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Abstract— An elastic dumbbell spacecraft is assumed to
consist of two identical mass particles that are connected by
a long elastic link. The motion of the dumbbell spacecraft
can be described by orbit, attitude and shape dynamics that
arise due to gravitational forces, an elastic restoring force
along the longitudinal axis of the spacecraft, and control forces
that act to change the attitude and shape of the spacecraft.
These control forces have the property that there is no net
external force on the dumbbell spacecraft. Since the angular
momentum of the spacecraft is necessarily conserved, Routh
reduced equations of motion are developed that describe the
reduced dynamics of the controlled spacecraft. The reduced
equations of motion are developed; relative equilibria are
determined, and simplified reduced equations, in a linear form,
are obtained. These linear reduced equations demonstrate
spacecraft controllability properties. It is shown that certain
maneuvers, involving a change in orbit, can be accomplished
using only attitude and shape control inputs. The proposed
framework can be used to study this propulsion force approach
to orbital maneuvers.

I. INTRODUCTION

This paper formulates problems for underactuated control
of a multibody spacecraft. A specific multibody spacecraft,
namely a dumbbell spacecraft, is considered, and specific
underactuation assumptions, namely that there is no net
external control force, are made. These assumptions are
made to make the formulation of the control problems
tractable, while maintaining the important features, namely
that there are coupled orbit, attitude and shape dynamics,
of a multibody spacecraft.

An elastic dumbbell spacecraft is assumed to consist
of two identical mass particles that are connected by a
long elastic link. The motion of the dumbbell spacecraft is
described by orbit, attitude, and shape dynamics that arise
due to gravitational forces, an elastic restoring force that
acts along the longitudinal axis of the dumbbell spacecraft,
and control forces that act to change the attitude and
shape dynamics only. For simplicity, it is assumed that the
motion of the two mass particles that define the dumbbell
spacecraft lie in a fixed orbital plane. An extension to the
full three dimensional case is possible, but tedious.

Since it is assumed that there is no net external force

on the dumbbell spacecraft, the angular momentum of the
dumbbell spacecraft is necessarily conserved. The process
of Routh reduction is followed to obtain reduced equations
of motion for the orbit, attitude and shape dynamics of
the dumbbell spacecraft. These reduced equations do
incorporate attitude and shape control inputs. Relative
equilibria are identified that correspond to circular orbits,
and linear equations are determined that describe first order
perturbations from a relative equilibrium.

For multibody spacecraft, such as an elastic dumbbell
spacecraft, it is reasonably well known that the orbit,
attitude and shape dynamics are coupled. This fact is
inherent in prior literature that treats multibody spacecraft;
see for example [1], [2], [3], [4], [5], [6], [7], [8]. Much
of the literature is concerned with orbit and attitude
dynamics only; see [4], [5], [6], [8]. Orbit and shape
dynamics only are treated in [2], and [3]. Attitude and
shape dynamics only have been treated in [7]. We have
previously developed models for a dumbbell spacecraft
in [1] that include orbit, attitude, and shape dynamics.
This paper is related to [1] by considering the special case
corresponding to the assumptions mentioned previously for
which reduced equations of motion can be obtained.

The linear reduced equations for the dumbbell spacecraft
are shown to be completely controllable. The implication of
controllability is that certain kinds of orbital maneuvers can
be achieved using only the attitude and shape control inputs.
We mention several approaches for constructing control
inputs that achieve desired orbit changes; one approach uses
an impulse train, corresponding to high authority control
inputs, while another approach uses low authority control
inputs. It is interesting that the problem of attitude control
to achieve an orbit change and the problem of shape control
to achieve an orbit change have been treated in various
publications mentioned previously over the last forty years.
The former problem has been nicely treated in the excellent
paper [8] using analytical methods; the latter problem has
been treated for example in [2].



II. ROUTH REDUCTION OF DUMBBELL SPACECRAFT

DYNAMICS

The position vector of the dumbbell spacecraft center
of mass is defined in an inertial coordinate frame fixed
to the center of a massive spherical body, e.g., the Earth.
The variable r is the length of this position vector and
φ ∈ S

1 represents the angle that the position vector of
the dumbbell spacecraft makes with respect to an axis of
the inertial frame. The attitude of the spacecraft is given by
θ which is the angle between the longitudinal axis of the
dumbbell spacecraft and the radial position vector of the
dumbbell spacecraft. The shape of the dumbbell spacecraft
is denote by q defined so that 2q is the length of the
dumbbell spacecraft with 2(q− l) denoting the deformation
of the dumbbell spacecraft along its longitudinal axis. That
is 2l denotes the undeformed length of the spacecraft.
Consequently, the configuration of the dumbbell spacecraft
is represented by the coordinates (r, φ, θ, q), where (r, φ)
denotes the position variables in R

2 of the center of mass of
the dumbbell spacecraft in polar coordinates, θ denotes the
attitude variable of the dumbbell spacecraft, and q denotes
the shape variable of the dumbbell spacecraft. As shown in
Figure 1, there are control forces N and T on the dumbbell
spacecraft. The control force N acts on each mass particle
normal to the connecting link; this control force is referred
to as the attitude control input. The control force T acts on
each mass particle along the connecting link; this control
force is referred to as the shape control input.
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Fig. 1. Dumbbell spaceraft in planar orbit in central gravitational field.

Let the mass of each of the mass particles in the dumbbell
spacecraft be m, and let k denote the elastic stiffness of the
link joining the two masses. The Lagrangian then has the

form

L(r, θ, q, ṙ, φ̇, θ̇, q̇) = m(ṙ2 + q̇2 + q2θ̇2 + 2q2θ̇φ̇

+(r2 + q2)φ̇2) − Vg(r, θ, q) − 2k(q − l)2, (1)

where the gravitational potential is

Vg(r, θ, q) = −
µm

√

q2 + r2 − 2qr cos θ

−
µm

√

q2 + r2 + 2qr cos θ
.

It is clear that the Lagrangian is independent of the angle
variable φ. Since there is no net external force on the
dumbbell spacecraft other than gravity and φ is a cyclic
variable, the angular momentum

p =
∂L

∂φ̇
= 2m(q2θ̇ + (r2 + q2)φ̇) (2)

is conserved. As shown in [1], the spacecraft can not
be linearly controllable near a relative equilibrium
corresponding to a circular orbit with such actuation.

We carry out Routh reduction to obtain reduced equations
of motion; we follow the development in [9], [10]. The clas-
sical Routhian is defined by setting the angular momentum
p constant, performing a partial Legendre transformation in
the variable φ, and substituting for φ̇ using (2):

R(r, θ, q, ṙ, θ̇, q̇) = L − pφ̇ = m(ṙ2 + q̇2 + q2θ̇2)

−
(p − 2mq2θ̇)2

4m(r2 + q2)
− Vg(r, θ, q) − 2k(q − l)2. (3)

The equations of motion of the reduced dynamics are ob-
tained from the above Routhian by substituting the Routhian
for the Lagrangian in the Lagrange-Routh equations. The
radial equation of motion is given by

2mr̈ −
2mrq4

(r2 + q2)2
θ̇2 −

p2r

2m(r2 + q2)2
+

2rq2p

(r2 + q2)2
θ̇

+
µm(r − q cos θ)

(r2 + q2 − 2qr cos θ)3/2

+
µm(r + q cos θ)

(r2 + q2 + 2qr cos θ)3/2
= 0. (4)

The equation of motion for the attitude is given by

2mr2q2θ̈

r2 + q2
+

4mrqθ̇(q3ṙ + r3q̇)

(r2 + q2)2
+

2pqr(rq̇ − qṙ)

(r2 + q2)2

+
µmqr sin θ

(r2 + q2 − 2qr cos θ)3/2

−
µmqr sin θ

(r2 + q2 + 2qr cos θ)3/2
= 2Nq. (5)

where N is the attitude control input as shown in Figure 1.
The equation of motion for the shape variable is

2mq̈ −
2mr4q

(r2 + q2)2
θ̇2 −

p2q

2m(r2 + q2)2
−

2r2qp

(r2 + q2)2
θ̇

+
µm(q − r cos θ)

(r2 + q2 − 2qr cos θ)3/2
+

µm(q + r cos θ)

(r2 + q2 + 2qr cos θ)3/2

+4k(q − l) = T, (6)



where T is the shape control input as shown in Figure 1.

We can rewrite the reduced equations of motion in the
form

r̈=
rq4

(r2 + q2)2
θ̇2 +

p2r

4m2(r2 + q2)2
−

rq2p

m(r2 + q2)2
θ̇

−
µ(r − q cos θ)

2(r2 + q2 − 2qr cos θ)3/2

−
µ(r + q cos θ)

2(r2 + q2 + 2qr cos θ)3/2
, (7)

θ̈=−
2θ̇(q3ṙ + r3q̇)

rq(r2 + q2)
−

µ(r2 + q2) sin θ

2qr(r2 + q2 − 2qr cos θ)3/2

+
µ(r2 + q2) sin θ

2qr(r2 + q2 + 2qr cos θ)3/2

−
p(rq̇ − qṙ)

mqr(r2 + q2)
+

r2 + q2

mr2q2
Nq, (8)

q̈=
r4q

(r2 + q2)2
θ̇2 +

p2q

4m2(r2 + q2)2
+

r2qp

m(r2 + q2)2
θ̇

−
2k

m
(q − l) −

µ(q − r cos θ)

2(r2 + q2 − 2qr cos θ)3/2

−
µ(q + r cos θ)

2(r2 + q2 + 2qr cos θ)3/2
+

T

2m
. (9)

At an equilibrium of the reduced equations of motion,
the following algebraic equations are satisfied

−p2re

2m(r2
e + q2

e)2
+

µm(re − qe cos θe)

(r2
e + q2

e − 2qere cos θe)3/2

+
µm(re + qe cos θe)

(r2
e + q2

e + 2qere cos θe)3/2
= 0, (10)

µmqere sin θe

(r2
e + q2

e − 2qere cos θe)3/2

−
µmqere sin θe

(r2
e + q2

e + 2qere cos θe)3/2
= 0, (11)

−p2qe

2m(r2
e + q2

e)2
+

µm(qe − re cos θe)

(r2
e + q2

e − 2qere cos θe)3/2

+
µm(qe + re cos θe)

(r2
e + q2

e + 2qere cos θe)3/2
+ 4k(qe − l) = 0, (12)

where (re, θe, qe) denote an equilibrium of the reduced
equations. From equations (10)-(12), we see that there are
two classes of equilibria for the reduced equations:

θe = nπ, n ∈ Z, p2 =
4µm2(r2

e + q2

e)3

re(r2
e − q2

e)2
,

p2qe

2m(r2
e + q2

e)2

=
µm

(re + qe)2
−

µm

(re − qe)2
+ 4k(qe − l), and (13)

θe = (n +
1

2
)π, n ∈ Z, p2 = 4µm2

√

r2
e + q2

e ,

p2qe

2m(r2
e + q2

e)2
=

2µmqe

(r2
e + q2

e)3/2
. (14)

These equilibria of the reduced equations define the relative
equilibria of the original (unreduced) equations, as given in
[1].

III. LINEARIZED REDUCED DYNAMICS AND LINEAR

CONTROLLABILITY PROPERTIES

We now linearize the equations of motion about the
equilibria given by (13) and (14). Perturbations of the
reduced configuration variables from their equilibrium
values are denoted by (δr, δθ, δq).

Throughout this section, we assume qe to be positive.

The linearized equations of motion about equilibria given
by (13), with θe = 0, are first presented. The linear reduced
radial, attitude and shape equations of motion are given by:

2mδr̈ +
2pq2

ere

(r2
e + q2

e)2
δθ̇ +

( 2p2r2

e

m(r2
e + q2

e)3
−

p2

2m(r2
e + q2

e)2

−
2µm

(re − qe)3
−

2µm

(re + qe)3

)

δr +
( 2p2reqe

m(r2
e + q2

e)3

+
2µm

(re − qe)3
−

2µm

(re + qe)3

)

δq = 0, (15)

2mr2

eq2

e

r2
e + q2

e

δθ̈ −
2pq2

ere

(r2
e + q2

e)2
δṙ +

2pr2

eqe

(r2
e + q2

e)2
δq̇+

( µmqere

(re − qe)3
−

µmqere

(re + qe)3

)

δθ = 2Nqe, (16)

2mδq̈ −
2r2

eqep

(r2
e + q2

e)2
δθ̇ +

( 2p2q2

e

m(r2
e + q2

e)3
−

p2

2m(r2
e + q2

e)2

−
2µm

(re − qe)3
−

2µm

(re + qe)3
+ 4k

)

δq +
( 2p2reqe

m(r2
e + q2

e)3

+
2µm

(re − qe)3
−

2µm

(re + qe)3

)

δr = T. (17)

The linearized equations of motion about equilibria given
by (14), with θe = π

2
, are next presented. The linear reduced

radial, attitude and shape equations of motion are given by:

2mδr̈ +
2pq2

ere

(r2
e + q2

e)2
δθ̇ +

( 2p2r2

e

m(r2
e + q2

e)3
−

p2

2m(r2
e + q2

e)2

+
2µm

(r2
e + q2

e)3/2
−

6µmr2

e

(r2
e + q2

e)5/2

)

δr

−
6µmqere

(r2
e + q2

e)5/2
δq = 0, (18)

2mr2

eq2

e

r2
e + q2

e

δθ̈ −
2pq2

ere

(r2
e + q2

e)2
δṙ +

2pr2

eqe

(r2
e + q2

e)2
δq̇

−
6µmr2

eq2

e

(r2
e + q2

e)5/2
δθ = 2Nqe, (19)

2mδq̈ −
2r2

eqep

(r2
e + q2

e)2
δθ̇ +

( 2p2q2

e

m(r2
e + q2

e)3
−

p2

2m(r2
e + q2

e)2

+
2µm

(r2
e + q2

e)3/2
−

6µmq2

e

(r2
e + q2

e)5/2
+ 4k

)

δq

−
6µmqere

(r2
e + q2

e)5/2
δr = T. (20)

If we denote the vector of reduced configuration pertur-
bations by δx = [δr δθ δq]T, then these linearized equations
of motion can be expressed as a linear, second order, vector



differential equation of the form

Mδẍ + Cδẋ + Kδx = Bu, (21)

where M is a symmetric positive definite inertia matrix, C

is a skew-symmetric matrix representing gyroscopic terms,
K is a symmetric stiffness matrix, and B is a control
input matrix. For the dumbbell spacecraft, the forms of the
matrices M , C, K, and B are given by

M =





m1 0 0
0 m2 0
0 0 m1



 , C =





0 c1 0
−c1 0 c2

0 −c2 0



 ,

K =





k1 0 k2

0 k3 0
k2 0 k4



 , B =





0 0
2qe 0
0 1



 , (22)

where u = [N T ]T is the control input vector. The values
of the constants in equation (22) are determined by the
above linear equations (15)-(17) or equations (18)-(20).
The structure of the linear reduced equations of motion is
that of a linear gyroscopic system; compare with the form
of the linearized unreduced equations of motion (see [1]).
These linear reduced equations of motion have the general
structure of a linear Hamiltonian system [9], [10], [11]; it
is interesting to note that the process of Routh reduction
maintains this Hamiltonian structure.

In assessing complete controllability of second order
equations in the above form, we make use of necessary
and sufficient conditions for complete controllability given
in [12]. According to [12], the equation (21) is completely
controllable if and only if the controllability rank condition

rank[λ2M + λC + K, B] = 3 (23)

holds for all λ that satisfies det[λ2M + λC + K] = 0.
This controllability result is now used to determine the
controllability properties for the linear reduced equations
of motion.

Proposition 1. The linearized equations of motion for the
reduced dynamics are completely controllable if the attitude
and shape are both actuated.

The controllability matrix of equation (23) has rank 3
for all values of λ.

This result means that it is possible to modify the orbit
of the dumbbell spacecraft from a circular orbit to a family
of nearby orbits by simultaneously using only attitude and
shape control inputs as shown in Figure 1.

Proposition 2. The linearized equations of motion for the
reduced dynamics are completely controllable if only the
shape is actuated.

The controllability matrix has rank 3 for all values of λ

since k3 6= 0.

Proposition 3. The linearized equations of motion for the
reduced dynamics are completely controllable if only the
attitude is actuated.

The linearized equations are completely controllable
since k1k4 6= k2

2
, which implies that the controllability

matrix has rank 3 for all values of λ.

The last two results suggest that even if only the attitude
or only the shape degree of freedom is actuated, then the
reduced equations of motion are linearly controllable in a
neighborhood of either class of relative equilibria.

IV. ORBITAL, ATTITUDE, AND SHAPE MANEUVERS

USING ATTITUDE AND SHAPE CONTROL INPUTS

Maneuver control problems for the linear reduced
equations of motion can be defined by specification of
suitable boundary conditions that consist of an initial
reduced state (configuration and configurtion rate) and a
final reduced state (configuration and configuation rate). A
positive maneuver transfer time can also be specified. The
initial state and the final state must be consistent in the
sense that they correspond to the same angular momentum
constant. The initial state and the final state must also be
close (in the sense of a norm) in order to utiliize a common
linear reduced set of equations. For such specification of
initial state and final state and specification of a maneuver
transfer time, the control problem (or motion planning
problem) is to determine the control input(s), e.g. the
attitude control input and/or the shape control input, that
transfer the state of the linear reduced equation from the
specified initial state to the specified final state in the
specified transfer time.

On the basis of the controllability properties stated in the
previous section, well-defined maneuver control problems
are guaranteed to have a solution using both attitude and
shape control inputs, using only attitude control inputs, or
using only shape control inputs. There are several standard
control methodologies that can be utilized to construct
numerical solutions to such linear maneuver problems.

These maneuver problems can be formulated as fuel
optimal control problems where the attitude and shape
control inputs are assumed to be impulsive [13]. If both
attitude and shape control inputs are available, then the
maneuver control problems can be solved using a train
of three impulses; if only an attitude control input (or
only a shape control input) is available, then the maneuver
control problems can be solved using a train of six impulses.



Alternatively, these maneuver control problems can be
formulated as quadratic optimization problems. Standard
tools are available for such problems. Well-known methods
that make use of the controllability Grammian would seem
to be especially suited.

A special class of maneuver problems for the reduced
dynamics are the rest-to-rest maneuver problems. These
maneuver problems, in the present context, involve a
transfer from one relative equilibrium (of the unreduced
dynamics) to another nearby relative equilibrium. Rest-to-
rest maneuvers are possible only if the initial state and
the final state correspond to the same angular momentum
constant.

V. CONCLUSIONS

As shown in [1], the complete orbit, attitude and shape
equations of motion are not completely controllable using
attitude and shape control inputs in any meaningful sense;
this fact is a consequence of the conservation of angular
momentum of the dumbbell spacecraft. However, in this
paper we have demonstrated that the reduced equations
of motion for the dumbbell spacecraft are completely
controllable at least locally near relative equilibria
corresponding to circular orbits. This is a very important
property since it suggests that the use of attitude and shape
inputs can be used to achieve certain orbit maneuvers.
Although controllability of this type has been implicitly
recognized in prior publications, our contribution is to
demonstrate this controllability property in a formal way
based on the linear reduced equations of motion.

In addition to exposing the controllability of the linear
reduced equations of motion for the dumbbell spacecraft,
these equations can also be utilized to construct specific
orbit, attitude, and shape maneuvers. We have made a few
comments about how this might be accomplished, but this
represents an area of continuing research.

Finally, we mention several possible extensions of the
results in this paper. Here we have made the assumptions
of planar orbit, attitude and shape dynamics for the
dumbbell spacecraft, since this leads to relatively simple
equations of motion. We have developed more general
results for the general three dimensional case; these results
will be reported elsewhere. This paper has also treated
a very specific spacecraft, namely an elastic dumbbell
spacecraft. We believe that similar results can be developed
for more complex multibody spacecraft, including tethered
spacecraft and space robots.
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