle at each corner
when constructing a cost map, and enforce the rule that the
vehicle moves towards the arc of the circle, not the corner.
Ref. [5] used this approach and introduced binary variables
to encode the join and leave events on the turning circles,
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Fig.1: Trajectory in highly constrained environment

but these binaries complicate the MILP problem and make
it much harder to solve.

A new approach presented in this paper ensures the existence
of a kinodynamically feasible turn [4], [6] at each corner by
introducing three turning circles per corner and by applying
a modified Dijkstra’s algorithm when constructing the cost
map. When searching for the shortest path, this algorithm
rejects a sequence of nodes if the turning circles cannot be
suitably placed (i.e., a kinodynamically infeasible sequence).
The generated tree of nodes gives the shortest path from each
node to the goal along the straight lines in the regions where
a feasible path is guaranteed to exist. When optimizing the
trajectory using RHC, the planning horizon is then extended
beyond the execution horizon such that while executing
the plan, the vehicle will always stay in the regions from
which a feasible path to the goal exists. The key point is
that this does not require pre-placed turning circles in the
MILP optimization, which eliminates the additional binary
variables used in Ref. [5]. Also, the feasibility check on
the sequences of nodes enables us to prune infeasible cost
points before the MILP optimization while still retaining
the freedom to make decisions about which paths to take
around the obstacles. This pruning algorithm is shown to
significantly reduce the computational effort. This highly
modified cost map can also be used to establish sufficient
conditions on the planning horizon length. This leads to an
analytic derivation of the minimum planning horizon length,
which is one of the key results of this paper. This paper
defines the “stability” of the trajectory design process as
guaranteeing arrival at the goal, and then proves the stability
of our RHC based on the existence of a feasible path in the
detailed trajectory design phase. Finally, several simulation



results are presented to verify the stability and performance
of this new approach.

II. MODIFIED COST MAP

This section constructs a reliable cost map that is used in
the RH-MILP to estimate the trajectory beyond the planning
horizon [2], [4]. Obstacles are modelled as rectangles, and
nodes for the graph are the obstacle corners and the goal
point. This is a good approximation, because with very fast
turning dynamics, the shortest path from one node to another
would consist of the straight line segments provided by
the visibility graph. The visibility graph is first generated
considering only kinematics. Then, Dijkstra’s algorithm is
used to search for the shortest path from each node. A circle
placement algorithm is embedded in the Dijkstra’s algorithm
to incorporate vehicle dynamics. The modified Dijkstra’s
algorithm incorporates both kinematics and dynamics and
yields a more reliable cost map for the RH-MILP.

A. Three Circles

The optimal trajectory of an aircraft flying at a constant
speed with limited lateral acceleration is depicted as a series
of straight line segments and arcs of the minimum turning
circle with radius rmin [7]. Fig. 2 shows three turning circles
(“leave circle”, “corner circle”, and “return circle”), the arcs
of which comprise a path that is flyable by the vehicle when
it changes from one straight line to another. The vehicle
leaves the original straight line path at a “leave point”, make
a turn with the maximum lateral acceleration allowed, passes
around the obstacle corner, and then aligns its heading to
the next straight line at a “return point”. The straight line
segments in Fig. 2 are the connections in the visibility graph,
guaranteed to be collision free. Two more conditions must
be satisfied in order to construct a tree of kinodynamically
feasible paths. First, the turning circles must be collision free
(i.e., not intersect any obstacles). Second, when constructing
a tree backwards from a goal, a return point around a corner
must not go over the leave point of its previous corner. This
second condition requires that the vehicle must come back to
the straight line and align its heading with it, before deviating
from the straight line to make the next turn.

For the turning maneuver at each corner, the difference
between the path length along the straight line and the one
along the arcs can be analytically obtained as

∆J = (2β + π/2 − θ1 − α) rmin

−
[{

1 + sin(θ1 + α)
}

tan β + cos(θ1 + α)
]
rmin (1)

β = arccos
{

1 + sin(θ1 + α)
2

}

where α and θ1 are shown in Fig. 2. Note that this path length
along the two arcs gives an upper bound of the optimal path
length.

B. Modified Dijkstra’s Algorithm

This section extends the previous way of constructing the
cost map to ensure the existence of kinodynamically feasible
paths around the straight line segments. Proper placement
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Fig.2: Three turning circles at obstacle corner

of turning circles is critical to obtain a less conservative
estimate of the existence of a feasible turn. An analytical
way of placing collision free circles is introduced in the
Ref. [6]. This circle placement algorithm is embedded in
a modified Dijkstra’s algorithm presented in this section
that accommodates the rejection criteria for joining two arcs
when searching for the shortest path.

The original Dijkstra’s algorithm [8] involves the labelling
of a set of fixed nodes P, of which the shortest node
distances Dj from the origin node to each node has been
found. Let wij denote the straight line distance between
each pair of nodes. The weight wij is set to ∞ if node
i is not visible from node j due to the obstacles. The
goal is regarded as an origin node in the algorithm. The
modified Dijkstra’s algorithm presented here chooses a node
which has a minimum distance label, and from which a
kinodynamically feasible connection to the current node is
guaranteed to exist.

Algorithm Overview: The index of the goal node can be
set to be 1. The modified Dijkstra’s algorithm then consists
of the following procedure:

1. Set current node i = 1, and initialize:
P = {1}

Dj =
{

0 (j = 1)
w1j (j �= 1)

2. Place the leave point for the goal on the goal.
3. Set node i as the successor of each node j that is visible

from the node i (i.e., { j |wij �= ∞}). A successor node
is the next node on the path toward the goal.

4. Find the next closest node from the set of unfixed nodes,
and set it as a new current node i:

i := arg min
j �∈P

Dj

5. Place the return circle and the corner circle around node
i, such that the distance from the corner i to the return
point is maximized.

6. Fix node i, and update the set P of fixed nodes:
P := P ∪ {i}

7. If all the nodes are also in P, terminate.
8. For all { j | j �∈ P, wij �= ∞}:

(a) Place a leave circle and a leave point for i on a
straight line connecting i and j.

(b) Check the feasibility of the connection. If the leave
point does not lie between i and j, then reject the



connection, pick the next j, and go to 8a. If the path
from i to j along the corner circle, leave circle, and
the straight line i-j is not collision free, then reject
the connection, pick the next j, and go to 8a.

(c) Update the temporary labels
Dj := min(Dj , wij + Di)

(d) If Dj is updated with wij + Di, then set i as the
successor of node j.

(e) Pick the next j and go to 8a.
9. Go to step 4 for next iteration

This procedure produces a tree of nodes with the goal node
at its end. Dj gives the shortest distance from j to the
goal along the straight line about which a kinodynamically
feasible path is guaranteed to exist. Fig. 3 shows a typical
scenario where many obstacles reside between the vehicle
location (marked as the ∗ middle left) and the goal (marked
as a star in the upper right). The dotted lines are the visibility
graph and the thick lines are the tree of shortest paths
obtained by running the modified Dijkstra’s algorithm. In
this example, a minimum turning radius rmin = 2.5 is used.
The corner A is not connected to the corner C since the path
A-C-D requires tighter than dynamically allowable turns in
order to avoid collisions, and hence this sequence would be
kinodynamically infeasible. Corner A is also not connected
to the tree E-F-C-D because the leave point of the connection
E-A does not lie between the two nodes E and A due to the
tight turns required for the tree E-F-C-D.

C. Cost Points in MILP

Although the cost map obtained in the previous section
provides a tree of nodes along which a kinodynamically
feasible path is guaranteed to exist, not all the nodes can
be passed to the MILP optimization process as cost points
or candidate visible points because the resultant trajectory
does not necessarily follow the precedence of nodes. Fig. 4
illustrates that the violation of precedence can lead to an
infeasible problem. Turning circles introduced in Fig. 2 are
also shown around each corner A, B, and C. In this example,
the modified Dijkstra’s algorithm guarantees that the tree A-
B-C-D is a feasible sequence, but the vehicle should not
aim directly for corner C following the dashed line because
it cannot turn around the corner C with its minimum turning
radius.

Taking into account the precedence of cost points when
generating the cost map solves this issue. In order to form a
list of feasible cost points, the following algorithm is applied
before calling the MILP optimization solver:

Step 1. Find all the points visible from the initial location of
the vehicle and include them in the set of candidate
cost points.

Step 2. For each visible point, check if the connection is
feasible by considering the circles placed around the
corner. From the candidate cost points obtained in
the previous step, eliminate points that are visible
but are not connectable with a dynamically feasible
path. The remaining points form a list of cost points.

Step 3. Calculate the distance between the initial location
and each cost point. If it is shorter than the length
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Fig.3: Typical scenario populated with obstacles, and the tree
of shortest paths. Cost points used in MILP are marked with
squares.
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Fig.4: Precedence of cost points. The vehicle starts at the
top (×), and goes to the right of the figure by going through
the narrow passage C-D. The corner circle (2) at C intersects
the obstacle to its left, and cannot be directly connected to
the start position.

of the planning horizon, add successors of the cost
point (one at a time) to the list of cost points until
the tree starting from the cost point has one and
only one node beyond the planning horizon. This
keeps the number of nodes in the list of cost points
as small as possible, and prevents the vehicle from
skipping ordered nodes.

Fig. 3 shows a resulting list of cost points after executing the
algorithm above. Note that the points with • in the left of the
figure are not considered to be feasibly connectable to the
initial point, since a vehicle going from the initial point (∗)
to these nodes will require a sharp turn around the nodes in
order to join the kinodynamically feasible tree. The planning
horizon in this example has a length of 15 units. Point F has
been added to the list in the operation of Step 3, but C was
not included.

As described above, every time the receding horizon con-
troller starts solving an optimization problem, only a limited
number of points on each tree of cost nodes are extracted and
used in the MILP. This ensures that the resultant trajectory
is stable while retaining the freedom to choose the path
along the way. Note that (for a static environment) the
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Fig.5: Trajectory in the highly constrained environment
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Fig.6: Comparison of the computation times.

stored cost map remains unchanged and this process is not
computationally intensive.

D. Effect on the Computation Time
The node pruning algorithm presented above not only en-
sures that the problem is feasible, but it also reduces the
computation load. Fig. 5 shows an environment densely
populated with obstacles. The same optimal trajectory was
obtained using the old and new (stable) formulations, and
the vehicle goes through narrow passages. Fig. 6 compares
the computation times of the two approaches. The plan
reaches the final goal on the 50th steps. The line with ·
and the one with ◦ show the computation time of the old
and stable formulations, respectively. As shown, there is a
significant improvement in the computation time. Without
pruning, there are 47 candidate nodes. If a node lies behind
an obstacle, the visibility test rejects the node. This process
involves a number of binary variables, and becomes compu-
tationally demanding as the number of obstacles increases.
The stable formulation prunes most of these nodes before
performing the MILP optimization, which results in a drastic
reduction in the computation time. Note that this formulation
only prunes the nodes that will never be selected, and still
retains the freedom to choose the best path from the trees of
nodes that remain.

III. STABILITY PROOF

This section addresses the optimization process using RHC
that designs detailed trajectories. In order to guarantee sta-
bility, several parameters of the receding horizon controller
must satisfy the conditions, identified in Section III-A.
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Fig. 7: Minimum margin to keep execution horizon in a
feasible region (discrete time case).

A. Feasibility Criteria

The RHC has two horizons: the detailed trajectory, which
is kinodynamically feasible, is designed over np steps of
planning horizon; but only the portion in the execution
horizon, which is the first ne steps of the generated plan,
is executed, and the RHC re-optimizes the trajectory beyond
the execution horizon. However, since the straight lines used
to approximate the cost beyond the planning horizon can be
dynamically infeasible, this optimization process can fail [5].
This situation is successfully avoided by having a planning
horizon that is relatively long compared to the execution
horizon. The margin (np − ne) ensures the state on the
execution horizon, which is the initial state of the next
optimization problem, stays in the region from which a
feasible path to the goal exists.

The margin (np−ne) has a lower bound in order to guarantee
stability, but it should be minimized in order to keep the
length of the planning horizon np small. This is because
the complexity of MILP grows rapidly as np increases. The
length of the execution horizon ne also has a lower bound,
which is derived from the computation time: the next plan
must be generated before the vehicle finishes executing the
current plan.

The minimum margin must be able to account for the
discrepancy between the straight line approximation and the
dynamically feasible path. The largest discrepancy occurs
when the intersection of two line segments forms a 90◦ angle
at the obstacle corner in our problems. Fig. 7 graphically
shows the length of the minimum margin required to en-
sure that the state on the execution horizon never becomes
infeasible if taken as an initial condition of the next plan.
The vehicle enters from the bottom of the figure along the
obstacle boundary and is aiming towards the right of the
figure by going through the narrow passage. Once the vehicle
passes through the thick line and enters the shaded portion,
which is formed by two circles of radius rmin, it cannot avoid
a collision. The minimum margin nmmin is geometrically
calculated as the length of the thick line divided by the step
size:

nmmin ≥ rmin

v∆t

⎧⎨
⎩

π

2
+ 2 arccos

⎛
⎝1 + sin

(
v∆t
rmin

)
2

⎞
⎠

⎫⎬
⎭ (2)



The nmmin is a function of the ratio of minimum turning
radius rmin and step size v∆t. With the same step size, a
larger minimum turning radius requires a larger margin since
the vehicle is less agile. With the same minimum turning
radius, a smaller v∆ t requires a larger number of steps
as a margin since the waypoints on the trajectory are more
detailed.

This analysis gives insight to the minimum length of the
planning horizon that is often discussed but is rarely deter-
mined analytically. Note that a larger margin causes longer
computation time; this represents a trade-off between the
computation load and the resolution of the trajectory.

Simulation Result: The simulation result in Fig. 8 demon-
strates that the optimization problem solved by the RHC
remains feasible over the worst case turn. Original obstacles
are depicted by solid lines, while dashed lines show obstacle
boundaries expanded to account for the discrete time model.
Solid lines with bullets show the detailed trajectory, and
dotted lines with bullets show the waypoints of the previous
plan. The vehicle starts at the bottom of the figure and goes
to the upper right by passing through the narrow passage.
From (a) to (d), the vehicle executes one step at a time. A
circle introduced in Fig. 7 is placed to show the infeasible
region. The following parameters are used in this simulation.

• np = 11
• ne = 1

• rmin = 3.1
• v∆t = 1

• nmmin ≥ 10.0

The planning horizon of the next plan enters the narrow
passage after executing one step, as shown in (a). However,
it cannot proceed until the heading direction of the terminal
step is aligned to the narrow passage as in (c). The resultant
trajectory follows the circle of radius rmin as expected in
Fig. 7. This result shows that with the minimum margin
obtained from Eq. 2 the vehicle always stays in a region from
which a feasible path to the goal is guaranteed to exist. Note
that this scenario goes infeasible with the old formulation,
or with a shorter margin.

B. RHC Stability

Finite Time Completion: The modified Dijkstra’s algorithm
ensures the existence of a kinodynamically feasible path
around the line segments from each cost point to the goal.
As shown in the previous section, when turning a corner,
the vehicle will deviate from the straight line path. In order
to obtain a feasible path, however, the vehicle is required
to satisfy a condition that the vehicle joins the next straight
line before the return point. The minimum margin nmmin

discussed above enables the RH-MILP to find the optimal
trajectory while satisfying this condition. This discussion
demonstrates that the receding horizon optimization prob-
lems are always feasible.

Although the UAV moves at a constant speed v, the point on
the planning horizon can move less than v∆t, as shown in
Figs. 8(a) to (c), when a planned trajectory does not follow
the previous plan. This is caused by a discrepancy between
the straight line approximation and the vehicle dynamics be-
yond the planning horizon. Once the heading discontinuities
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Fig. 8: Worst case turn. The straight line approximation
requires a 90 degree turn at the corner.

are resolved, however, the point on the planning horizon
starts moving towards the goal again (Figures 8(c) and (d)).

The foundation of the proof of finite time completion is
obtained from the following arguments. First, the sum of
the straight line lengths from the start point to the goal is
calculated as the total path length. Then, all of the differences
∆J between the arc lengths and the straight line lengths, as
expressed in Eq. 1, are added to the total path length. This
path length from the initial point to the goal along a feasible
path gives an upper bound Jmax of the length of the optimal
trajectory. Since the vehicle moves at a constant speed v, it
will enter a circle of radius v∆t around the goal in at most
kmax steps, where

kmax = floor

(
Jmax

v∆t

)
.

Simulation Result: Fig. 9 shows an optimal trajectory for
a scenario where two tight turns are required and Fig. 10
shows the cost-to-go of each RHC optimization and the pre-
calculated upper bound. Note that the difference between the
two lines for the first plan is the sum of the difference ∆J
at each corner.

If the generated plan is the same as a straight line, then the
cost-to-go decreases by v∆ t at each time step. When the
planning horizon comes to the obstacle boundary y = 0, the
horizon point cannot proceed until the heading direction at
the terminal point is aligned to the direction of the straight
line approximation. Thus, the decrease in the cost-to-go
during plan numbers 6–8 in Fig. 10 is quite small. When
the vehicle makes another turn in plans 16–18, the decrease
in cost-to-go is also less than v∆t. However, the cost-to-go
is bounded by the straight line J(k) = Jmax − k(v∆ t),
which constantly decreases by v∆ t for each step and
would eventually be less than zero. Having J(k) < 0 is a
contradiction, so the cost-to-go must be less than v∆t before
the upper bound hits zero. This implies that the vehicle will
enter inside a circle of radius v∆t around the goal in finite
time [5].
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C. Selection of Better Path
Once there is a large discrepancy between a straight line
approximation and a dynamically feasible path, the decrease
of cost-to-go becomes smaller than the nominal v∆t per step.
In such situations, the stable RHC can choose another path
on its way to the goal. Note that this formulation allows the
controller to select only feasible paths, as shown in Fig. 3.
In Fig. 11, the vehicle originally chooses to pass through the
narrow passage based on a cost estimate using straight lines
(trajectory points marked with ×). However, going around
the corner prevents the planning horizon from proceeding
and does not reduce the cost-to-go along the path. Then the
controller makes a different decision on the selection of the
visible point, and as a result the vehicle goes around the
upper obstacle (trajectory points marked with ◦). Note that
the controller selected another path simply because the cost-
to-go along the new path is smaller than the first, and the
cost-to-go of the actual vehicle trajectory is still bounded by
the same straight line J(k) = Jmax − k(v∆t).

IV. CONCLUSIONS

This paper presented a new algorithm that stably navigates
the vehicle to the goal. The vehicle dynamics are taken into
account as a minimum turning radius in the cost estimation
phase. By placing turning circles around the obstacle cor-
ners, the modified Dijkstra’s algorithm finds node sequences
along which a feasible path to the goal exists. The pruning
algorithm eliminates unnecessary nodes to form a stable
cost map, without losing the freedom to choose better paths
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Fig.11: Selection of another path. The vehicle is at the lower
left, and the goal is marked with a small rectangle shown in
the upper right of the figure.

in the detailed part of the trajectory design. This process
was demonstrated to significantly reduce the computation
time. It was also shown that the receding horizon controller
must extend the planning horizon beyond the execution
horizon in order to guarantee the stability of the trajectory
optimization. The lower bound of the margin required was
analytically calculated. Combined with the stable cost map,
this formulation proved that: 1) the RHC always has a
feasible solution, and 2) the vehicle reaches the goal in finite
time. The simulations verified these results.
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