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Abstract— In this paper we evaluate closed-loop stochastic
model predictive control techniques on a nonlinear high
density polyethylene fluidized bed example. Closed-loop MPC
is a control strategy in which one optimizes feedforward
signals while maintaining back-off to inequality constraints
on the process variables. This back-off is kept minimal by
using so-called closed-loop model prediction in which control
plays a central role. The objective in this paper is to illustrate
these novel techniques on a realistic simulator of an industrial
size HDPE plant by enabling a grade change under persistent
disturbances in the feeds.
Keywords. Closed-loop MPC, stochastic disturbances, in-
equality constraints, polymerization, grade changes, nonlin-
ear process control.

I. INTRODUCTION

The importance of plant operation within constraints has in
the past twenty years led to the success of model predictive
control (MPC), [16]. However, MPC does not provide a
systematic way of dealing with (stochastic) disturbances.
In [11] it is proposed to decompose the problem into an
optimal Gaussian estimation and a deterministic predic-
tion problem, which are solved as separate optimization
problems in a receding horizon implementation. This view
has become a main line of MPC research which considers
stochastics in the past but not in the future. Three limitations
of such open-loop MPC are that 1) no back-off is kept
to the constraints, 2) there are no possibilities of shaping
the process sensitivity, a basic characteristics of feedback
design methods and 3) one falsely assumes the validity of
the certainty equivalence property in the case of inequality
constraints. In previous papers, [5, 6], we have formulated
and solved a novel closed-loop prediction problem that
tackles the first two inconsistencies related to the back-of
and sensitivity optimization. The key issue is the decom-
position of the predictive control problem in a feedforward
trajectory and a feedback controller optimization. The idea
is the following. Due to the back-off to the constraints, the
controller retains its linear behavior such that a meaningful
sensitivity function can be defined. In turn, this sensitivity
function is used to choose a controller that minimizes that
same back-off as in a bootstrap technique and consequently
using feedforward we can optimize plant transitions while
the inequality constraints are guaranteed not to be violated
in the closed-loop. In a recent contribution, [7], we have

showed that for any optimal controller of the closed-loop
MPC problem (CLMPC), there exists an equivalent finite
horizon LQG controller (FHLQG) which has the same per-
formance. As it turns out, the optimal CLMPC strategy does
share the separation property (in contrast to the certainty
equivalence property), hence it can be decomposed in an
optimal estimator and an optimal inequality constrained
stochastic prediction problem. This has allowed us to de-
duce the receding horizon implementation for (CLMPC),
opening the way for application to continuous processes.
The purpose of this paper is to illustrate our control strategy
via an implementation on a nonlinear continuous High
Density Poly-Ethylene (HDPE) fluidized bed reactor having
approximately 50 states and 2000 algebraic equations. The
model is based on the dynamics presented in [2] and
[13]1. In several steps towards the implementation, detail
is skipped due to space limitations. These details will be
made available in [8].

II. CLOSED-LOOP MODEL PREDICTIVE CONTROL

Consider the discrete time-varying stochastic system
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where ξ is a generic element of some sample space Ω
connected to a Gaussian probability measure, wk(ξ) is a
resulting white noise sequence with variance matrix Wk and
with the property GkWkFT

k = 0 (process and measurement
noise are independent). Let us ‘lift’ this system, see also
[4], over a time horizon of n samples. In order to represent
this process slightly more compact, define the following
stochastic processes

yk(ξ) =






yk(ξ)
...

yk+n(ξ)




 , zk(ξ) =






zk(ξ)
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zk+n(ξ)




 (2)

and so on, representing the part from each signal u,w,y, z
from sample k to sample k+n. The two stochastic processes
y and z are the measured and performance output processes

1The model was implemented and extended by R.L. Tousain, (Delft
University of Technology, The Netherlands), [18] and W. van Brempt,
(IPCOS, Belgium) within the IMPACT project. We greatly appreciate that
they have made their modelling efforts available to us.



respectively (z contains any variable which either appears
in the objective function or in the constraints)

yk(ξ) = Gyxxk(ξ) + Gyuuk(ξ) + Gywwk(ξ)

zk(ξ) = Gzxxk(ξ) + Gzuuk(ξ) + Gzwwk(ξ).

The resulting initial condition xk(ξ) and the disturbance
wk(ξ) are uncorrelated (Gaussian) stochastic variables.
Note that we assume that there is no feedthrough from the
inputs to the measured outputs. Next to these equations, we
define the deterministic reference signals

yr
k = Gyxxr

k + Gyuu
r
k + Gywwr

k

zr
k = Gzxxr

k + Gzuu
r
k + Gzwwr

k.

Consider the finite horizon observer, in its one step ahead
predictor form, which consists of time varying dynamics
[17], (take index relative to k)
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where the transition matrix Φe
k,j for the observer system

mapping x̂j to x̂k is given for k > j by

Φe
k,j = Ae

k−1A
e
k−2 · · ·A

e
j , Φe

j,j = I, Ae
k = Ak −NkCk

where Nk is the Kalman predictor gain. Suppose that the
observer, (3) is put in its error dynamics form, where
the state of the observer is the error between the state
and its estimate ek(ξ) := xk(ξ) − x̂k(ξ). Note that in
some literature the notation x̂k|k−1 is customary to denote
the estimate of the Kalman predictor x̂k. This dynamical
system is given in recursive form by

ek+1(ξ) = (Ak −NkCk)
︸ ︷︷ ︸

Ae
k

ek(ξ) + (Gk −NkFk)
︸ ︷︷ ︸

Ge
k

wk(ξ)

and put in its lifted form e0(ξ) = Geee0(ξ) + Geww0(ξ)
in terms of (Φe

k, Ge
k)
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The corresponding innovation sequence, [9], is given by

vk(ξ) := yk(ξ)− ŷk(ξ) = Ckek(ξ) + Fkwk(ξ)

if we also put the innovations sequence in its lifted form
we obtain

v0(ξ) = Gvee0(ξ) + Gvww0(ξ) (4)

and in terms of the matrices (Φe
k, Ge

k, Ck, Fk)
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(5)

Then, introduce a feedback of the form

uk(ξ)− ur = Lk(x̂k(ξ)− x̂r
k) + K(vk(ξ)− vr

k) (6)

for some non-anticipating controller K ∈ K where

K = {
n∑

i=1

i∑

j=1

EiK
ijET

j : Kij ∈ R
nu×ny}

where Ei = (O, . . . , O, I,O, . . . , O)T . This leads to con-
trollers of the form
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It is immediate that

zk(ξ) = Gk
zxxk(ξ) + Gk

zuuk(ξ) + Gk
zwwk(ξ) (7)

= Gk
zxx̂k(ξ) + Gk

zxek(ξ) + Gk
zuuk(ξ) + Gk

zwwk(ξ).

Thus many ingredients for a recursive implementation
are there, however, to guarantee optimality, the variance
matrices and the feedback law must also be computed
recursively. From equations (7) and (6) we know that zk(ξ)
in closed-loop is some function of x̂k(ξ), ek(ξ),wk(ξ).
Since x̂k(ξ), ek(ξ) are independent of wk(ξ) it follows that
we only need to keep track of the joint variance matrix Vk

of x̂k(ξ) and ek(ξ). Observe that the actual controls applied
at each instant are given by L1

k and K11
k which are the first

nu rows of the control law Lk and Kk respectively (assume
w.l.o.g. that the references trajectories are zero)

uk(ξ) = L1
kx̂k(ξ) + K11

k vk(ξ)

Using [10] as reference we can directly write
(
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such that the joint variance matrix is recursively given by
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Since ek(ξ) ⊥ x̂k(ξ) for any k, the joint variance matrix
Vk is block-diagonal for each k by construction, therefore
the variance matrices can be constructed efficiently by the
following Riccati recursions for the estimation error

P
e
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T
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e
k C

T
k + FkWkF

T
k )NT

k + GkWkG
T
k

with boundary condition P 0
e = P0 and next, given the

recursion for the estimation error, one can obtain the
recursion for the state-estimate
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with boundary condition P x̂
0 = O. L1
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externally in every cycle by the solution of the control
problem, furthermore, the Kalman gain is given by
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T
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The factored variance matrix of the initial condition and
disturbances are

P
x
k = Exk(ξ)xk(ξ)T = P

x̂
k + P

e
k = FxF

T
x , Wk = FwF

T
w .

Then with everything as above, the closed-loop MPC prob-
lem is defined as

(CLMPC)
min

zr
k
∈Rnz ,K∈K0

f(zr
k)

r
√

hT
j Zk(K)hj + hT

j zr ≤ gj

(8)

where Zk = E(zk(ξ)− zr
k)(zk(ξ)− zr

k)T . The constraints
above follow from a set of inequality constraints

hT
j z ≤ gj , j = 1, . . . ,m.

which the process must obey. The term r
√

hT
j Zk(K)hj

appearing in (8) is added as back-off to these constraints
to avoid frequent violation. This problem is a convex
optimization problem that can be solved for the global
optimum, see for background [5, 6, 7], using a solver for
second-order cone problems, see [12].

III. APPLICATION TO NONLINEAR SYSTEMS

The HDPE plant as described in this paper is a smooth
nonlinear regular set of differential algebraic equations
(DAE) of the form

˙̄x = f(x̄, m̄, ū, w̄), g(x̄, m̄, ū, w̄) = 0, x̄(t0) = x̄0

ȳ = Cym̄, z̄ = Czm̄ (9)

where m is a vector of algebraic variables. Let

(x̄(t), m̄(t), ūk, w̄k), ∀t ∈ [tk, tk+1)

be the solution to (9) over the interval [tk, tk+1), where we
use a bar to denote the solutions to the nonlinear system.
The inputs are taken constant over the sample intervals. Let
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Fig. 1. Closed-loop predictive control using innovations and state
feedback.

us sample these trajectories on the control sample time ts,
and define the discrete time processes x̄k = x̄(tk), ȳk =
ȳ(tk), z̄k = z̄(tk). As before we stack these signals (bold-
faced) and suppose we are in the lth iteration of solving
some dynamic optimization for which we seek an update
on the inputs and performance outputs (approximate)

ūl+1 = ūl + ur → z̄l+1 ≈ z̄l + zr (10)

then we measure the sensitivity of the performance with
respect to these inputs perturbation using our linear time-
varying models, see also [15], where the time varying
dynamics are given by
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and the output matrices are given by

C
y(t) = −Cy

(
∂g

∂m

)
−1

∂g

∂x
, F (t) = −Cy

(
∂g

∂m

)
−1

∂g

∂w

C
z(t) = −Cz

(
∂g

∂m

)
−1

∂g

∂x
, D

z(t) = −Cz

(
∂g

∂m

)
−1
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The inverse of ∂g/∂m exists by assumed regularity and
smoothness of the DAE system. The discrete time system
dynamics in (1) are then obtained by sampling these sys-
tem matrices and converting them to discrete time. The
approximation in sampling the matrices is usually quite
good due to the small changes in system dynamics over
the time increment ts, while no approximation is made in
converting the sampled system to discrete time. There is a
strong connection to sampling of the sensitivity functions in
nonlinear dynamic optimization once the discrete time sys-
tems are lifted, where the receding horizon LTV approach
has the advantage that it is numerically very cheap while
maintaining the iterative approvement as in SQP type of
algorithms. In what follows we shall be concerned with
transition control purposes and as in [13], we will consider



objectives of the form

E
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∆ūk(ξ)T
Rk∆ūk(ξ) +

∫ T

0

(z̄(t, ξ) − z̄
r)T

Q(t)(z̄(t, ξ) − z̄
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which we will interpret in the sense of its sampled version

E
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(z̄k(ξ) − z̄
r
k)T

Qk(z̄k(ξ) − z̄
r
k) + ∆ūk(ξ)T

Rk∆ūk(ξ)

(11)

by employing some standard numerical integration tech-
nique such as the trapezoidal rule.

IV. CONSTRAINED FINITE HORIZON LQG CONTROL

The (CLMPC) is a computationally expensive optimization
problem for large scale problems with many constraints and
long prediction horizons due to the current status of many
second order cone programming solvers. These solvers
require the vectorization of the problem and due to the
large number of parameters in the controller K, the size
tends to blow-up, in particular the total number of Lagrange
multipliers in primal-dual interior point methods. A way
around this is to devise new algorithms exploiting the
ellipsoidal structure of the (CLMPC), preferably treating
the constraints recursively, which is for instance done for
the maximal ellipsoid problem as discussed in a recent
paper [3].

In light of the quadratic objective function (11) and
the fact that the optimal solution to (CLMPC) is a finite
horizon LQG controller, we will consider an approximate
but very efficient control problem formulation. The idea
is the following, in absence of any inequality constraints,
(11) can be split (for the variational system dynamics)
into a stochastic problem and a deterministic problem by
the certainty equivalence property of LQG control. This
motivates to split-up the (CLMPC) in a feedback and a
feedforward problem.

1) Subproblem CFHLQGA: The first step is to solve the
minimal variance problem. Assume for ease of presentation
that the inputs u are included in z, then this problem is of
the structural form

min
M

tr F T
P (AMB + C)T Q(AMB + C)FP (12)

We will be very explicit on A,M,B,C in the next section.
Suppose one has solved this problem for the optimal M ?,
then the optimal variance matrix Z? is also known, and the
back-off terms using the ellipsoidal relaxation are readily
computed as

ν?
j = r

√

hT
j Z?hj (13)

2) Subproblem CFHLQGB: In the second step one
solves the optimal transition, in which the back-off (13),
to the constraints is used.

min
ur

(Szr − s)T Q(Szr − s)

ν?
j + hT

j (z̄l + zr) ≤ gj ,
zr = Gzxx

r + Gzuu
r + Gzwwr

for some properly chosen matrix S and vector s related
to the signals ∆ūl, z̄l, z̄r, the details are skipped due to
space limitations. Notice that contrary to open-loop MPC,
we can use two different tunings, one for reference tracking
and one for disturbance rejection.

V. THE CONTINUOUS HDPE PROCESS

The HDPE process is a continuous fluidized bed reactor
for gas phase polymerization using solid Ziegler-Natta
catalyst particles. The schematic process layout is given in
figure 2. Both the monomer Ethylene and the co-monomer
Buthylene feeds enter at the bottom of the reactor where the
gasses are blown with high velocity through the fluidized
bed. The reactor is highly exothermic and therefore heat is
removed by sending a relatively high recycle flow through
the external heat exchanger. The process has three main
basic control loops. The reactor temperature is controller
by the cool water flow to the heat exchanger, the pressure
in the reactor is controlled by the ethylene feed and the bed
level is controlled by the product flow. The objective will
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Fig. 2. Process schematic gas-phase HDPE reactor

TABLE I

GRADE DEFINITIONS AND CONSTRAINTS

Grade A → B ∆

z1 [kg/m3] 942.9 937.9 −5

z2 [-] 1.1 3.1 +2

Constraints lo up
z3 [104kg/h] 2.5 5.2

be to make a grade change in the density z1 = ρ and the
melt-index z2 = ln(mi) as defined in table I. The specific
weighting function is not that important, but is has the
structure as in (11). The grade change must be done while
satisfying the constraints on the process variables, see table
I under two main persistent disturbances. The catalyst flow
has a bias C-BIAS=+0.025kg/h and a bias in the hydrogen
flow H-BIAS=−0.050kg/h. These disturbances are chosen
for their counter effect on the grade change (density up,
meltindex down) see also figure 3. To model these distur-
bances we have added continuous time disturbance models
to our plant model of the form

ḋ1 = 0, d1(t0) = ξ1, ḋ2 = 0, d2(t0) = ξ2



where ξ1, ξ2 are normally distributed with zero mean and
standard deviations 0.1 and 0.025 respectively. The only
other disturbances are the measurement errors on the gas
composition in the gas cap which we have taken to be 5%
of their nominal stead-state value. This turns out to be quite
severe in the sense that it limits the speed of convergence
of the Kalman filter and reduces the controller gain. In
figure 3, we have plotted the optimal nominal reference
trajectories for the transition obtained by a receding horizon
implementation of the model predictive controller over an
horizon of 8 hours with the objective function (11) without
any disturbances. Also plotted are the actual trajectories if
the biases on the flows are added, which force the system
to deviate from the target grades considerably. In the lower
right plot we have also plotted the back-off a standard MPC
should take in open-loop prediction.
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Fig. 3. Open-loop performance trajectories. Real performance (solid),
reference performance (dash-dotted), target performance (dashed).

VI. PRACTICAL IMPLEMENTATION ISSUES

In [7], the receding horizon control law is deduced for the
predictive control problems at hand and they rely on the
state feedback properties of the solution of standard LQG
control. Since we have a penalty in the rate of change of the
inputs in (11), we must augment the discrete time system
with the previous input sample. The optimal feedback gain
is defined on this augmented system. Suppose one has a
linear discrete time dynamical system

xk+1(ξ) = Akxk(ξ) + Bkuk(ξ) + Gkwk(ξ)

define the extended state space system in which we keep
track of the process state xk(ξ) as well as the input one
step earlier uk−1 with the relative inputs ∆uk as the new
inputs

x
+

k+1(ξ) =

(
xk+1(ξ)
uk(ξ)

)

=

(
Ak Bk Bk Gk

O I I O

)






xk(ξ)
uk−1(ξ)

∆uk(ξ)
wk(ξ)






The optimal LQG solution will then be a state feedback of
this extended state x+

k (ξ), or more precisely, the estimate of

the extended state space x̂+
k (ξ) including both the estimate

of the process state as well as the estimate of the input. An
observer for this system is obtained as

x̂
+

k+1(ξ) =

(
Ak Bk Bk Nk

O I I O

)




x̂+

k (ξ)

∆uk(ξ)
vk(ξ)





The input is given by the state feedback on the extended
system and the innovation sequence

∆uk(ξ) = Lx
kx̂k(ξ) + Lx

kuk(ξ) + K11
k vk(ξ) (14)

Applying this feedback to the stochastic system leads the
estimation Riccati recursion, while for the estimate one
finds

P
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Lx
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k

)

P
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(
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k
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)

(CkP
e
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T
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T
k )

(
?
?

)T

The above analysis shows that the feedback must be defined
on the extended state-space. The performance vector z is
then found by lifting this extended system using the already
available lifted system representation. To go from absolute
inputs to relative inputs we have the following relations

uk(ξ) = Juk−1(ξ) + T∆uk(ξ) (15)

where

T =
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I I O · · · O
I I I · · · O
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hence the performance output is represented in the change
in inputs

z
+

k (ξ) =

(
zk(ξ)

∆uk(ξ)
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zx Gk

zuJ
O O
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x̂k(ξ)
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O

)

ek(ξ) +
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O
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The feedback in lifted form is given by the feedback law

∆uk(ξ) = Lkx̂+
k−1(ξ) + Kkvk(ξ) (16)

which is represented more conveniently in the notion of the
previous sections as

z+
k (ξ) = (AkMkBk + Ck)





x̂+
k (ξ)

ek(ξ)
wk(ξ)





where the matrices Ak, Bk,Mk, Ck are given in terms of
the system dynamics by

Ak =

(
Gk

zuT
I

)

, Bk =





I O O O
O I O O
O O Gk

ve Gk
vw





Ck =

(
Gk

zx Gk
zuJ Gk

zx Gk
zw

O O O O

)

, (17)

Mk =
(

Lx
k Lu

k Kk

)

and using the result of the previous paragraph it follows
that in order to minimize the variance, we need the factor
of the variance matrix FP FT

P = diag(P x̂
k , P e

k ,Wk) in (12).



VII. SIMULATION RESULTS

In figure (4) we have plotted the closed-loop results for
the performance outputs z1, z2, z3. In each subplot, three
trajectories are plotted, namely the actual trajectories z̄(ξ),
the reference trajectories z̄r and the target grades. For the
density and the melt-index ln(mi) we see no difference
between the actual and the reference trajectories due to
the tight control; the system closely follows the desired
reference as it should. In the lower two subplots the cool
water flow has been plotted. Due to the bias on the catalyst
flow, the reactor temperature increases, however, due to the
control action it nicely converges to the reference trajectory
without violating the cool water constraint. In the lower
right plot, the back off has been visualized via the errorbars
as a measure for the variance, which reveals the envelope
of trajectories the controller was expecting.
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Fig. 4. Closed-loop performance trajectories. Real performance (solid),
reference performance (dash-dotted), target performance (dashed).

VIII. CONCLUSIONS

The recent theoretical advances in closed-loop model pre-
dictive control were successfully applied to a nonlinear
polymerization example of approximately 50 states. This
shows that these techniques are very promising as tools
in realistic process operation in which optimization and
control are integrated to a high level. The direct feedback
of closed-loop model predictive control, its ability to handle
inequality constraints under stochastic disturbances and the
ability to tune tracking performance and disturbance rejec-
tion separately are valuable aspects in chemical engineering
applications.
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