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Abstract— The attitude control of a rigid spacecraft with
a cluster of N variable speed control moment gyroscopes is
considered from a perspective of passivity. The dynamics are
derived using a special form of Euler-Lagrange equations.
The spacecraft dynamics and unit quaternion kinematics are
shown to be passive. A proportional-integral controller is
proposed to make the feedback system passive, which closely
resembles previous controller designs using Lyapunov analysis.
Consequently, the attitude errors are shown to be globally
asymptotically stable. A null space solution is used to provide
power tracking of the spacecraft. Numerical simulations are
provided for validation.

I. INTRODUCTION

Most spacecraft use chemical batteries to store energy
from solar panels for use during periods of eclipse from
the sun. Chemical batteries often require consideration in
the spacecraft design given that the batteries have many
drawbacks such as weight, efficiency, limited operating
conditions, and limited battery life. As an alternative, fly-
wheels offer a promising choice for energy storage given
such systems can be lighter, last longer, and provide the
capability to not only do power tracking but also attitude
control.

Flywheels can be considered as single-gimbal variable
speed control moment gyroscopes (VSCMGs) where the
varying wheel speeds provide an extra degree of freedom for
use in attitude control and power tracking. Energy storage is
achieved via converting electrical energy from solar arrays
into rotational kinetic energy of the spinning wheels. Power
tracking is accomplished by changing the wheel speeds as
required, but must be done as not to produce any torques
on the spacecraft.

The development of an integrated power and attitude
control system (IPACS) using flywheel technology is non-
trivial and has been subject of research for many years. The
nonlinear equations of motion for a VSCMG cluster in a
rigid spacecraft have been derived for different kinematic
descriptions of the spacecraft orientation [9][10][14]. The
nonlinear equations of motion have been extended to flexi-
ble spacecraft [3]. By ignoring the gimbal accelerations, the
gimbal rates and wheel spin rates can be taken as control
inputs to develop a velocity-based steering control law,
which takes advantage of the torque- amplification property
of control moment gyroscopes [9][10][14]. A singularity
measure is used in defining a weighting matrix to avoid any

CMG singularities [10]. Also, an adaptive nonlinear control
law for VSCMGs has been previously derived [14].

In addition, passivity properties of rigid spacecraft have
been used to derive attitude controllers. Feedback intercon-
nections of passive and strictly passive systems are globally
asymptotically stable [5][7]. An adaptive attitude controller
using passivity has been derived using a unit quaternion
tracking error. [2]. By using passivity theorems, the attitude
controllers have been extended to systems without angular
velocity measurements [6][11][12].

In this work, a rigid spacecraft with a cluster of VSCMGs
is considered. The system energy is used to derive the
complete set of nonlinear dynamical equations of motion.
Passivity theory, as opposed to Lyapunov analysis, is used
to derive the attitude control for the integrated power and
attitude control problem. The simultaneous power tracking
and attitude control is discussed. Simulations are provided
for validation.

Fig. 1. Variable Speed Control Moment Gyroscope

II. SYSTEM MODEL

Consider a rigid body spacecraft with a cluster ofN
variable speed control moment gyroscopes (VSCMGs). Let
a body-fixed reference frame associated with the spacecraft



be denoted byB, and let a inertial frame be denoted by
I . The cluster is fixed inB with the gimbal axes of
each VSCMG fixed within the cluster. Let ˆagi , âsi , and
âti represent thei-th VSCMG’s directional unit vectors
of the gimbal, spin, and transverse axes expressed inB

as shown in Fig. 1. Define the matrixAg ∈ R
3×N such

that i-th column of Ag is the directional unit vector of
the i-th VSCMG’s gimbal axes. The matrices,As ∈ R

3×N

and At ∈ R
3×N are defined similarly for the spin and

transverse directions [3][9][10][14]. Given the initial unit
vectors, the matrices are functions of the gimbal angles,
denoted byδ ∈ R

N, and can expressed asAg = Ag0, As =

As0 [cosδ ]d−At0 [sinδ ]d, andAt = At0 [cosδ ]d +As0 [sinδ ]d,
where[x]d ∈R

N×N denotes a diagonal matrix with elements
x∈ R

N. Given x∈ R
3, define the skew symmetric operator

x× ∈R
3×3, which represents the cross-product operation, as

x× =





0 −x3 x2

x3 0 −x1

−x2 x1 0





Next, the constant inertia matrices of the system are
defined. Is/c ∈ R

3×3 is the total inertia matrix of the
spacecraft including the contributions from the center of
mass of each VSCMG. The matricesIgw♦ ∈ R

N×N and
Iw♦ ∈ R

N×N are diagonal matrices with elements being the
inertias of the gimbal including the wheel and inertias of
just the wheel of each VSCMG corresponding to the triad
of unit directions vectors, e.g. gimbal axes (♦ = g), spin
axes (♦ = s), or transverse axes (♦ = t). Consequently, the
matrix Iws ∈ R

N×N is a diagonal matrix with elements of
each VSCMG wheel inertia along the spin axis. The inertia
matrix I♦ = Igw♦ + Iw♦ ∈ R

N×N is the sum of diagonal
matricesIgw♦ and Iw♦.

A. Dynamics

In general, the system’s equations of motion can be
derived using either classical mechanics or Lagrangian
mechanics. The former uses Newton’s and Euler’s laws to
provide some physical intuition into the system dynamics.
The latter approach uses the system’s energy and Euler-
Lagrange equations to derive the equations of motion.
The Lagrangian approach is considered using the system’s
kinetic energy and a special form of the Euler-Lagrange
equations.

1) Kinetic Energy:The total kinetic energy of the space-
craft includingN VSCMGs can be expressed as the sum of
the kinetic energy of the spacecraft plus the kinetic energy
of the gimbals and wheels,T = Ts/c+Tg+Tw. Let N∈R be
arbitrary. By considering the inertia and angular velocities
w.r.t. I expressed inB, the total kinetic energy of the
system is given by

T =
1
2

ωTJω +
1
2

δ̇ T Igδ̇ +ωTAgIgδ̇ +
1
2

ΩT IwsΩ+ωTAsIwsΩ

whereω ∈R
3 is the spacecraft’s angular velocity,δ̇ ∈R

N is
a column vector of theN VSCMGs’ gimbal rates,Ω ∈ R

N

is a column vector of theN VSCMGs’ wheel spin rates, and
J∈R

3×3 is the inertia matrix of the spacecraft including the
variable speed control moment gyroscopes,

J = Is/c +AsIsA
T
s +At ItA

T
t +AgIgAT

g

The time derivative ofJ is given by

J̇ = At

[

δ̇
]d

(It − Is)AT
s +As

[

δ̇
]d

(It − Is)AT
t

whereȦ s = −At

[

δ̇
]d

and Ȧ t = As

[

δ̇
]d

. The total kinetic
energy can be written in matrix form as

T =
1
2

ṙTM(δ )ṙ (1)

where

M(δ ) =





Ig 0 IgAT
g

0 Iws IwsAT
s

AgIg AsIws J



 > 0

and ˙r =
[

δ̇ Ω ω
]T

∈ R
3+2N.

2) Euler-Lagrange Equations:Consider a system using
generalized coordinates,q, possibly subject to either holo-
nomic or non-holonomic constraints. Assuming no potential
field, the Euler-Lagrange equations can be written as

dt
dt

(
∂T
∂ q̇

)

−
∂T
∂q

= Q+FTλ

whereQ is the generalized force moment,F is Jacobian of
the constaint vector, andλ are Lagrange multipliers [4].

The standard form of Euler-Lagrange equations use gen-
eralized coordinates where the generalized velocities are
integrable with respect to time, e.g.

∫
q̇i = qi . When the

velocities are not integrable, the standard form of Euler-
Lagrange equations do not apply. These velocities, known
as quasi-velocities, are considered as time derivatives of
quasi-coordinates. Quasi-coordinates,r, are coordinates that
only the time derivatives have any physical meaning [1].
The spacecraft’s angular velocity is an example of a quasi-
velocity since it is not integrable and can be considered
the time derivatives of some quasi-coordinates [1][8]. Given
the kinetic energy is expressed in terms of true and quasi-
coordinates, this leads to using a special form of Euler-
Lagrange equations.

3) Boltzmann-Hamel Equations:The Lagrange equa-
tions for quasi-coordinates are called Boltzmann-Hamel
equations [1][13]. Let the relationship between the quasi-
velocities and true velocities be given by ˙r = S(q)q̇. Since
the kinetic energy does not depend on the true coordinates
and assuming no potential field, the usable form of the
Boltzmann-Hamel equations become

d
dt

(
∂T
∂ ṙ

)

+

[
0 0
0 ω×

](
∂T
∂ ṙ

)

−S(q)−1
(

∂T
∂q

)

= τ (2)

whereτ =
[

τδ̇ τΩ τext
]T

∈ R
3+2N is column vector of

the internal moments associated with the gimbals/wheels of
the VSCMGs and the external moment on the spacecraft.



By using Euler angles to represent the spacecraft ori-
entation, the true coordinates becomeq =

[
δ α n

]
∈

R
3+2N where n ∈ R

3 is a vector of the Euler angles and
α ∈ R

N is a vector of position angles of an arbitrary
reference point on each VSCMG wheel. Considering Eq.
(1) and Eq. (2), the dynamical equations of motion for the
system are given by

Igδ̈ + IgAT
g ω̇ −βω +[Ω]d IwsA

T
t ω = τδ (3a)

IwsΩ̇+ IwsȦ
T
s ω + IwsA

T
s ω̇ = τΩ (3b)

J̇ω +Jω̇ +AgIgδ̈ +AsIwsΩ̇+ Ȧ sIwsΩ+

[ω]×
(

Jω +AgIgδ̇ +AsIwsΩ
)

= τext
(3c)

whereβ = 1
2

[
AT

s ω
]d

(It − Is)AT
t + 1

2

[
AT

t ω
]d

(It − Is)AT
s .

B. Kinematics

The spacecraft orientation is represented by using an
unit quaternion, or Euler parameters, corresponding to the
transformation fromB frame to the inertial reference frame,
I . Define the unit quaternion asq =

[
qo qv

]T
∈ R

4

where qo ∈ R and qv ∈ R
3 are the scalar and vector

components. The unit quaternion satisfies the holonomic
constraint

qTq = q2
o +qT

v qv =
3

∑
i=0

qi = 1

The kinematic differential equation can be given as

q̇ =
1
2

Q(q)ω (4)

where the matrixQ(q) ∈ R
4×3 is defined as

Q(q) ,

[
−qT

v
qoI3×3 +q×v

]

=







−q1 −q2 −q3

qo −q3 q2

q3 qo −q1

−q2 q1 qo







(5)

Equations (3c) and (4) form the spacecraft’s equations of
motion.

III. PASSIVITY-BASED ATTITUDE CONTROL

Let the desired spacecraft attitude be described by the
body-fixed frame,D , which gives a desired attitude quater-
nion, qd =

[
qod qvd

]T
, and an angular velocity ofD

with respect toI expressed inD , ωd. The desired ori-
entation of the spacecraft is represented by the rotation
matrix, Rd ∈ SO3, where the current attitude is given by the
rotation matrix,R∈SO3. SO3 defines the special orthogonal
group, which is the subset of 3× 3 matrices that satisfy
RTR= 1 anddet(R) = 1. Define the attitude error rotation
matrix, Re = RdR∈ SO3, and the error quaternion,eT =
[

eo ev
]T

from

e=

[
q0d

qvd

]

⊗

[
q0

qv

]

=

[
eo

ev

]

The error rotation matrix betweenD-frame andB-frame
can be written asRe =

(
eo

2 +ev
Tev

)
I3 + 2evev

T − 2eoe×v .
Define the angular velocity error asωe = ω −ωd.

Using the error quaternion and angular velocity error, the
spacecraft tracking error dynamics and kinematics can be
written as

1
2

J̇ωe+Jω̇e = −ω×
e Jωe+z (6)

ė=
1
2

E(e)ωe (7)

where

E(e) =

[
−ev

T

eoI3×3 +e×v

]

=







−e1 −e2 −e3

eo −e3 e2

e3 eo −e1

−e2 e1 eo







andz=−1
2 J̇(ω +ωd)−Jω̇d−ω×

d Jω−ω×Jωd +ω×
d Jωd−

ω×
(

AgIgδ̇ +AsIwsΩ
)

−AgIgδ̈ +At

[

δ̇
]d

IwsΩ−AsIwsΩ̇. Us-
ing the error dynamic and kinematic equations, passivity
theory yields the following proposition

Proposition 1: (i.) The mappingz→ ωe is passive.
(ii.) The mappingωe → ev is passive.
Proof: (i) Define the functionV = 1

2ωT
e Jωe ≥ 0 whereJ

is the positive definite function defined previously. The
derivative along the trajectories of Eq. (6) yieldṡV =
1
2ωT

e J̇ωe+ωT
e Jω̇e = ωT

e z. Hence,
∫ T

0 ωT
e z=V(T)−V(0)≥

−V(0) where T ≥ 0. Thus, the system with inputz and
outputωe is passive. (ii) [2][6] Given the following from Eq.
(7), ė0 = −1

2ωT
e ev. Hence,

∫ T
0 ωT

e ev = 2[eo(0)−eo(T)] ≥
−4, where|eo(0)−eo(T)| ≤ 2. Thus, the system with input
ωe and outputev is passive.�

A. Feedback Passive System

From Proposition (1), Eq. (6) and Eq. (7) represent a
cascade interconnection of two passive systems. By using
feedback, the first subsystem can be made output strictly
passive. Then, closing the outer loop with the second
subsystems output can yield a feedback interconnection of a
output strictly passive and passive system. As an alternative,
the system could be designed such that the first subsystem
is passive, and the system in feedback is any strictly passive
system [6][11]. Passivity theorems state that a feedback
interconnection of a passive and strictly passive system is
globally asymptotical stable [5][7][11].

Proposition 2: Consider the system in Eq. (6) with the
feedback control lawz=−Kvωe+ν , whereKv is a positive
definite constant gain matrix. The system with inputν and
outputωe is output strictly passive.
Proof: Define the positive definite functionV = 1

2ωT
e Jωe.

The derivative along the trajectories is given bẏV =
−ωT

e Kvωe + ωT
e ν . Let Kv = kvI3×3, where kv > 0 is a

scalar. The integral of the supply rate8, ωT
e ν , is

∫ T
0 ωT

e ν ≥
−V(0)+kv

∫ T
0 ‖ωe‖

2,T ≥ 0. Thus, the system with inputν
and outputωe is output strictly passive (OSP) [7].�

Considering the output strictly passive system as in
Fig. 2, the quaternion error is used to form a feedback
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Fig. 2. Output Strictly Passive System.

connection of an output strictly passive and passive system.
This will globally asymptotically stabilize the system to the
origin, e.g.ωe = 0. See Fig. 3.

Theorem 1:The linear control lawz = −kvωe − kpev,
wherekp > 0 andkv > 0, globally asymptotically stabilizes
the system about the origin given by the spacecraft tracking
error dynamics and kinematics.
Proof: The proof is similar to that used by Tsiotras [12]
with Rodrigues parameters. Consider a Lyapunov function
that is the sum of the individual storage functions for the
spacecraft tracking error dynamics and kinematics. This
yields the positive definite function

V(ωe,e) =
1
2

ωT
e Jωe+kp

[

(eo−1)2 +ev
Tev

]

> 0

wherekp > 0. The derivative along the trajectories is

V̇(ωe,e) = ωT
e z+kpωT

e ev = −kv‖ωe‖
2 ≤ 0

This gives Lyapunov stability. LetΛ be the largest invariant
set in Ψ = {(e,ωe) |V̇ = 0} = {(e,ωe) |ωe = 0}. Since Λ
is invariant, this implies thatω̇e = 0 on Λ. From the
linear control law and Eq. (6),̇ωe = 0 implies kpev = 0 or
ev = 0. Hence,Λ = {(e,ωe) |ωe = 0,ev = 0}. By LaSalle’s
Invariance principle, all trajectories converge to the invariant
set,Λ; thus, the linear control law asymptotically stabilizes
the system in the(e,ωe) space. In addition, sinceV(ωe,e)
is radially unbounded, the closed-loop system trajectories
are globally asymptotically stable [5].

��ė
kp ev

OSP System-- ν0
-

kp
∫ 1

2E(e)

-ωe

6

i

Passive fromωe to ev

Fig. 3. Feedback Interconnection of an Output Strictly Passive System
and Passive System.

B. Required Control Torque

The control lawz= −kvωe− kpev and Eq. (6) give the
equation

Bδ̈ +Cδ̇ +EΩ̇ = Lr

where

B = AgIg

C = ω×AgIg +
1
2

At (It − Is)
[
AT

s (ω +ωd)
]d

+
1
2

As(It − Is)
[
AT

t (ω +ωd)
]d

−At Iws[Ω]d

E = AsIws

The required control torque for attitude tracking,Lr , is given
by

Lr = kvωe+kpev−Jω̇d−ω×
d Jωe−ω× (Jωd +AsIwsΩ) (8)

and closely follows the nonlinear control law from Lya-
punov analysis [3][9][10][14]. In general, the feedback gain,
kv, need not be scalar but a positive definite matrix.

The gimbal acceleration term is considered small and is
ignored with control inputs given bẏδ andΩ̇. The control
inputs are chosen to satisfy the following velocity-based
steering law

Cδ̇ +EΩ̇ = Lr (9)

or in matrix form as

[
E C

]
[

Ω̇
δ̇

]

= Lr (10)

Given any required control torque,Lr , the spacecraft
will track the desired attitude given that Eq. (10) gives
a solution. Depending onN, the number of VSCMGs,
and the orientation of each VSCMG, the VSCMG cluster
may not be able to produce the required torque vector.
This constitutes a singularity. As long as the matrixD ,
[

E C
]

has full rank andN≥ 2, the range space ofD will
span 3 dimensions, and attitude tracking can be achieved.

The general solution to Eq. (10) can be expressed in terms
of the particular (Range) and homogeneous (Null) solutions.
This is given by10,12,16

[
Ω̇
δ̇

]

= WDT (
DWDT)−1

Lr +

[
Ω̇h

δ̇h

]

(11)

The weighting matrix,W ∈ R
2N×2N, is a diagonal matrix

defined asW = diag[Ws,Wg], whereWg = diag[Wgi ] has el-
ements that are constant weights for maximizing the torque-
amplification property of the CMGs, andWs = diag[Wsi ] has
weighting elements that are important for use near a CMG
singularity and are given by

Wsi = Wsci e
−µζ , i = 1, ...,N (12)

Wsci andµ are constant design parameters [9]. The variable
ζ is the minimum singular value ofD and is used to describe
proximity to a CMG singularity [3][10].

IV. POWER TRACKING

The kinetic energy of the VSCMGs’ wheels is given by
Tw = 1

2ΩT IwsΩ = 1
2 ∑N

i=1 Iwsi Ω2
i . By taking the derivative of



Tw and using the null space solution of Eq. (11), the ideal
power generated by the wheels is given by

P = ΩT IwsΩ̇h = Pout =
[

ΩT Iws 0
]
·

[
Ω̇h

δ̇h

]

(13)

The homogeneous solution of Eqn. 11 is
[

Ω̇h

δ̇h

]

=
(

I −WDT (
DWDT)−1

D
)

︸ ︷︷ ︸

Π⊥

[
αarb

βarb

]

(14)

where αarb ∈ R
N and βarb ∈ R

N are arbitrary vectors. By
substituting Eq. (14) into Eq. (13), the power output can be
written as

P = ΩT IwsΦαarb−ΩT IwsΨβarb (15)

Sinceαarb andβarb can be chosen arbitrarily, this motivates
the following definition.

Definition: Given Eq. (15), apower singularityis defined
when the axes configuration and wheel speeds satisfy both
of the following conditions:

i. ΩT Iws

(

IN×N −WsE
T (

EWsE
T +CWgC

T)−1
E

)

︸ ︷︷ ︸

Φ

= 0

ii. ΩT IwsWsE
T (

EWsE
T +CWgC

T)−1
C

︸ ︷︷ ︸

Ψ

= 0

When a power singularity is encountered, the VSCMGs
can not achieve the required power output. It is suffi-
cient that C have rank 3, or equivalently, not being at
a CMG singularity. In this case, no power singularity
is encountered via the following argument:Assume not:
C has rank 3 and the system is at a power singular-
ity. Then ΩT Iws = ΩT IwsWsET

(
EWsET +CWgCT

)−1
E 6=

0 for all non-zero wheel speeds. This implies that
ΩT IwsWsET

(
EWsET +CWgCT

)−1
6= 0 is a non-zero 3x1

column vector, so (ii.) is never satisfied sinceC is rank
3. Therefore,C having rank 3 is a sufficient condition for
power singularity avoidance.

The open loop solution to the power tracking problem in
the null space of Eq. (10) is given by
[

Ω̇h

δ̇h

]

= Π⊥

[
IwsΩ

0

](
[

ΩT Iws 0
]

Π⊥

[
IwsΩ

0

])−1

Pn

(16)
wherePn = P−

[
ΩT Iws 0

]
·WDT

(
DWDT

)−1
Lr ∈ R.

Equations (11) and (16) complete the simultaneous at-
titude and power tracking solution of the velocity-based
steering equation, Eq. (10).

V. NUMERICAL EXAMPLES

Numerical simulations were performed using the de-
scribed control algorithms for simultaneous attitude control
and power tracking. The gimbal axes of four VSCMGs are
aligned to create a pyramid configuration with respect to
the body. The reference trajectory used in the numerical
simulation is a near-polar LEO that provides both required
sun and ground tracking, similar to that of an Iridium 25778

TABLE I

SIMULATION PARAMETERS

Parameter Value

N 4
θ 54.75 deg

ω(0)
[

0 0 0
]

rad/sec
q(0)

[
0.5 0.5 0.5 0.5

]

δ (0)
[ π

4 − π
4 − π

4
π
4

]
rad

δ̇ (0)
[

0 0 0 0
]

rad/sec
Ω(0)

[
50000 45000 40000 37000

]
rpm

Iwi diag
[

0.7 0.2 0.2
]

Kg m2

Iwi diag
[

0.1 0.1 0.1
]

Kg m2

kv 700
kp 35
µ 1e−4

Wsi 40
Wgi 1

satellite. Specifically, the symmetric axis of the spacecraft
must track Albuquerque, New Mexico, while rotating about
the symmetric axis to keep the solar panels perpendicular
to the sun. In addition, the spacecraft must follow a given
power profile. Table 1. contains the configuration data. The
results show the spacecraft is tracking the desired trajectory
while maintaining the required power profile.
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VI. CONCLUSIONS

In this paper, the attitude control problem using variable
speed control moment gyroscopes was developed using the
system energy and passivity. The resulting control algorithm
closely follows previous results using Lyapunov analysis.
By using the null space and avoiding singularities, power
tracking can be achieved without exerting any torques on the
spacecraft. A numerical simulation is given to illustrate the
control method validity. Future work will extend the ideal
power tracking approach to a closed form methodology that
compensates for power losses and system disturbances.
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