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Abstract— A 19th-order in silico patient model is analyzed
to determine if nonlinear control is necessary for optimal
regulation of blood glucose levels. A numerical measure of non-
linearity is used to assess the open-loop degree of nonlinearity
and the results then compared to those from an assessment of
the control-relevant nonlinearity. Control-relevant nonlinearity
is assessed with a performance metric that uses the system’s
nonlinear closed-loop operators to calculate bounds on the
achievable performance of stabilizing, linear control designs.
The results show that the open-loop system is mildly nonlinear
in a typical operating region and has a low degree of
control-relevant nonlinearity for standard, linear performance
specifications. If asymmetric performance is desired, in which
negative deviations are rejected more aggressively than positive
deviations, the control-relevant nonlinearity grows significantly
indicating that nonlinear control is necessary to achieve this
task optimally. The results indicate that the primary contrib-
utor to the control-relevant nonlinearity is the performance
objective and that, for most cases, linear control is sufficient
for blood glucose regulation.

I. INTRODUCTION

The lifestyles of persons living with diabetes may be
severely affected by the consequences of the disease. Due
to the inability of the pancreas to regulate blood glucose
levels, patients are often required to regulate glucose levels
manually. This task often involves the patient extracting
blood samples to use in measuring glucose levels and then
deciding if boluses of insulin beyond those of their daily
regimen are required. Due to the infrequent, and possibly
imprecise, nature of these measurements, tight glucose self-
regulation may only be possible given frequent interactions
with a physician. The dangers of widely varying glucose
levels are many, including heart and blood vessel disease,
kidney disease, blindness, and comas, the consequences of
which may be a shortened life span [1]. Glucose devia-
tions below the basal level (hypoglycemic deviations) are
considerably more dangerous in the short-term than positive
(hyperglycemic) deviations, though both types of deviations
are undesirable.

Realizing the inherently problematic nature of self-
regulation of glucose, systems researchers have actively
pursued automated regulation systems. A closed-loop glu-
cose regulation system requires three components: a glucose
sensor, an insulin delivery device, and a control algo-
rithm. A number of practical measurement devices and
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pumps are commonly-available [2], [3], [4]. For the control
algorithm, researchers have investigated a wide-range of
designs including simple PID algorithms [5], [6] as well as
linear [7] and nonlinear [8] model predictive control (MPC)
algorithms. Also, a number of researchers have investigated
nonlinear optimal control techniques, e.g. Ollerton [9] and
Fisher [10].

In a previous study [11], the authors analyzed the min-
imal diabetic system model of Bergmanet al. [12] with
the purpose of determining if a nonlinear, or otherwise
advanced, control algorithm is necessary to achieve high
levels of performance in regulation of glucose through an
assessment of the system’s degree of control-relevant non-
linearity. Control-relevant nonlinearity is a function of the
inherent system nonlinearity, operating region, and perfor-
mance objective. The assessment techniques involved use of
a nonlinearity measure to quantify the degree of nonlinearity
of the system’s Optimal Control Structure (OCS) [13] as
a means to assess the nonlinearity of an approximation
to the optimal state-feedback control problem. The results
indicate that the system model is only mildly nonlinear in
the operating region considered and that, given a standard
quadratic performance objective, the system is optimally
regulated using linear techniques. When an asymmetric
performance objective is considered in which hypoglycemic
deviations are penalized more heavily than hyperglycemic
deviations due to the greater immediate health concerns
associated with hypoglycemic deviations [14], the control-
relevant nonlinearity is found to increase with increasing
asymmetric weight implying the need for nonlinear control.
Due to the nature of the control-relevant nonlinearity effects,
nominally linear controller designs with possible nonlinear
corrections were found to be the optimal designs. Examples
of possible control algorithms meeting these criteria include
linear MPC with an asymmetric objective function or gain-
scheduled PID control.

Because the model in the previous study contains only
three states, many important physiological effects are not
explicitly modeled. Possibly, this level of approximation
will result in the neglecting of critical nonlinear behaviors
that may influence controller design. It is the objective of
this study to determine if nonlinear control is needed for the
regulation of glucose through control-relevant nonlinearity
assessment of the 19th-order metabolic model of Sorensen
[15]. Due to the large number of states in this model, the
analytical derivation of the system’s OCS is lengthy and,
therefore, it is better to consider alternate control-relevant
nonlinearity assessment techniques.



In section II, the control-relevant nonlinearity assessment
techniques used here are introduced including an open-loop
nonlinearity measure and a control-relevant nonlinearity
assessment technique based on quantifying performance
limitations of linear control designs. In section III, the
system model is introduced and open-loop nonlinearity
characterization is performed. In section IV, a theoretical
assessment of the system’s control-relevant nonlinearity
is performed for the disturbance rejection task under as-
sumptions of desired linear performance and, separately,
asymmetric performance as motivated in the preceding
discussion. In section V, the results are summarized and
conclusions are presented.

II. NONLINEARITY ASSESSMENT TECHNIQUES

A. Open-Loop Nonlinearity Assessment

To quantify the nonlinearity of the system model used in
this work, a measure of open-loop nonlinearity is required.
The concept of a measure of nonlinearity was first proposed
by Desoer and Wang [16] in demonstrating the linearizing
effects of linear feedback. Haber [17] was the first to pro-
pose a series of practical, data-driven nonlinearitytestsused
primarily to detect the presence of nonlinearity. Researchers
have continued to develop nonlinearity measures based on
various quantification principles, including: differences in
steady-state gain over an operating region [18], measures of
steady-state map curvature [19], norm-based quantification
using a novel inner product definition [20], and comparison
of empirical and theoretical gramians [21].

For this work, the nonlinearity measure proposed by
Allg öwer [22] is used to quantify the degree of open-loop
nonlinearity. This measure is directly based on the work of
Desoer and Wang [16]. The nominal form of the measure
is given as:

φUN = inf
G∈G

sup
u∈U

‖G[u]−N [u]‖
‖N [u]‖ (1)

where U is the space of admissible input signals,N :
U → Y is the system operator,G : U → Y is a linear
approximation toN , andG is the space of linear operators.
The norm‖·‖ denotes a p-norm defined on the space of
output signals,Y. Any admissible norm may be used in
computing the measure, but it is prudent to consider a norm
that has relevance for the problem under consideration. By
definition, φUN characterizes nonlinearity based on the best
linear approximation given the “worst” input signal.

The nonlinearity measure,φUN , will yield results in the
range [0, 1] where a value of 0 indicates a linear process
(across the set of inputs considered) and values approaching
1 indicate a severely nonlinear process. Nominally,φUN
is well-defined only for bounded-input, bounded-output
(BIBO) stable systems. Helbiget al. [23] extended the
measure definition to consider transient systems by allowing
for maximization of the measure over the set of process
initial conditions and minimization over the set of linear

approximation initial conditions and by limiting the possible
definitions of‖·‖ to finite-time norms.

As defined in eq. (1), the computation ofφUN involves
the solution of an infinite-dimensional min-max problem
and is, generally, computationally infeasible. To simplify the
problem, the spaceU may be limited to a representative set
Uc ⊂ U . Next, a restricted version ofG is realized through
use of a parameterized linear approximation, for example
(for a SISO system):

G[u(s)] = wou(s) +
Nl∑

i=1

wi

τis + 1
u(s) (2)

To compute the nonlinearity measure, one selects the num-
ber of basis functions (Nl) and the corresponding set of
time constants (τi) and then performs a minimization to
find the optimal set of weights,wi, for the u ∈ Uc that
maximizes the measure. It has been shown that the search
for the optimal weight set is convex [22]. Given the above
restrictions, the nonlinearity measure approximation can be
written as:

φUN ≈ min
w∈RNl+1

max
u∈Uc

‖G[u]−N [u]‖
‖N [u]‖ (3)

whereG[u] is represented by eq. (2).

B. Control-Relevant Nonlinearity Assessment

As the authors have shown previously [24], it is gen-
erally insufficient to base controller design decisions on
assessment of only the degree of open-loop nonlinearity
of a system. Control-relevant nonlinearity is the feature
that places limitations on the achievable performance of
control designs for nonlinear systems. For example, the
performance of a linear controller on a system with severe
control-relevant nonlinearity should be expected to be very
poor. With this intuition, the following is a description of
a control-relevant nonlinearity assessment technique that
bases its analysis on a measure of achievable performance
[25]. Because the primary objective of a glucose controller
is to reject external glucose disturbances, focus is placed
on assessment of control-relevant nonlinearity in terms of
performance is disturbance rejection.

Given a closed-loop system composed of nonlinear oper-
ators, as shown in Figure 1, the closed-loop operator,Hydy ,
that relates the effect of output disturbances,dy ∈ Dy, on
the loop output,y ∈ Y, when r = du = 0 is defined as
follows:

Hydy = (I −GC(−I))−1
Gd (4)

One can specify desired performance in disturbance rejec-
tion through the choice of a reference operator,H∗

ydy
, whose

form specifies the ideal closed-loop output for a given
input,dy. For the purposes of this work, a controller design
problem will be said to be well-posed if the following metric
is equal to 0:

PDy = inf
C∈C

sup
dy∈Dy

∥∥∥Hydy (G, C)dy −H∗
ydy

dy

∥∥∥
∥∥∥H∗

ydy
dy

∥∥∥
(5)



where G is a stable process operator andC is the space
of causal, stabilizing controllers. The measure,PDy

, is
a measure of the difference between the output of the
loop operator and that of the ideal operator given the
“worst” disturbance and the best stabilizing controller. If
the performance specified byH∗

ydy
is achievable,PDy = 0.

GC
yur e

du

dy

-
u

� Gd

Fig. 1. General closed-loop system.G = process operator,C = controller,
Gd = disturbance operator. All operators are assumed to be nonlinear,
casual, and stable.

To use eq. (5) to assess control-relevant nonlinearity, one
can consider recasting the measure in terms of only linear
controllers, i.e.:

ΛDy = inf
C∈CL

sup
dy∈Dy

∥∥∥Hydy (G,C)dy −H∗
ydy

dy

∥∥∥
∥∥∥H∗

ydy
dy

∥∥∥
(6)

where CL is the space of causal, stabilizinglinear con-
trollers. Therefore, there is no guarantee that, for a well-
posed, nonlinear process,ΛDy = 0. Non-zero values for
ΛDy imply that linear control cannot meet the desired
performance as specified byH∗

ydy
and that, therefore, the

system has a non-trivial degree of control-relevant nonlin-
earity.

To computeΛDy , the spaceCL can be approximated by
considering linear controllers given by the Youla parame-
terization [26]:

C(s) = Q(s) (I − L(s)Q(s))−1 (7)

where L is a linear process operator andQ is a stable
filter. Since the process considered here is assumed to
be nonlinear, its linearization is used in eq. (7) and it
will be understood that global stability is not guaranteed.
Thus, for computation ofΛDy , a representative set of input
disturbances (Dyc ⊂ Dy) is chosen andQ in eq. (7) is
parameterized using an expression similar to eq. (2). It
is easily seen that, similar to the computation ofφUN (1),
the optimization problem is reduced to finding the set of
weights that minimizesΛDy .

An alternative approach to control-relevant nonlinearity
assessment based on eq. (5) is to solve for the controller,C∗,
that results inPDy = 0 and to characterize its nonlinearity
with a nonlinearity measure such as eq. (1). In this case,
higher controller nonlinearity implies a higher degree of

control-relevant nonlinearity for the process and perfor-
mance objective. This type of analysis is consistent with
optimal control-based characterization techniques, such as
analysis of the system’s OCS, and is not pursued here due
to the analytical burden in derivingC∗ for the high-order
system model that will be analyzed.

III. SYSTEM MODEL AND OPEN-LOOP
CHARACTERIZATION

The diabetic system model considered in this work is the
metabolic model developed by Sorensen [15]. This 19th-
order model represents a compartmentalized view of the
human body with a focus on the tissues that are relevant to
the body’s glucose and insulin dynamics. As compared to
the single bilinear term in the model of Bergmanet al., the
metabolic model considered in this work contains a large
number of nonlinear features including several instances
of the inverse tangent function. At steady-state, the model
receives a baseline insulin feed of 22.33 mU/min and has
a basal glucose concentration of 87.65 mg/min. To model
the effects of external glucose delivery (i.e., meals) and
the dynamics of glucose absorption, the meal model of
Lehmann and Deutsch [27] is used.

To provide a baseline for the control-relevant nonlinearity
assessment that will be performed in the next section, the
system’s open-loop nonlinearity is characterized using the
nonlinearity measureφUN (1) over glucose concentrations
in the range 70-150 mg/dL. Using a set of 28 positive
and negative insulin pulse deviations, a subset of which
is shown in Figure 2 along with the resulting glucose
trajectories, the nonlinearity measure is computed using
the linear approximation in eq. (2) withNl = 20 and
τi ∈ [2.5, 600] min resulting in a value ofφUN = 0.10.
This low value of the nonlinearity measure implies a very
low degree of system nonlinearity. In the next section, it
will be shown how these results compare to the system’s
degree of control-relevant nonlinearity.

IV. CONTROL-RELEVANT NONLINEARITY
ASSESSMENT

The focus of the control-relevant nonlinearity character-
ization will be the system’s performance in rejecting ex-
ternal glucose disturbances. To begin, performance will be
assessed given meals ranging in size from 12.5-50 g. These
meal sizes are representative of typical breakfast, lunch, and
dinner glucose quantities. The exogenous glucose infusion
rate for a 50 g meal is shown in the solid line in Figure 3.
The selected form forH∗

ydy
is given as follows:

H∗
ydy

=
35.03s

(150s + 1)2
(8)

Figure 4 is a plot of the output of eq. (8) given a 50 g meal
disturbance as well as the system’s open-loop response to
that same disturbance. Eq. (8) is selected as it represents a
decrease in the peak glucose value of greater than 50% and
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Fig. 2. Subset of the outputs (top) and inputs (bottom) used to compute
the open-loop nonlinearity of the system model. Insulin delivery amounts:
Solid = -670 mU, Dashed = -4500 mU, Dash-dotted = 200 mU, Dotted =
1350 mU.
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Fig. 3. 50 g meal disturbance profile (solid) and 50 g meal disturbance
followed by a comparable negative deviation att = 150 min (dashed).

includes an allowance for negative glucose deviations at the
end of the trial due to possibly imprecise control action.

To computeΛDy , the input space,Dy is restricted to
a set of four meals with magnitudes of 12.5-50.0 g. The
stable filter,Q, in eq. (7) is parameterized as in eq. (2)
whereNl = 10 with logarithmically-spacedτi ∈ [2.5, 126]
min. The optimization is performed using Matlab’sfminunc
algorithm to a final time of 360 min (6 h). Given the
performance criteria in eq. (8) and the considered meal
sizes, the computed value ofΛDy is 0.10 indicating that
the system can approximately meet this linear performance
specification under linear control. Figure 5 compares the
output of the closed-loop system under the optimized linear
controller to that of eq. (8). The results show that the
outputs of the closed-loop system do not quite meet the
precise form of the outputs of eq. (8). There is no significant
evidence of nonlinear effects. Therefore, the results imply
low control-relevant nonlinearity (in agreement with the
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Fig. 4. Comparison of the open-loop system output (solid) and the ideal
closed-loop response (dashed) given by eq. (8) for a 50 g meal disturbance.

open-loop nonlinearity assessment) and do not indicate a
need to consider nonlinear control for this task.
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Fig. 5. Comparison of the closed-loop system output (top, solid) under
optimized linear control and the ideal closed-loop response (top, dashed)
given by eq. (8) for 12.5, 25, 37.5, and 50 g meal disturbances. Closed-loop
insulin inputs are shown in the bottom plot.

While performance in rejecting a meal disturbance is
critical in glucose control design, what is, perhaps, even
more important is control during hypoglycemic deviations
as these are more acutely dangerous to a patient if they
reach large magnitudes. Therefore, a second qualitative type
of disturbance is considered that includes both positive and
negative components, an example of which is shown as the
dashed line in Figure 3. Physically, this disturbance can be
thought of as, perhaps, a meal followed by an excessive
bolus of insulin. The system’s open-loop response to this
disturbance is shown in Figure 6 along with the output of
eq. (8). It can be seen that a disturbance of this magnitude
results in a significant negative deviation in glucose. In fact,
a deviation of this magnitude is physically undesirable, but
will be used as a worst-case for future comparison.
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Fig. 6. Comparison of the open-loop system output (solid) and the ideal
closed-loop response (dashed) given by eq. (8) for a 50 g meal disturbance
followed by a comparable negative disturbance as shown in Figure 3.

Using four different magnitudes of the disturbance, the
calculated value ofΛDy is 0.13. Figure 7 includes the
closed-loop outputs under the optimized linear controller
and the corresponding outputs of eq. (8). Again, the results
show that the system is not quite able to meet the precise
shape of the output ofH∗

ydy
, but, in general, the difference

is acceptable. Based on the value ofΛDy , the system
still demonstrates low control-relevant nonlinearity as linear
control approximately meets the desired performance. It is
important to note that the system responses tend to approach
the lower constraint on insulin infusion rate, thus adding a
degree of nonlinearity to the system behavior.
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Fig. 7. Comparison of the closed-loop system output (top, solid) under
optimized linear control and the ideal closed-loop response (top, dashed)
given by eq. (8) for 12.5, 25, 37.5, and 50 g meal disturbances followed
by comparable hypoglycemic deviations. Closed-loop insulin inputs are
shown in the bottom plot.

As discussed above, the negative glucose deviations seen
in Figures 6 and 7 are unacceptable for the largest distur-
bances, but the positive deviations are within an acceptable

range. Therefore, it is investigated how closely the system
can be brought to the performance of an asymmetric objec-
tive that yields a more desirable negative response, e.g.:

H∗′
ydy

=





35.03s
(150s+1)2

H∗
ydy

dy ≥ 0

35.03(1−α)s

(150s+1)2
H∗

ydy
dy < 0

(9)

The parameter,α ∈ [0, 1], in eq. (9) controls the degree
of asymmetry ofH∗′

ydy
. As α is increased, the magnitude

of the desired negative response decreases. Clearly, this
is nonlinear behavior that should not be achievable using
linear control on this essentially linear system, but it is
worth quantifying how close the output can be brought to
this type of behavior under linear control to help gauge the
need for nonlinear control.

For the same disturbances used in obtaining the results
in Figure 7, ΛDy was calculated given the performance
specification in eq. (9) as a function ofα. The results, as
shown in Figure 8, demonstrate thatΛDy

increases with
increasingα. The discontinuity that appears in Figure 8
near α = 0.80 appears to be related to an increase in
the influence of constraints. Given that the maximum value
of ΛDy is 0.53 at the extreme value ofα = 1 (i.e., no
hypoglycemic deviation), the results show that linear control
performs well across the majority of the range ofα values.
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Fig. 8. Linear performance metric for the system with desired perfor-
mance specified byH∗′

ydy
in eq. (9) as a function of the asymmetric

performance parameter,α.

To exactly demonstrate how the best-possible linear con-
troller performs in trying to mimic the behavior of eq. (9),
Figure 9 contains the closed-loop outputs for the optimized
linear controllers given a set of varyingα values. As the
earlier results imply, the system can easily obtain the desired
performance for the positive portion of the disturbance,
but the performance in rejecting the negative disturbance
is limited by the impact of constraints. Still, except in the
region 200 ≤ t ≤ 250 min, the responses closely match
the desired behavior for most values ofα. For the largest



values ofα (e.g., theα = 0.95 result in Figure 9), the
impact of constraints and the overly-aggressive reference
function result in the optimal linear control response having
decreased performance at early times. Based on the set of
obtainedΛDy

values, there is little room for improvement
through the use of nonlinear control.
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Fig. 9. Comparison of the closed-loop system output (top, solid) under
optimized linear control and the ideal closed-loop response (top, dashed)
given by eq. (9) for a 50 g meal disturbance followed by a comparable
hypoglycemic deviation forα = 0.25, 0.5, 0.75, 0.95. Closed-loop insulin
inputs are shown in the bottom plot.

V. CONCLUSIONS

For physically-relevant performance specifications, the
results provide no significant motivation for the use of
nonlinear control for glucose regulation. Even in the case
of an asymmetric performance objective, linear control
was found to yield satisfactory levels of performance. If
nonlinear control is investigated, the most likely source
of significant improvement would be in the incorporation
of constraint handling techniques in a linear algorithm. In
general, the results of this study agree with those of the
previous analysis of the model of Bergmanet al. using
different techniques.

In terms of the best design of linear controller to be used,
a linear MPC algorithm with constraint handling is likely
to be the best choice. The additional robustness properties
of linear MPC algorithms make them preferable over less-
complex algorithms (e.g., PID) for this system since the
system dynamic properties are likely to change significantly
over both short and long-term periods. Due to the low
degree of open-loop and control-relevant nonlinearity, it is
not expected that any significant changes in the model’s
nonlinearity would occur that would necessitate changing
the controller design itself.
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