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Abstract— A continuous-time feedback controller design
methodology is developed for distributed processes, whose
dynamic behavior can be described by microscopic evolution
rules. Employing the micro-Galerkin method to bridge the gap
between the microscopic-level evolution rules and the “coarse”
process behavior, “coarse” process steady states are estimated
and nonlinear process models are identified off-line through
the solution of a series of nonlinear programs. Subsequently,
optimal feedback controllers are designed, on the basis of
the nonlinear process model, that enforce stability in the
closed-loop system. The method is used to control a system
of coupled nonlinear one-dimensional PDEs (the FitzHugh-
Nagumo equations), widely used to describe the formation
of patterns in reacting and biological systems. Employing
kinetic theory based microscopic realizations of the process,
the method is used to design output feedback controllers that
stabilize the FHN at an unstable, nonuniform in space, steady
state.

I. I NTRODUCTION

An important research area that has received a lot of
attention in recent years is controller design for distributed
processes, mathematically modeled by nonlinear dissipative
partial differential equation (PDE) systems. One of the
research directions involves the development of methods
for controller design based on reduced-order models [3],
[7], [2] (e.g., obtained using linear or nonlinear Galerkin’s
methods [15], [18]) that capture the dominant dynamics of
the process and can be solved numerically in real time. An
accurate, explicit process model is the main prerequisite for
the derivation of the reduced-order models, which are used
for controller design and real-time implementation.

However, the behavior of an expanding range of dis-
tributed processes (for which explicit coarse level mathe-
matical models are unavailable, albeit in principle possible)
is being mathematically described using microscopic level
simulations (e.g., Lattice Boltzmann, kinetic Monte Carlo,
molecular dynamics). The lack of an explicit process model
precludes the successful use of standard controller design
methodologies for distributed parameter systems to such
processes.

Motivated by this, linear discrete-time controller design
methodologies were recently developed for lumped [19] and
distributed [4] processes described by microscopic evolution
rules, utilizing the so-called ”coarse time-stepper” approach,
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developed by Kevrekidis and coworkers [21], [11], [20], that
circumvents the derivation of the closed form macroscopic
PDEs for the process and identifies the essential coarse-
scale system behavior.

Other model reduction approaches of systems described
by microscopic evolution rules include approaches for
model reduction of the Master Equation [8], the use of
wavelets for kMC model reduction [9] and the development
of hybrid models for epitaxial growth [16] and crack prop-
agation in materials [5]. In [13], [14], observers based on
Monte-Carlo simulations and process measurements were
successfully designed to capture the dynamic behavior of
microscopic process variables leading to output feedback
controller designs.

This work addresses the issue of continuous-time con-
troller design to regulate the coarse properties of processes
whose dynamic behavior can be described by microscopic
evolution rules. Under the assumption that an underlying
closed-form process model is, in principle, possible, how-
ever unavailable, micro-Galerkin method [11] is employed
to bridge the gap between the microscopic-level evolution
rules and the “coarse” process behavior. The derived black-
box time-steppers are linked with equation-free methods
(such as Recursive Projection Method (RPM) [17] to obtain
estimates of the process stationary states, the slow evolv-
ing eigendirections in their neighborhood and a discrete-
time reduced-order linear model. Nonlinear continuous-
time models are subsequently identified off-line through the
solution of a series of nonlinear programs. Finally, optimal
output-feedback controllers are designed that enforce sta-
bility of the target, RPM identified, stationary states in the
closed-loop system. The proposed approach is validated on
a system of coupled nonlinear one-dimensional PDEs (the
FitzHugh-Nagumo equations), widely used to describe the
formation of patterns in reacting and biological systems.
Employing microscopic, kinetic theory based, realizations
of these systems to describe the process behavior, the pro-
posed approach stabilizes the unstable, nonuniform in space,
steady (microscopically stationary) state, in the presence of
open-loop oscillatory behavior.

II. PRELIMINARIES

We consider nonlinear dissipative partial differential
equation (PDE) systems whose long-term dynamics can
be accurately captured by a few slow-evolving degrees of



freedom, and are of the following form, when represented
in an appropriate Hilbert space

ẋ = L(x) + f̄(x) + B(x)u, x(0) = x0

ym = Sx
(1)

wherex ∈ D(L) is the state vector,u ∈ IRm is the vector
of manipulated inputs, andym ∈ IRq is the vector of the
measured outputs.L(·) is a dissipative, possibly nonlinear,
spatial differential operator which includes higher-order
spatial derivatives,̄f(x) is a nonlinear vector function of
the state, andB(x) is the actuator distribution function,S
is the measurement sensor shape function, andl is the length
of the domain.D(L) ⊂ L2[0, l] is the set ofCo−1 functions
in L2[0, l] that satisfy the boundary conditions of the spatial
operator ando is the highest order differential ofL. Without
loss of generality we assume that the target steady state of
the system is the origin.

An implicit assumption in the above system description
is that the rest, infinite, degrees of freedom of the PDE are
strongly stable and, furthermore, the associated dynamics
quickly become negligible and can be captured by algebraic
functions of the slow-evolving states of Eq.1.

The Kronecker product between matricesA ∈ CI N×M

and B ∈ CI L×K can be defined as a matrixC ∈
CI (NL)×(MK)

C = A⊗B ≡




a1,1B a1,2B · · · a1,MB
a2,1B a2,2B · · · a2,MB
· · · · · · · · · · · ·

aN,1B aN,2B · · · aN,MB


 (2)

We also define thek-th order Kronecker product asA[k] =
A[k−1] ⊗ A, A[1] = A and A[0] = 1. Finally, In ∈ IRn×n

is defined as the unitary matrix of dimensionn and (·)∗
denotes the conjugate transpose.

III. O UTPUT FEEDBACK CONTROLLER DESIGN

We focus on the design of continuous-time output feed-
back controllers for distributed processes that can, in prin-
ciple, be mathematically modeled by dissipative PDEs,
but are unavailable in closed-form. The PDEs in question
are in essence closed-form macroscopic equations for the
moments of microscopically evolving (through, say, molec-
ular dynamics, kinetic Monte-Carlo or kinetic theory based
codes) distributions.

The controller design is achieved in two stages. During
the first stage, the coarse time-steppers, through a “lift-
evolve-restrict” procedure provide us with a bridge between
macroscopic scale system properties and microscopic evo-
lution simulations; during this system identification step,
the process stationary states are identified (using numerical
algebra methods such as recursive projection method [17])
and after variance reduction, a coarse slow discrete-time
linearization (i.e. the coarse slow eigenvalues and the corre-
sponding eigenvectors) is derived. The reporting horizon of
the microscopic scale simulations is an important parameter
in the above approach for the identification of the important,

slow evolving, spatial patterns, a result of the slaving of the
fast dynamics to the dominant ones. Linear continuous-time
observers that identify the essential coarse process behavior
are subsequently constructed by manipulating the reporting
horizon. Issues arising from the transition of the discrete
time identified linear behavior to continuous time observers
are addressed. During the second stage, output-feedback
continuous-time controllers are designed using established
methodologies.

A. Off-line identification

1) Problem formulation:To simplify the required nota-
tion, we represent the unknown, finite dimensional, slow
evolving dynamical system of Eq.1 in the form

ẋ = f(x) +
m∑

j=1

uj(t) (3)

where x ∈ Hs is the state,uj(t), is the j-th element of
u, f(x) = L(x) + f̄(x) is a nonlinear vector function, and
gj(x) is thej-th actuator distribution function.Hs is ann-th
dimensional Hilbert subspace spanned by the eigenfunctions
associated to the slow eigenvalues ofL.

Applying McLaurin series expansion tof(x), gj(x) we
obtain

f(x) =
∞∑

k=1

1
k!

∂f[k]|x=0x
[k]

gj(x) = gj(0) +
∞∑

k=1

1
k!

∂gj [k]|x=0x
[k]

(4)

where∂f[k]|x=0 ∈ CI n×(nk) and∂gj [k]|x=0 ∈ CI n×(nk) are
thek-th partial derivatives off(x) andg(x) with respect to
x, respectively, evaluated atx = 0. To simplify the notation
we denoteAk ≡ (1/k!)∂f[k]|x=0, Bjk ≡ (1/k!)∂gj [k]|x=0,

∀k and Bj0 = gj(0) for the rest of the paper. Withx[k]

we denote thek-th Kronecker Product. Thus, Eq.3 can be
equivalently written in the form

ẋ = f(x) + g(x)u ≡
∞∑

k=1

Akx[k] +
m∑

j=1

∞∑

k=1

Bjkx[k]uj (5)

We will focus on a finite order polynomial approximation of
the nonlinear system of orderpf for f(x) andpg for gj(x).
Without loss of generality we assume thatpf = pg +1 = p.

ẋ '
p∑

k=1

Akx[k] +
m∑

j=1

p−1∑

k=0

Bjkx[k]uj (6)

To linearize the system of Eq.5, we compute the dynamic
behavior of the termsx[k] as follows:

d(x[k])
dt

=
p−k+1∑

i=1

Ak,ix
[i+k−1] +

m∑

j=1

p−k∑

i=0

Bjk,ix
[i+k−1]uj

(7)



ẋ⊗ =




A1,1 A1,2 · · · A1,p

0 A2,1 · · · A2,p−1

0 0 · · · A3,p−2

· · · · · · · · · · · ·
0 0 · · · Ap,1


x⊗ +

m∑
j=1








Bj1,1 Bj1,2 · · · Bj1,p−1 0

Bj2,0 Bj2,1 · · · Bj2,p−2 0

0 Bj3,0 · · · Bj3,p−3 0

· · · · · · · · · · · · · · ·
0 0 · · · Bjp,0 0


x⊗uj +




Bj1,0
0
0
· · ·
0


uj





(8)

whereAk,i =
k−1∑

l=0

I [l]
n ⊗Ai ⊗ I [k−1+l]

n andBjk,i is defined

similarly.

Defining x⊗ = [xT x[2]T · · ·x[p]T ]T , the system of Eq.7
can be written in the following bilinear form

ẋ⊗ = Ax⊗ +
m∑

j=1

[Bjx⊗uj + Bj0uj

]
(9)

whereA, Bj and Bj0 are matrices of appropriate form,
shown in Eq.8. The presented operation, also known as
Carleman linearization [12], presents us with the basis for
the identification of the system behavior. We proceed to
compute off-line the unknown parameters of the model.

Remark 1: Note that due to the linearization operation,
it appears there is a geometric increase of the number of
parameters that need be identified. Under assumptions of
continuity of the unidentified functionsf(x) andg(x), the
number of parameters to be identified can be drastically
reduced.

2) Off-line identification: Initially Recursive Projection
Method [17] is applied to the process simulator to identify
the, possibly unstable, target stationary state of the process
and the slow eigendirections in the neighborhood of the
stationary state. Due to the nature of RPM and the simulator,
discrete-time linearizations of the open-loop process model
also become available.

In [4] we presented the derivation of closed-loop linear
discrete-time models. The RPM identified model is of the
form

xsn+1 = Fxsn + Dun (10)

wherexs ∈ CI n is a representation of the slow evolving
eigendirections of the process of Eq.1,F ∈ CI n×n

describes their discrete-time linearized dynamics around the
stationary-state,u ∈ IRm is the vector of the manipulated
inputs andCH ∈ Csetn×m approximates the linearized
effect of them control actuators on the slow mode dy-
namics. D is defined asD = VF [V ∗V ]−1V ∗H, where
V ∈ CI N×n denotes the matrix containing as columns the
M slow eigenvectors (identified and approximated through
RPM), VF ∈ CI n×n is the matrix with columns the
corresponding eigenvectors ofF (in the same order, with
respect to the eigenvalues, as inV ) and H ∈ CI N×m

is the matrix containing the numerically computed partial
derivatives ofL(x) + f(x) of Eq.1 with respect to the
action of the m control actuators. The continuous-time
behavior of the linearized slow subsystem can be inferred
from Eq.10 and isA1 = (1/T )VF ln(V −1

F FVF )V −1
F , D =∫ T

0

exp[A1(T − τ)]dτB0 ⇒ B0 = (F − I)−1A1D, where

B0 = [B10 B20 · · · Bm0] and T is the reporting horizon
of the microscopic simulations.

Following the identification of the system linearization,
we proceed to the off-line identification ofA andBj in a
sequential manner.

Open-loop behavior identification First, Mol micro-
scopic simulations are employed to generate an ensemble
Y ol of snapshots of the process evolution for a variety
reporting horizons, time-length of simulation and initial
conditions foruj ≡ 0, ∀j = 1, . . . ,m. Care must be taken
so that the reporting horizon of the simulations is large
enough, such that it can be ensured that the fast dynamics
of the process have become negligible. The snapshots of
each different simulation run are used to compute the slow-
system modesx and their representation for the Carleman
linear form of Eq.9 x⊗, denoted asyil ∈ Y ol, i =
0, . . . , nf l, l = 1, . . . Mol, with Tl the associated reporting
horizon, andnf lTl the final simulation time. Eq.9 for
uj ≡ 0, ∀j = 1, . . . , m can be solved analytically and
the solution isx⊗(t) = exp(At)x⊗(0).

We obtain an estimate of the unknown parameters ofA
through the solution of an optimization problem, formulated
as an unconstrainednonlinear optimization program, which
can be subsequently solved using iterative search methods
such as SQP.

minA

[
Mol∑

l=1

nf l∑

i=1

(yil − xi,l)2
]

, yil ∈ Y ol

s.t.

xi,l = exp(A(iTl))y0l,

∀i = 1, . . . , nf l, ∀l = 1, . . . , Mol

(11)

Closed-loop behavior identification Once A of Eq.9
has been identified we can proceed with the identification
of the system response to manipulated input excitation.
Furthermore, the effect of each manipulated input can be
estimated independently.

Microscopic simulations are employed to generatem
ensemblesY cl

j of snapshots of the system during the process
evolution for a variety of reporting horizons, time-length
of simulation and random manipulated variable profiles
uj(t) = uji(H(iTl− t)−H(t− (i− 1)Tl), ∀j = 1, . . . , m
(H(·) denotes the Heaviside function) and initial condition
at the stationary state (x⊗(0) = 0). Care must be taken
so that the rate of change of the manipulated inputs is
constrained so that they do not excite the fast dynamics of
the system. The snapshots of each different simulation run
are denoted asyil ∈ Y cl

j , i = 0, . . . , nf l, l = 1, . . . Mol,
with Tl the associated reporting horizon, andnf lTl the final
simulation time.



The response of the system of Eq.9 to variations of the
manipulated inputuj(t) = uji(H(iTl−t)−H(t−(i−1)Tl),
uk ≡ 0, ∀k 6= j with initial condition at the stationary
state can be derived recursively at each time intervalt ∈
((i− 1)Tl, iTl], since

ẋ⊗ = [A+ Bjuji]x⊗ + Bj0uji.

The analytical solution of the above equation is

x⊗(t) =exp([A+ Bjuji](t− (i− 1)Tl))x⊗((i− 1)Tl)

+
∫ t

(i−1)Tl

exp[A+ Bjuji](t− τ))dτ Bj0uji,

and for t = iTl we definexil ≡ x⊗(iTl) with

x⊗(iTl) =exp([A+ Bjuji]Tl)xi−1l + [A+ Bjuji]
−1

×(exp([A+ Bjuji]Tl)− I)Bj0uji.

Note thatx0l = 0.
We obtain an estimate of the unknown parameters of

matricesBj through the solution ofj unconstrained NLPs.

minBj




Mclj∑

l=1

nf l∑

i=1

(yil − xi,l)2


 , yil ∈ Y cl

j

s.t.

xil =exp([A+ Bjuji]Tl)xi−1l

+[A+ Bjuji]
−1(exp([A+ Bjuji]Tl)− I)Bj0uji.

x0 = 0

∀i = 1, . . . , nf j , ∀j = 1, . . . , Mol

(12)

Remark 2: A way to approximately estimate the shortest
reporting horizon that will be used for the creation of the
ensembles is to employ Arnoldi method [6] and estimate
the largest eigenvalue of the non identified fast subsystem.
Subsequently the shortest reporting horizon must be such
that it falls in the separation gap between the fast and slow
dynamics.

B. Output feedback controller design

In the present paper we focus on systems whereB(x) ≡
B in Eq.1 (in [1] a detailed controller design methodology
is presented for the general developed process model). In
this case,Bj ≡ 0 in Eq.9, which implies we can design
output feedback controllers, by designing Linear Quadratic
Regulators (LQRs) for Eq.9, and subsequently linking them
with dynamic observers. Note that, even though we employ
linear controller design methodologies, the resulting con-
trollers of Eq.1 are nonlinear, since the controllers employ
polynomial terms up to orderp.

We initially design state-feedback continuous-time LQRs
by solving an optimal control problem with cost function:

J =
∫ ∞

0

x⊗∗Qx⊗ + u∗(t)Ru(t) dt (13)

where Q, R are positive semidefinite matrices andu =
[u1 u2 . . . um]T . We use the algebraic Riccati equation to

solve the infinite time optimization problem and compute
the optimal feedback controller gainPc [?]:

Q = A∗P − PA+ PB0R
−1B∗0P

Pc = −R−1B∗0P
(14)

whereB0 = [B10 B20 · · · Bm0] and the control action is
given fromu(t) = Pcx(t).

We derive a state observer for the process

˙̃x⊗ = Ax̃⊗ + B0u + L(ys − ym)

ys = [S 0q×(
∑p

i=2
ni)]x̃⊗

(15)

where x̃⊗ is the observer state,ym is the measurement,
S can be constructed from the sensor shape function and
the representation of the eigenmode, and0N×M represent a
matrix of sizeN×M with zero elements. L is the observer
gain (computed such that the observer is stable)

We combine the state feedback LQR with the derived
state observer to obtain the following output feedback
controller:

˙̃x⊗ = Ax̃⊗ + B0u + L(ys − ym)
ys = [S 0q×(

∑p

i=2
ni)]x̃⊗

u = Pcx̃⊗

(16)

IV. A PPLICATION TO THEFITZHUGH-NAGUMO

EQUATION

The proposed controller design approach is validated us-
ing a timestepper of the FitzHugh-Nagumo (FHN) equation,
a widely used model of wavy behavior in excitable media in
biology [10] and chemistry [21], with the following closed-
form description:

∂v

∂t
=

∂2v

∂z2
+ v − w − v3 + b(z)u(t)

∂w

∂t
= δ

∂2w

∂z2
+ ε(v − p1w − p0)

ym(t) = s(z)v(t)

(17)

subject to the boundary conditions:

∂v

∂z
|0 =

∂v

∂z
|L = 0,

∂w

∂z
|0 =

∂w

∂z
|L = 0 (18)

and the initial conditions:

v(0, z) = v0(z), w(0, z) = x0(z) (19)

wherev(t, z), w(t, z) ∈ IR are the system variables,u(t) ∈
IR3 is the vector of manipulated variables,ym(t) ∈ IR3 is
the vector of measurements,t is the time,z is the spatial
coordinate,b(z) is a row vector describing the distribution
function of the control actuators,ε, δ, p1, p0 are process
parameters andL is the length of the spatial domain. We
assume that three control actuators are available:

b(z) = [g(z, 0.25L) g(z, 0.50L) g(z, 0.75L)]

whereg(z, ζ) = exp(−0.3(z−ζ)2); note that this choice of
actuator influence functions extends over the entire spatial



domain of the process. We also assume that three point
measurements ofv(t, z) are available, of the form:

s(z) = [δ(z, 0.25L) δ(z, 0.50L) δ(z, 0.75L)]T

where δ(·) denotes the delta function. In the following
simulations, the initial conditions were chosen asv0 =
0.5cos(πz/L) andw0 = 0.5cos(πz/L).

TABLE I

PROCESS PARAMETERS

L 20 δ 4.0 p1 2.0
T 0.5 ε 0.017 p0 -0.03

a) 0 5 10 15 20
−1

−0.5

0

0.5

1

z

v ss
(z

)

s.s. 1
s.s. 2
s.s. 3
s.s. 4
s.s. 5
s.s. 6
s.s. 7

b) 0 5 10 15 20
−0.4

−0.2

0

0.2

0.4

z

w
ss

(z
)

s.s. 1
s.s. 2
s.s. 3
s.s. 4
s.s. 5
s.s. 6
s.s. 7

Fig. 1. Open-loop steady states of the FHN equation. (a)v, (b) w.

The FHN exhibits multiple steady-state solutions (spa-
tially uniform as well as spatially nonuniform) and spatially
nonuniform periodic solutions, depending on the values of
the process parameters. For the specific parameter values
shown in Table I, the system has at least four spatially
nonuniform and three spatially uniform steady-states, pre-
sented in Figures 1a and 1b, forv andw respectively.

Using Galerkin’s method with the (analytically derived)
eigenfunctions of the spatial operator, we discretize the sys-
tem in the spatial domain. Linearizing the discretized FHN
in the neighborhood of the steady-states and computing the
eigenvalues we conclude that the system is locally unstable
in the neighborhood of steady states one, two and three, and
locally stable in the neighborhood of steady states four, five,
six and seven. Furthermore, simulating Eq.17 withu(t) ≡
0 and initial conditions far from the stable steady-states,
we observe FHN converges to a locally stable, spatially
nonuniform periodic orbit shown in Figures 2a and 2b for
v(t) and w(t) respectively. We now focus our attention to

a)

b)

Fig. 2. Open-loop stable periodic orbit of FHN equation. (a)v, (b) w.

steady-state one depicted as thick lines in Figures 1a and 1b
for v andw respectively (denoted asxss,1 for the rest of the
section). We observe in Table II that there is a finite number
of eigenvalues close to the imaginary axis, while an infinite
number of them grow towards negative infinity. Moreover
we observe that a large spectral gap exists between two
consecutive eigenvalues. This time-scale separation suggests
that a few dominant modes may be able to capture the long
term dynamics of the open-loop process.

We now switch to the alternative, kinetic theory based
LB-BGK scheme, which has been constructed so that its
zeroth moment fields approximately satisfy the FHN equa-
tion [21], [4]. A coarse time-stepper with a time-reporting
horizon of T = 0.5 was constructed for this scheme. It
combined lifting, from zeroth moment fields to full LB
state fields (employing a local equilibrium assumption), LB-
BGK “mesoscopic” evolution, and restriction back to zeroth
moments corresponding tov and w. The combination of
coarse LB-BGK timestepper with RPM located the target
coarse stationary state and inferred the coarse stability prop-
erties of the process through estimates of the leading coarse
eigenvalues/vectors. Through algebraic manipulations, an
approximate linear continuous time coarse slow subsystem
in its neighborhood was also computed.

Specifically, using as an initial guess the stable coarse
stationary profile atε = 0.1 and ε = 0.11, we converged
to the unstable nonuniform coarse stationary profile at
the target value ofε = 0.017, which lies beyond the
Hopf bifurcation at ε = 0.019. We also approximated
the coarse slow eigenvalues, their respective eigenvectors
and estimated matrix F of Eq.10 for the coarse slow
subsystem. Depending on the detailed RPM implementation



parameters, and -in particular- on the convergence tolerance,
the dimension of the recursively identified coarse slow
subspace required to achieve convergence ranged from 2
to 4. The reader may refer to [17], [11], [4], [1] for
a detailed analysis on the effect of RPM parameters on
the identification of the slow subsystem. In Table II, we
present the open-loop eigenvalues of the coarse system
and compare with the ones computed based on the FHN
discretization. We observe that the eigenvalues computed
from RPM are in good agreement with the FHN ones, being
within the error tolerance value used by RPM. The real part
of the corresponding (discretized in space) eigenfunctions
are presented in Figure 3a forv(z) and Figure 3a for
w(z). We observe that they are spatially nonuniform and
smooth functions of time and that they satisfy the boundary
conditions of the FHN equation.

a) 0 2 4 6 8 10 12 14 16 18 20
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b) 0 5 10 15 20
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R
e{

ψ i}(
z)

ψ
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ψ
2
(z)

ψ
3
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Fig. 3. Spatial profile of the real part of the RPM identified eigenfunctions
in the neighborhood ofxss,1. (a) v, (b) w.

Following the coarse open-loop analysis, we computed
the coarse process response to actuators’ perturbations, and
subsequently obtained a linearized expression of their effect
on the slow discrete-time subsystem (matrixF of Eq.10).

TABLE II

EIGENVALUES OF LINEARIZED FHN IN THE NEIGHBORHOOD OFxss,1

Open-loop Closed-loop [LQR]
PDE linearization LB-RPM [3:LB-RPM]

0.00048 + 0.04665i -0.00079+.02492I −0.01592
0.00048− 0.04665i -0.00079-.02492I −0.07171

−0.14428 −0.07289 −0.1237
−0.21245 − −0.2002
−0.42501 − −0.4743

Since two of the identified eigenvalues lie close to the
imaginary axis our control objective becomes to place

the closed-loop eigenvalues corresponding to the critically
stable slow eigenmodes away from the imaginary axis.
To retain the time-scale separation between the slow and
the fast subsystems, the resulting closed-loop eigenvalues
are placed close to the third identified slow eigenvalue.
Such an objective will also induce relatively small control
actions prescribed by the controller to avoid exciting the
fast dynamics of the process.

We designed an LQR continuous-time controller for the
RPM identified linear model solving the Riccati equation
with cost function weights in Eq.13Q = 0.5I3×3, and
R = 10I3×3. The dominant eigenvalues of the closed-
loop system under the computed LQR were placed atµ1 =
−.274, µ2 = −0.106 andµ3 = −.0897.

In Table II we present the eigenvalues of the closed-loop
FHN in the neighborhood ofxss,1 and compare them with
the eigenvalues of the open-loop system. We observe that
the eigenvalues of the closed-loop system are negative im-
plying that the closed loop FHN is stabilized, and the time-
scale separation between the slow eigenmodes and the fast
ones (gap between the fourth and fifth eigenmodes) persists:
spillover did not change the dimension of the closed-loop
slow subsystem. We also observe that the controller fails to
assign all the eigenvalues at the desired locations, in part
due to spillover, and in part due to the inaccuracy of coarse
slow eigenvalue/eigenvector estimates (which, however, can
be further refined).

In Figure 4a we present the temporal profiles of the
control action. We observe that the control action tends to
zero as time progresses, and it achieves stabilizing the FHN
process atxss,1 without chattering. The effect of the LQR
controller on the dynamics is shown in Figure 4b where
the time-profile of theL2 norm of the FHN converges to
the stationary value rapidly and smoothly. In Figure 4c we
present the effect of the control action on the deviations
of the measurementsym from their respective values at the
target stationary state. We observe that they converge to zero
rapidly and without chattering. Figures 5a and 5b present
the spatiotemporal profiles of the zeroth moments of the
LB-BGK that correspond tov(z, t) andw(z, t) respectively.
Due to space limitations, the presentation of the nonlinear
controller design was omitted. A detailed description of the
nonlinear controller design for the FHN is presented in [1].

V. CONCLUSIONS

A continuous-time feedback controller design method-
ology was developed for distributed processes, whose dy-
namic behavior can be described by microscopic evolution
rules. Employing the micro-Galerkin method to bridge the
gap between the microscopic-level evolution rules and the
“coarse” process behavior, “coarse” process steady states
were estimated and nonlinear process models were iden-
tified off-line through the solution of a series of nonlin-
ear programs. Subsequently, optimal feedback controllers
were designed, on the basis of the nonlinear process
model, that enforce stability in the closed-loop system. The
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Fig. 4. Time profiles: (a) control action of 3rd order LB-RPM LQR (b)L2 norm of closed-loopFHN under 3rd order LB-RPM LQR, (c) measurements
of closed-loopFHN under 3rd order LB-RPM LQR
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Fig. 5. Closed-loopFHN evolution under 3rd order LB-RPM LQR
(v0 = 0.5cos(πz/L), w0 = 0.5cos(πz/L)). (a) v and (b)w.

method was used to control a system of coupled nonlinear
one-dimensional PDEs (the FitzHugh-Nagumo equations),
widely used to describe the formation of patterns in reacting
and biological systems. Employing kinetic theory based
microscopic realizations of the process, linear quadratic
regulators were designed that stabilized the FHN at an
unstable, nonuniform in space, steady state, in the presence
of open-loop oscillatory behavior.
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