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Abstract

Cancer chemotherapy is a form of treatment in which
both healthy and diseased tissues are adversely affected
by dosing; this requires the clinician make decisions
which balance the effectiveness of treatment with toxic-
ity effects, financial, and logistical constraints. This pa-
per presents a model-based approach for chemotherapy
treatment scheduling that accounts for both drug tox-
icity constraints and the dosing constraints associated
with clinical practice. A mixed-integer linear program-
ming (MILP) approach is applied to a nonlinear system
considered previously in an optimal control framework
by Martin and Teo [1]. The nonlinearities in the phar-
macodynamic PD model were eliminated by logarithmic
transform and both the pharmacokinetic (PK) and PD
models were converted into algebraic constraints by dis-
cretizing the system over the treatment window. This
formulation also accounts for the toxicity constraints
and allows for the easy incorporation of dosing con-
straints which would be encountered during the course
of treatment. MILP results are shown for three cases
considered in [1]: highly effective drug, moderately ef-
fective drug, and a drug with very little effect on the
tumor. In the limit of the discretization timestep and
delivery interval approaches zero, the MILP algorithm
returns the optimal control solution. Like the optimal
control solution, most of the drug is delivered at the end
of the treatment cycle, which results in the minimal final
cancer cell population. The MILP approach results in a
problem which can be solved to optimality and can easily
be augmented with constraints which give the problem
more clinical relevance.

1 Introduction

Collectively cancer represents a set of diseases in which
a disturbance has occurred in the homeostatic balance
between apoptosis, or programmed cell death, and nor-
mal cellular proliferation [2]. Several techniques are
employed clinically to treat cancer: surgical extrac-
tion of tumor mass, immunotherapy, chemotherapy,
and radiation, among others. Cancerous cells prolifer-

ate more rapidly than normal cells, and consequently
they traverse through the cell-cycle more frequently [3].
Chemotherapy is a popular method of treatment which
attempts to selectively target cancerous cells by taking
advantage of the frequent transitions through the cell cy-
cle. Complete selectivity of diseased tissues over healthy
tissues is rarely attained; consequently, chemotherapy
normally affects both healthy and diseased tissues [4].

Chemotherapeutic treatment of cancer is a dichotomy:
eliminate the disease while simultaneously minimizing
the side effects to healthy tissues. Clinically, the devel-
opment of drug delivery schedules is an empirical process
which has been established through experience [5]. The
schedules developed in he present work are capable of
considering drug efficacy, issues associated with toxicity
and what will be termed “clinical constraints” in a single
formulation. Clinical constraints include both logistical
and economic issues associated with patient treatment.
Instructing patients to take drugs too frequently or at
odd times can result in patient adherence problems [6].
Schedules requiring extended hospital stays can also be-
come prohibitively expensive. Consequently a drug de-
livery schedule which can balance the need for efficacy
with side effects, while simultaneously accounting for
clinically-relevant constraints, would be a valuable tool
for clinicians.

In this work we establish a mixed-integer linear pro-
gramming (MILP) approach to the development of opti-
mal drug delivery profiles. This algorithm accounts for
the opposing objectives of disease treatment and toxi-
city minimization, where the latter is characterized by
constraints associated with treatment dose and expo-
sure. Previous approaches to this class of problems typ-
ically employ optimal control techniques [7–11]. While
this methodology provides mathematically optimal so-
lutions, they are most likely not optimal from a clin-
ical perspective for the financial and logistical reasons
discussed above. As a case study, the present work re-
visits the cancer treatment problem initially posed in
[1]; a reformulation of the control problem within an
MILP framework is presented here. This allows for the
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inclusion of binary decision variables to account for dis-
continuities associated with drug effects, which can be
extended to provide a flexible way of incorporating con-
straints that can represent the realities of clinical treat-
ment.

2 Cancer Chemotherapy Modeling

Model based control requires a mathematical descrip-
tion of the system capable of accurately representing the
system dynamics [12, 13]. Cancer chemotherapy model-
ing is typically segregated into drug pharmacokinetics
(PK), describing how the drug distributes throughout
an organism, and pharmacodynamics (PD), which de-
lineates cellular proliferation dynamics, and the way the
drug effects the organism. PK models are normally used
to predict the drug plasma concentration in response to
drug administration. Predictions of plasma concentra-
tions are important for two reasons. The first is that
many toxicity metrics are derived from plasma drug ex-
posure. Secondly, it is both invasive and expensive to
determine the drug concentration in tumors, therefore
drug plasma concentrations are assumed to represent
the concentration of the drug at the site of the cancer
[1].

2.1 Pharmacokinetics

PK models predicting plasma concentrations tie the
drug administration to the effects which are manifested
in the reduction of the cancerous burden. Physiologi-
cal understanding ultimately limits the complexity of a
PK model. For drugs administered intravenously (iv), a
mass balance over the plasma, commonly referred to as
a one compartment model [14], can be used to describe
the PK:

v̇(t) = u(t) − γv(t) (1)

v(0) = v0 (2)

With an initial drug concentration of v0, the PK model
(1) quantifies the change in drug concentration with re-
spect to the amount of drug administered, u(t), and
metabolic elimination at a rate γ.

2.2 Tumor Growth Modeling

PD modeling here considers cancer in the form of a solid
tumor and is built upon models representing untreated
tumor proliferation [15]. Three different models have
been suggested to account for tumor proliferation in
the absence of treatment [1]: exponential, logistic, and
Gompertzian (given by equations (3a), (3b), and (3c),

respectively).
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τ
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Figure 1 shows the models from equation (3) on a log-
linear scale. Tumor masses become detectable at ap-
proximately 109 cells [16], while multiplying at an ex-
ponential rate. This characteristic log-linear growth can
be seen at the early times in Figure 1. The exponential
model (3a) assumes this proliferation is constant with a
doubling time of τ . Many tumor masses however expe-
rience reduced rates of proliferation as they approach a
plateau population θ. In Figure 1, the plateau popula-
tion of 1012 cells was used. This is approximately one
kg of cells, enough to kill most patients [16]. It is com-
mon for the plateau population to be significantly larger
than 1012 cells [15], meaning the exponential model is
sufficient to describe cellular proliferation. When the
plateau population is at or around 1012 the logistic (3b)
and Gompertzian (3c) models account for the observed
decreases in proliferation rates [17]. Both models (3b)
and (3c) asymptotically approach θ.
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Figure 1: Uncontrolled tumor growth models [1, 15]: ex-
ponential (solid), logistic (dashed), Gompertz
(dash-dot). (τ = 2 time units, N0 = 109 cells,
and θ = 1012 cells)

2.3 Pharmacodynamics

The PD effect model for cancer cells proliferating in a
Gompertzian fashion (3c) with an iv administered drug
can be modeled using equations (1) and (4) [1].

˙N(t) =
1

τ
ln

[

ln(θ/N0)

ln(θ/2N0)

]

N(t) ln

[

θ

N(t)

]

−kd(v(t) − vth)H(v(t) − vth)N(t) (4)

N(0) = N0
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By considering the tumor to grow in a homogeneous
lumped fashion, this model ignores any cycle-specific
effects of the drug [18]. Cancer cells (initially at N0)
proliferate according to (4). Gompertzian growth, the
first term on the right hand side of (4), is inhibited by
the presence of the drug in the kill term, the final term
in (4). The rate of cell kill is proportional with con-
stant, kd, to the size of the tumor, N , and the plasma
concentration of the drug, v, above a therapeutic con-
centration, vth. Plasma concentrations below vth have
no clinical benefit.

2.4 Constraints

2.4.1 Toxicity: To maintain efficacy while pre-
venting unnecessary side effects, the following con-
straints must be satisfied during treatment:

v(t) ≤ vmax; ∀t (5)
∫ tf

0

v(t)dt ≤ vcum (6)

The acute toxicity limit, (5), restricts the maximum
amount of the drug which can be found in the plasma
to vmax. Integrated exposure over the duration of treat-
ment must be less than the cumulative toxicity limits,
vcum, the maximum total amount of drug the patient
can be exposed to over the treatment cycle [0, tf ].

2.4.2 Dosing: This case study considers a drug
which is administered by iv infusion in the form of a
bolus. Cancer chemotherapeutics administered in this
fashion are often delivered over a range [umin, umax].
The lower bound is usually determined by the rate of
drug elimination, γ, and the upper bound is set by the
acute toxicity constraints of the drug.

3 Control Problem Formulation

3.1 Optimal Control Problem

Considering the system governed by (1) and (4), ui rep-
resents the dose of drug given at the beginning of week i
over the treatment window of d weeks. Accordingly the
optimal control objective can be written as:

min J(u) = N(tf ) + Γ||u||22 (7)

This penalizes the tumor size at the end of the treat-
ment cycle, tf , and the total amount of drug adminis-
tered. This optimization is constrained by the PK (1),
the PD (4) the constraints (5)-(6) and the initial num-
ber of cancer cells present and the initial concentration
of drug present were given by N0 and v0, respectively.

Martin and Teo addresses the observation that increases
in drug resistance occur as the cancerous populations
grow by placing an upper bound on the tumor size dur-
ing treatment. The initial tumor mass is set as the max-
imum [1]:

N(t) ≤ Nmax = N0; ∀t (8)

Considering the case where Γ = 0, the optimization in
(7) results in a trajectory tracking problem. Details of
the solution can be found in [1].

3.2 MILP Reformulation

3.2.1 PD Scaling: The PD equation (4) is
transformed using the following relationships:

P = ln(N) → eP = N → Ṅ = Ṗ eP (9)

Substituting the relationships (9) into the PD equation
(4) results, after some manipulation, in the following
linear ODE:

Ṗ = 1
τ ln

[

ln(θ/N0)
ln(θ/2N0)

]

(ln(θ) − P )

−kd(v(t) − vth)H(v(t) − vth)
(10)

This transform is convenient because it both scales the
tumor volume (important for numerical solution) and
eliminates the nonlinearities associated with prolifera-
tion and drug efficacy.

3.2.2 Objective Function: The objective
function for the MILP is given as:

min J(u) = P (tf ) + Γ||u||22 (11)

Minimizing the natural log of a variable will give the
same result as minimizing that variable. As in the con-
tinuous problem Γ = 0 was used.

3.2.3 Dynamic Constraints: MILP reformu-
lation requires that the dynamic constraints be repre-
sented as algebraic constraints. The variables vd(j) and
Pd(j) are now introduced to represent the discretized
counterparts of the drug concentration (v) and the log of
the number of tumor cells (P ), respectively, at any point
j over the range [1,m]. Here m is the total number of

timesteps in the treatment window
(

m =
tf

h

)

. For the

drug dynamics, represented by a linear ODE (1), dis-
cretization at a timestep h is straightforward [19] and
results in:

vd(j + 1) =

{

− 1
γ

(

e−γh − 1
) u(i)

h
+ e−γhvd(j) i = hj

e−γhvd(j) i 6= hj
(12)

Timesteps which occur when a dose can be administered
(i = hj) have two terms. The first term represents the
mass of drug (u(i)) administered over the duration of
the timestep (h), and the second term accounts for the
elimination of the drug. All other timesteps (i 6= hj)
have only the elimination term.

Equation (10) can be discretized using Euler’s method
[20].

F (Pd(j), φ(j)) =

1

τ
ln

[

ln(θ/N0)

ln(θ/2N0)

]

(ln(θ) − Pd(j)) − kdφ(j) (13)
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The function, F , represents the PD equation and in-
troduces the variable φ(j), which can be thought of as
the effective drug concentration at the site of the can-
cer. The introduction of φ(j) is necessary to address the
discontinuity associated with drug effect. The binary
variable b(j) allows φ(j) to be defined as zero when the
drug level is below vth and (vd(j)−vth) when v(j) ≥ vth

using Big-M constraints as follows [21]:

vd(j) − vth ≤ (vmax − vth)(1 − b(j)) (14a)

0(1 − b(j)) ≤ φ(j) (14b)

(vmax − vth)(1 − b(j)) ≥ φ(j) (14c)

vth − vd(j) ≤ vthb(j) (14d)

0b(j) ≤ φ(j) − (vd(j) − vth) (14e)

vthb(j) ≥ φ(j) − (vd(j) − vth) (14f)

Consider the situation when the drug plasma concentra-
tion is below the therapeutic value (vd(j) ≤ vth). In this
case, the left hand side of (14d) will be greater than zero
which requires b(j) to be one. This forces the left hand
sides of both (14b) and (14c) to be zero, resulting in
φ(j) being zero also. The left hand side of (14a) will be
negative, so this constraint will be satisfied. The right
hand side of constraints (14e) and (14f) will be positive
on the range [0, vth], so these constraints will also be
satisfied.

Next consider the case where the drug is having an effect
(vd(j) ≥ vth). This forces b(j) to be zero for the con-
straint (14a) to be satisfied. Thus, φ(j) will be forced to
take on the value vd(j) − vth because the left hand side
of constraints (14e) and (14f) will be zero. Furthermore
φ(j) will exist on the range [0, (vmax−vth)] satisfying the
constraints (14b) and (14c). Finally the the constraint
(14d) will always be satisfied because the left hand side
will have a maximum value of zero.

Using equation (13) and applying Euler’s method, the
discretized PD equation can be written as:

Pd(j + 1) = Pd(j) + hF (Pd(j), φ(j)) (15)

3.2.4 Constraints: The toxicity constraints (5)
can be transformed in a similar manner. The acute tox-
icity constraint can be replaced by a constraint on the
maximum drug concentration at all points in the dis-
cretization as follows:

vd(j) ≤ vmax; ∀j ∈ [1,m] (16)

The integral in the exposure constraint (6) can be re-
placed with a summation representing integration using
trapezoidal rule [20] in the following manner:

h

2
vd(1) + h

m−1
∑

j=2

vd(j) +
h

2
vd(m) ≤ vcum (17)

Furthermore the constraint on the maximum tumor size
(8) can be written as:

Pd(t) ≤ ln(N0); ∀j ∈ [3,m] (18)

One characteristic of discrete-time systems without di-
rect feed through is that changes at a given step will not
produce any output effect until the following timestep.
Consequently, any effect afforded by drug administra-
tion will not be observed until two timesteps after ad-
ministration. Because no drug administered at time zero
can have an effect until the third timestep, and the can-
cer cells will continue to proliferate during these two
timesteps, the constraint (8) was not enforced prior to
the third timestep.

4 Case Study

4.1 Parameters

The parameters used in this study were taken from [1]
and are given in Table 1. Table 1 contains three values

Table 1: Parameters used for the case study, with the ex-
ception of h, taken from Martin and Teo [1], where
[D] are the units of drug concentration.

parameter value units

τ 5 months
θ 1012 cells

N0 1010 cells

kd1 2.7×10−2 days−1[D]−1

kd2 8.4×10−3 days−1[D]−1

kd3 1.5×10−3 days−1[D]−1

γ .27 days−1

vth 10 [D]
vmax 50 [D]
vcum 4.1×103 [D] days
tf 364 days
Γ 0
h 0.5 days

for kd. The three values for kd, (kd1, kd2, and kd3),
represent the effects of three different drugs in order of
decreasing efficacy, as considered in [1].

Because of the slow rate of elimination of the drug, γ, a
significant amount of drug from a previous dose will still
be present when the current dose is administered. This
results in a time-varying lower bound on drug dose, with
a minimum value umin = 0. By administering the drug
directly into the plasma, the upper bound on the amount
of drug that can be administered is limited by the acute
toxicity constraint, (6) or (17). The maximum dose pos-
sible is also time-varying; therefore umax = vmax when
no drug is present in the plasma or umax is the amount
of drug required to achieve a peak plasma concentra-
tion of vmax. The timestep, h, selected was determined
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by the dynamics of the PK. The drug considered here
has a very slow rate of clearance from the patient, so a
timestep of 0.5 days can be used without sacrificing the
accuracy of the drug PK.

5 Results and Discussion

The MILP was modeled in GAMS and solved using
CPLEX on a dual Athlon MP 2200+ with 1GB of RAM.
For the case of the most effective drug, kd1, the resulting
problem had 8110 equations, 3693 continuous variables
and 728 binary variables. The MILP was solved to op-
timality in 0.3 seconds with an objective function value
of -30.4. This translates to a final cell population of less
than one cell. Physiologically, this means all of the can-
cerous tissue would have been eliminated. This is the
same objective function value (J < 1) reported by [1]
for the kd1 case. The objective function values for the
optimal control and MILP solution techniques are given
in Table 2. The recommended drug administration pro-
files for the three different cases and the PD response
for those profiles are shown in Figure 2.

Table 2: Objective function values for the MILP (JM ) and
optimal control (JO) solutions [1].

kd1 kd2 kd3

JM < 1 1.4 × 104 3.2 × 1010

JO < 1 1.2 × 103 1.8 × 109

The solution presented here is qualitatively similar to
the solution found using control parameterization tech-
niques [1]. Because of the constraint on the maximum
number of tumor cells, (8) and (18) for the continuous
and discrete problems, respectively, there is a day-one
dose administered in all cases. This brings the total
number of cancer cells down rapidly. Subsequently, for
the effective drug, kd1, no drug is administered until ap-
proximately the last half of the treatment cycle where
the drug is administered to maintain circulating plasma
concentrations near the maximum level, vmax, while sat-
isfying the cumulative toxicity constraints (17). For the
less effective drugs, constants kd2 and kd3, the tumor
population approaches the maximum requiring a larger
number of drug doses earlier in the window. This is
especially evident in the least effective case, kd3.

The MILP solutions are not only qualitatively similar to
those found using optimal control. The differences found
by the two techniques result from the discretization step
size. By allowing the step size to approach zero, the
optimal control solution is recovered. This was observed
empirically by letting h =.25, .1, .04, which recovered
solutions approaching those from [1] as h decreased.

The MILP approach offers several advantages. The non-
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Figure 2: The top three panes represent the MILP dos-
ing regimens predicted for the three different
drug effects, k. The dosing levels are given by
the solid horizontal bars and the drug concen-
tration are given by the solid line. PD results
for the three different values of k are shown:
kd1=(solid), kd2=(dash-dot), and kd3=(dot)

linearities in this problem are easily easily handled by
transforming the problem, thereby allowing the prob-
lem to be solved to optimality. This approach is also
very flexible, allowing for clinically relevant constraints
to easily be incorporated. Many clinical constraints can
be more easily formulated in terms of integer and con-
tinuous variables. For example many drugs are admin-
istered orally in pill form. This results in a manipulated
variable which takes on discrete values (e.g. no drug ad-
ministered or a combination fixed amounts) [22]. Some
drugs require a recovery period after several days of ad-
ministration [23]. By adding a binary decision variable,
which takes on the value of one when a drug is delivered
and zero otherwise, this type of constraint formulates as
a set of linear inequalities.

One concern with the formulation of the problem as ad-
dressed in [1], as well as this work, is the concept of
the treatment cycle. Consider the current problem over
the treatment window, where the solution is to deliver
the drug as late as possible. While this might provide a
mathematically optimal solution, the question of prac-
ticality must be addressed.

Clinicians consider problems in a moving horizon fash-
ion with feedback provided at treatment cycles. The
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firs treatment cycle is used to establish the toxicity con-
straints for the patient. The second cycle determines if
the treatment is efficacious. As a result, being able to
formulate the problem in terms of a moving horizon opti-
mization problem with feedback at the end of treatment
cycles would be a more realistic approach.

6 Summary

A MILP approach has been proposed to address a class
of chemotherapeutic dosing problems that have been
considered in an optimal control perspective. The PD
equations were logarithmically transformed, eliminating
the nonlinearities associated with both tumor growth
and drug effect. The work presented here is not only ca-
pable of reproducing the results obtained from optimal
control but is readily adaptable to constraints commonly
encountered by clinicians. Any algorithm to be imple-
mented in a clinical setting would need to be adaptable
in this manner.
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