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Abstract— Self-propagating code (worms) and Distributed
Denial of Service (DDoS) attacks are the most frequent and
quite devastating attacks on communication networks and the
Internet. In this paper we provide novel formulations for
the rapid detection of these attacks in the control-theoretic
framework of change detection. We present algorithms that
effectively can detect worms from their temporal spread-
ing characteristics. We describe the effects of the network
topology on the algorithms and their performance. We next
present algorithms for detecting DDoS while discriminating
against changes in the normal traffic. This is accomplished
by a distributed detection formalism where a concept of
directionality is introduced and exploited. We then turn into
attacks to routing protocols in mobile wireless networks.
We develop change detection formulations involving Hidden
Markov models, which match distribution of the number of
hops in the mobile and wireless nodes. Using observations that
suggest that this distribution is altered substantially in the
presence of such attacks we develop and analyze algorithms
for their detection.

I. I NTRODUCTION

Intrusion detection mechanisms usually monitor and de-
tect the misuse of network resources by keeping a series
of statistics related to the normal or acceptable use of the
network. Continuous monitoring of the network statistics
is performed and as soon as the monitored statistics cross
certain thresholds or violate a fixed policy on network usage
an alarm is raised.

Sequential detection theory provides an ideal framework
to analyze and propose new algorithms for the quickest
change detection of the monitored statistics. In this paper
we use this approach to quickly detect attacks such as
Worm spreading and Distributed Denial of Service. Due
to the large scale of these attacks a distributed formulation
where sensors are placed in different parts of the network
is considered. In this way we are able to get a big view of
the state of the network. Finally we consider monitoring the
hop count distribution for distance vector routing algorithms
as an approach to detect attacks to the routing protocols of
wireless ad hoc networks. We assume the reader has some
knowledge on change detection theory [1].

II. CHANGE DETECTION FORWORMS

For clarity of presentation we will consider active worms
as opposed to email worms. Active worms are programs
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that self-propagate across a network by exploiting vulnera-
bilities in widely used services offered by computers in the
network. In order to locate the vulnerable computers, the
worm probes different computer addresses at the specific
port number of the service it is looking for. By exploiting
the security flaw in the service offered by the computer, the
worm can execute arbitrary code with elevated privileges,
allowing it to copy and execute itself in the compromised
machine. In order to reproduce, the worm scans for new vul-
nerable machines from each new compromised computer.
The prevalence of active worms can be seen from some
examples in the last couple of years: Code Red I (July
2001), Code Red II (August 2001), NIMDA (September
2001), Sapphire, also known as Slammer (January 2003)
and Blaster (August 2003).

A. Why is it important to detect worms early in their
development?

The top three categories of computer attacks are directly
related to worms and other self-propagating hybrid threats
which exploit multiple vulnerabilities across desktops and
servers.

We would like to detect a worm as soon as possible
in order to minimize the number of compromised hosts.
A case example is the quick discovery and prompt action
by System Administrators which prohibited Slapper from
spreading further and prevented its damage [2]. Some
highly contagious worms can also have side effects such as
BGP routing instabilities [3] when they reach their peak.
Currently however, detection usually relies via informal
email discussion on a few key mailing lists. This process
takes hours at a minimum, which is too slow for the rapidly-
propagating worms.

Furthermore in [4] it is stated that the spread of the
theoretical flash or Warhol worms will be so fast that
no human-driven communication will suffice for adequate
identification of an outbreak before nearly complete infec-
tion is achieved. It is therefore proposed to sponsor research
in automated mechanisms for detecting worms based on
their traffic patterns.

B. Detection algorithms

Although the spread of a worm increases traffic over a
network, the worm itself is small (Code Red was 4KB),
and it only takes 40 bytes for a TCP SYN packet to
determine if a service is accessible, so detection cannot
rely of bandwidth statistics. However, the self propagating
code will try to use specific vulnerabilities that can be



identified with certain port numbers. So in the rest of this
chapter we will assume that the traffic monitoring variable
X is the connection attempts (probes) to a given TCP/UDP
port number(s). We will also assume most of the times a
parametric pdff (X) on the traffic observations.

The use of host unreachable messages and connection
attempts to routers as a way of detecting worms will be
less reliable while the worm is getting off the ground if
it uses a hit-list scanning [4]. The observations can be
made at different participating ISPs enforcing policies for
blocking self-propagating code once it is detected. So in our
framework we assume that there is a baseline of connections
to the given monitored port in all sensors (computers) of the
network.

We explore the effect of aggregation from distributed
sensors. This approach is motivated by the current infras-
tructure of distributed Intrusion Detection Systems. Further
motivation is presented in [4] as the authors propose to
foster the deployment of a widespread set of sensors for
worm detection (possibly in the Internet backbone.)

We first introduce the simple model of detecting changes
in the mean, and then we introduce a ”signature” for worm
detection, as a way to reduce the detection delay (or the
false alarm rate).

1) Distributed detection of a change in the mean: Clearly
the simplest approach to change detection is to detect a
change in the mean.

Despite the abundance of techniques addressing the
change detection problem, optimum schemes can mostly
be found for the case where the data are independent
and identically distributed (i.i.d.) and the distributions are
completely known before and after the change timek0 [5].
The cumulative sum (CUSUM) and the Shiryaev-Roberts
statistics are the two most commonly used algorithms for
change detection problems.

Let {Xk} be the aggregate traffic from all the sensors in
the network. To detect a change in the mean we assume
{Xk} is i.i.d with pdf f (0) before andf (1) after the change,
such that the historical meanE[ f (0)(X)] is less than the
change meanE[ f (1)(X)].

2) Detection of an exponential signal in noise: Clearly
detecting a change in the mean might give rise to several
false alarms as there might be cases where the observed
traffic increases during the normal operation of the network.
Furthermore, the i.i.d assumption of the observations after
the change is too strong because each infected host will
try in general to scan the same number of hosts in a
given interval of time, and as more and more hosts become
infectedXk will increase withk. In particular we know from
simple population dynamic models that a worm scanning
uniformly random the whole network will follow a logistic
growth [4].

Let η be the population of infected hosts. Letr be the
intrinsic growth rate (the growth rate whenη is small) and
let a be a given positive constant. Then the logistic growth

satisfies the nonlinear ordinary differential equation

dη
dt

= (r−aη)η (1)

with solution

η(t) =
N0B

N0 +(B−N0)e−rt (2)

whereB = r/a andN0 is the population at time 0. Since we
are interested in detecting a worm as soon as possible we
will be interested in the behavior ofη(t) when it is small,
i.e. we consider the exponential growth

η(t) = N0ert (3)

The equivalent discrete time recursion is

η(k∆t) := ηd
k = N0mk (4)

(d stands for “discrete”) wherem is the discretized growth
rate whenηd is small (m = er) and N0 is the number of
hosts compromised atk = 0.

For the detection problem we will assume that the values
of N0 and r (or m) are unknown. We will also consider a
dummy signalηdummy

k to represent any other growth pattern
we want to discriminate (e.g. linear growth, a step function
etc) from the growth of the wormηd

k .
We assume a normal traffic aggregate

Wk =
L

∑
l=1

Wl,k (5)

distributed asf (0)(w1, ...,wk). Let Xk denote the aggregate
observation from all sensors at time k, i.e.

Xk =
L

∑
l=1

Xl,k (6)

Our main assumption in this section is that the number
of probes seen at the sensors will be proportional to the
number of infected hostsαηd

k . The usual change detection
hypothesis testing problem for the aggregate traffic (equa-
tion 6) would be as follows:

H0 : xk = ηdummy
k +wk when 1≤ k ≤ M

H1 : xk = ηdummy
k +wk when 1≤ k < k0

xk = αηd
k +wk whenk0 ≤ k ≤ M

However, we wantk to restart to 1 wheneverH0 is
accepted, so we use a sequential hypothesis test where the
change timek0 is implicitly given by the time in which the
sequential test restarted andH1 was accepted.

H0 : xk = ηdummy
k +wk when 1≤ k ≤ M

H1 : xk = αηd
k +wk when 1≤ k ≤ M



a) Exponential signal detection in noise: Since we
assume we do not know the parametersα,N0 and m, we
compute the generalized likelihood ratio (GLR) in a given
time window [1,...,M] and compare it to a thresholdh.
We also assume the dummy signal has some unknown
parameterβ (e.g. the slope in a linear growth). Therefore
detection of the signalαηd

k in noise wk is achieved with
the test:

supα,N0,m f (0)(xk −αηd
k )

supβ f (0)(xk −ηdummy
k )

H1

R
H0

h (7)

b) Nonparametric regression detection: So far we
have always been assuming a parametric distribution
f (0)(w1, ...,wk) for the normal traffic. This assumption is
valid for a wide number of ports as the traffic seen can be
regular. However in some cases the real distribution can be
quite difficult to obtain. For example the number of probes
seen to port 80 (WWW) or port 21 (FTP) for computers
providing those services can exhibit long range dependence
and multifractal behavior that can be difficult to capture with
a parametric model. In order to deal with some of the more
complicated traffic observations we propose a heuristic non-
parametric change detection algorithm similar in essence to
the problem of detection of an exponential signal in noise.

The idea is to do a linear regression on log(xi). This
regression will produce two parameters, a slopec and the
errorerr from the estimated regression ofxk, ...,xM+k. From
this we compute the statisticzM+k = c/err. We use a sliding
window on k to compute the statistic. Then we apply the
non-parametric version of CUSUM or the Girshik-Rubin-
Shiryaev algorithms tozM+k [6].

III. C HANGE DETECTION FORDDOS ATTACKS

A. Why is it important to quickly detect routers participat-
ing in a denial of service attack?

Almost all DDoS attacks involve multiple networks and
attack sources, many of which have spoofed IP addresses
to make detection even harder. An attempt of the victim to
choke off the offending traffic requires network administra-
tors to call upstream service providers, alerting them of the
attack and having them shut down the traffic. That process
has to be repeated all the way back to every attack source.
So although DDoS are easily identified at the victim’s site,
it is natural to extend the quickest detection problem to
transit networks (ISPs) for faster response to an attack.

At the ISP level, traffic anomalies are difficult to detect
in the aggregated network traffic. Examination at per-flow
basis at the IP level cannot usually scale up to the high-
speed links in the transit networks, so a reasonable approach
for transit networks carrying a large amount of traffic which
cannot be analyzed at line rate should not keep the number
of packets to a specific destination, as this might be too
expensive during operation. Thus we are interested only in
passively monitoring the aggregate traffic, without the need

Fig. 1. A transit network composed of nodes a, b, c and d.

to store header information from the packets transmitted
through the network.

B. Detection Algorithms

1) Problem formulation : We take a new approach for
identifying Distributed Denial of Service attacks by a set
of nodes in a transit network. The basic idea is that at each
highly connected node the data tends to aggregate from the
distributed sources toward the destination, giving a sense
of directionality to the attack. This directionality idea will
provide a framework to design change detection algorithms
that are going to be less sensitive to changes in the average
intensity of the overall traffic and will focus on differen-
tiating random fluctuations of the network traffic versus
fluctuations where there is a clear change in the direction
of the flow at a given node. We are considering packets
in a very broad and general way, but clearly our approach
can be extended to monitor certain specific packet types
given the protocol. For example we might be interested
in measuring only TCP SYN-ACK response packets for
identifying a reflected distributed denial of service attack,
or ICMP packets for identifying ping floods.

Assume we are monitoring noded in figure 1. LetXd,m
k

denote the stochastic process representing the total number
of packets sent byd through the link(d,m) (an ordered
pair) at time stepk, wherem ∈ N (d) denotes a neighbor
of d, andN (d) the set of neighbors ofd. Let Xd

k denote
the vector with the elementsXd,m

k and let

θ d
0 :=







E0[X
d,a
k ]

E0[X
d,b
k ]

E0[X
d,c
k ]






(8)

We will be interested in changes of the form:

θ d
0 +νϒm (9)

where ν is a non-negative scalar andϒm (in the case of
three observed links|N (d)| = 3) is one of the usual basis



vectors of the three dimensional Euclidean space. Namely:

ϒa =





1
0
0



 , ϒb =





0
1
0



 , ϒc =





0
0
1



 (10)

So in figure 1, if noded suddenly starts a broadcast, there
will be a change in the mean of all processes. However
we are not interested in such a change. Instead if there are
attackers in the subnetworks attached tob and c, and they
target a host in the network attached toa by flooding it,
there will be a change in the directionϒa. Testing directions
should help us in discriminating unwanted false alarms due
to random fluctuations of the flows.

To formalize our ideas we consider the framework dis-
cussed in [1] of change detection in a known direction
but unknown magnitude of the change. Our problem is
a little bit different in that we are considering an M-ary
sequential hypothesis testing problem and that we will not
allow changes with negative or zero values forν , i.e. we
impose the restrictionν ≥ 0.

Thus the resulting change detection problem is:

θ d(k) =















θ d
0 whenk < tchange

θ d
0 +νϒa or

θ d
0 +νϒb or

θ d
0 +νϒc whenk ≥ tchange

(11)

where tchange is an unknown time step when the change
occurs.

Since we have an unknown parameterν we follow the
generalized likelihood ratio (GLR) for a multihypothesis
test: a test for each possible directionϒm, vs the null hy-
pothesis: a change in all directionsϒd . The null hypothesis
is selected for discriminating a change in one direction vs
a change of the overall traffic of the network either as an
increase or decrease:

gd,m
k = max

1≤ j≤k
log

supv≥c1 ∏k
i= j fθ d

0 +vϒm
(Xd

i )

supλ ∏k
i= j fθ d

0 +λϒd
(Xd

i )

whereλ is a scalar not necessarily greater than a positive
constantc1 unlike ν (i.e. we allow also for a decrease in the
overall network traffic). The thresholdhd,m for each of the
tests is selected given a fixed false alarm rate probability.

To stop the test we can run all hypothesis in parallel
and only the testgd,m

k that reaches its given threshold is
stopped. However this is a heuristic procedure as optimal
solutions to the problem of sequential testing of more than
two hypotheses are, in general, intractable. A more elaborate
stopping rule is presented in [7] with a proof of asymptotic
optimality as the decision risks (or error probabilities) go
to zero.

2) Sensor Fusion: So far we have been focusing on
detecting a change in a single node. One of the main
advantages in having several nodes under monitoring is that
we can perform an aggregation of the statistics between
the different nodes in order to decrease our detection delay

Fig. 2. The transit network

given a fixed false alarm rate probability. In particular if we
are monitoring nodes far away from the destination, most
of the local statistics will not yield an alarm and the attack
might be unnoticed.

The alarm aggregation can be performed by several
methods. Here we propose a simple heuristic that will apply
to any distance vector routing protocol.

We want a mechanism to aggregate the different statistics
at each monitored node, taking into account that the com-
puted statistics for all nodes can vary to different scales
of magnitude yielding a biased addition. To cope with this

problem we compute the normalized statisticϕd,m
k :=

gd,m
k

hd,m .
If none of our monitored nodes has raised an alarm, the
number of monitored nodes will be bounded by∑d ϕd,m

k .
This can be in turned interpreted as a new upper bound for
a collective threshold which can be selected given a false
alarm rate probability.

Selecting which statistics to add is the key issue. In
keeping with our directionality framework we will combine
only the statistics relating two or more nodes to a common
destination. The algorithm is as follows:

Given two nodes d and e;
For each linkd → m

For each linke → n
If there is a node f reachable throughd → m ande → n

then add their normalized statistic;

We now apply this formulation to the case of two monitored
nodes (a natural extension follows when we are monitoring
several nodes). Suppose we monitor nodes 6 and 3 in the
transit network model shown in figure 2, where the transit
network consists of 15 routers numbered from 0 to 14.
Each cloud represents a stub network with its own routing
domain.

The routing tables required for the aggregation algorithm
are given in Tables 1 and 2. By simple inspection of the
routing tables we see that we need to correlate the link (6,0)
with (3,1) because nodes 6 and 3 use them (respectively) to
reach nodes 0, 1 and 14. Similarly, the link (6,11) must be
correlated with (3,11), link (6,4) with (3,4), link (6,7) with



Link Routing to nodes

(6,7) 7,13,2,10,12,9
(6,0) 0,14,1
(6,4) 4,3,5
(6,11) 11,3
(6,8) 8

(6,subnetwork)

TABLE I

ROUTING TABLE FOR NODE6

Link Routing to nodes

(3,1) 1,0,2,14,10,9,12
(3,13) 7,13
(3,4) 4,5
(3,11) 11,6,8

(3,subnetwork)

TABLE II

ROUTING TABLE FOR NODE3

(3,13), (6,7) with (3,1) and (6,8) with (3,11).
If we denote asHi the hypothesis when nodei or its

subnetwork are under attack, then we have the follow-
ing hypothesis testing problem created by the aggregation
mechanism

1(H0∨ H1∨H14) = ϕ6,0 +ϕ3,1 > h0∨1∨14

1(H11) = ϕ6,11+ϕ3,11 > h11

1(H4∨H5 ) = ϕ6,4 +ϕ3,4 > h4∨5

1(H13∨H7) = ϕ6,7 +ϕ3,13 > h13∨7

1(H2∨H10∨H12∨H9) = ϕ6,7 +ϕ3,1 > h2∨10∨12∨9

1(H8) = ϕ6,8 +ϕ3,11 > h8

where 1( ) is the indicator function of the Hypotheses. If we
have fixed routes in the network, the thresholdshi∨...∨ j can
be computed to reach a given false alarm rate.

With this formulation not only can we improve our
chances to detect ”buried” attacks in single links by corre-
lating statistics, but also diminish the impact of false alarms
originating in individual nodes.

IV. CHANGE DETECTION FORROUTING ATTACKS IN

AD-HOC NETWORKS

A. Problem formulation: mobility and hop count distribu-
tion

Our objective is to present a statistical framework that
allows the incorporation of prior information about the
normal behavior of the network and of network attacks in
a principled way for the detection of known and unknown
attacks. In order to avoid a large number of false alarms,
we have to consider robust statistical models describing a
baseline behavior for our feature of interest in MANETs. In
contrast to other frameworks that allow anomaly detection

Fig. 3. HMM interpretation

[8], we focus on the dynamic behavior of the protocol rather
than using static models.

In a highly mobile ad hoc network, as viewed by a
monitoring node, the hop count is an important statistic and
in most cases can be monitored with no overhead. The evo-
lution of this distribution is directly related to the changes
in the topology of the network. Each configuration imposes
certain constraints on the space of hop count distributions
and as the topology of the network changes from one set of
configurations to the next. The space of the configuration
can be abstracted and viewed as representing the hidden
states of the network and the hop count distribution as the
observations.

In terms of the intrusion detection, the basic idea is
that an attacker will change the routing information or
maliciously modify the routing algorithm in such a way
that our perceived evolution of the hop count distribution
differs from the its dynamics under the “normal” conditions.
When such a deviation persists, in a statistical sense to be
described, we declare that an intrusion has occurred.

B. Statistical Model

We build a discrete Hidden Markov Model (HMM) [9]
with parameters(π,A,B) for modeling the evolution of
hop count distributions. HMMs were selected for several
reasons. They provide an generative representation of our
system as the hidden states of the HMM can be viewed as
abstractions of different spatial configurations of the mobile
nodes (figure 3) and the observations as the dynamic evolu-
tion of the hop count distribution. The parameters of discrete
state HMMs can be specified or can be estimated efficiently
while keeping a model with a low bias. The generative
and intuitive nature of HMMs allows incorporation of prior
knowledge and misuse detection by providing alanguage
model, i.e. a model that provides the HMM with expert
information on allowable state transitions which reflect our
knowledge on mobility. Signature-like intrusion detection
can also be incorporated by using HMM models of the
attacks we already know.

For simplicity, we will assume a proactive distance vector
routing protocol such as DSDV [10] in order to have access
to all hop counts at any time.

If we haveN +1 nodes, the hop count distribution at the
time stepk can be considered as a vector in{0, ...,N}D:



Xk = [X0
k , ...,XD−1

k ]′ (X i
k ∈ {0, ...,N}) whereD is a limit we

impose in the maximum number of hops we will consider,
i.e. X0

k is the number of disconnected nodes, isX1
k the

number of nodes 1 hop away, ...,XD−2
k is the number of

nodesD−2 hops away andXD−1
k is the number of nodes

D−1 or more hops away.
In order to consider a discrete HMM we need a way to

deal with the high-dimensional observation vectorsXk. The
number of all possible observations is(N +1)D−1 since we
are working with a hyperplane in(N +1)D with constraint
∑D−1

i=0 X i
k = N + 1. A natural approach is to encodeXk to

Yk, a member of a set ofM codewords. A good selection
of the codewords is nontrivial. One approach to obtain the
codebookΞ is to learn it from the normal operation of the
network, or from simulations of expected node mobility.
The learning algorithm can be a compression algorithm in
which for a given fixed rateR, we try to find the codebook
that minimizes a distortion function (usually a quadratic
distortion is considered). Another approach to is to consider
a set ofM key reference distributions of the hop counts,
chosen by an expert trying to define the observables of an
anomalous behavior.

C. Detection

In order to continue in the change detection setup we
follow a CUSUM procedure applicable to the case of
dependent observationsx j with distributions fθ1 and fθ0

under hypothesesH1andH0 respectively [11]:

Sn =

{

Sn−1 + log

(

fθ1(xn|xn−1, ...,xk)

fθ0(xn|xn−1, ...,xk)

)}+

(12)

wherexk is the first sample after the last reset, i.e.,Sk−1 = 0.
It is clear that this algorithm is only a reformulation of the
sequential probability ratio test (SPRT) algorithm for the

log-likelihood ratio: log
(

fθ1
(xn|xn−1,...,xk)

fθ0
(xn|xn−1,...,xk)

)

with the lower

threshold selected at 0. The upper thresholdh will be
selected given a false alarm rate.

The attack models can be intuitively represented as
HMMs fθ1 =

(

πθ1,Aθ1,Bθ1

)

. Prior knowledge and misuse
detection can be introduced as previously discussed. We can
also take an approach of anomaly detection by selecting
the uniform distribution, i.e.∀x̂ ∈ Ξ we have fθ1(x̂) = 1/M
as the alternate hypothesis. By the principle of maximum
entropy we can conclude that this is a way of not assuming
anything about the attack and therefore it is particularly
suited for detecting the attacks we do not know.

V. EXPERIMENTS, SIMULATION AND RESULTS

We performed several experiments to evaluate the perfor-
mance of the algorithms under a wide range of network traf-
fic assumptions and network topologies. The experiments
and simulations can be found in [12]. Here we summarize
some of the results.

The worm detection problem is heavily dependent on
the network topology and selection of monitoring nodes.
In scale-free networks [13] a very small set of the highly

connected nodes is sufficient for detection, and aggrega-
tion only improves the performance of the nonparametric
statistics. However, if we select sensors at random or if we
monitor a random network [13] then aggregation is very
important for detection. Most of the parametric statistics
perform comparably under a wide variety of conditions.
However when the traffic deviates significantly from the
assumed distribution, the best performance is obtained by
the nonparametric statistics.

In the simulation of denial of service attacks, for local
detection, testing for changes in the direction of the flow
(our discrimination parameter from normal changes in the
network) provides better performance than simply testing
for change detection separately per link. In the distributed
detection case, by correlating an overall flow directionality
we were able to extract warning of attacks that would have
been otherwise missed in local detection nodes.

For ad hoc networks, our HMMs provide an intuitive
model of the network routing behavior, and a principled
way for adding expert knowledge in the form of language
models. Simple disruptions to the routing protocol such
as a faulty node claiming a random distance to any other
nodes can be detected with a system that learns the normal
behavior of the network and uses the anomaly detection
framework. Detection of more complex attacks such as a
Blackhole or a Wormhole require incorporation of prior
knowledge into the HMMs in the form of a normal behavior
specification or as attack models.
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