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Abstract— Recently developed control techniques extend the
traditional H∞ framework to periodic linear time-varying
systems. This paper applies these techniques to the problem
of asymptotic stabilization of an unstable orbit. The problem
of stabilization of a spacecraft placed in an unstable orbit
about the interior Sun-Earth libration point is considered and
it is shown that the control effort required by this method is
reasonable and can be provided by a low-thrust propulsion
system such as an ion engine.

I. INTRODUCTION

The circular restricted three body problem describes the
motion of a small particle under the gravitational influence
of two massive bodies. This simplified version of the
general three-body problem has been used to design mis-
sions for spacecraft in the Sun-Earth system. The restricted
three-body problem has five libration points. In a synodic
coordinate system, chosen such that the two massive bodies
are fixed in the coordinate system, the libration points have
the property that a test particle placed at a Libration point
will theoretically remain there forever.

The vicinity of the interior libration point (L1) of the
Sun-Earth system is an ideal place for a solar observatory
as the Sun’s surface is always available for observation and
the Earth is near enough for good communication. However
the exact L1 point is unsuitable as radio signals from the
satellite would disappear in solar noise. Fortunately there
are periodic orbits, known as Halo orbits, in the vicinity of
this point which would be suitable. These periodic orbits
are however unstable. One of the first detailed study of this
problem was done by the Barcelona group [1] and [2] for the
ISEE-3 (International Sun-Earth Explorers) mission. This
paper addresses the issue of asymptotic stabilization of a
spacecraft relative to these unstable periodic orbits.

The problem of station-keeping for satellites in unstable
orbits is not a new one [3]–[5]. Though typically approached
from a dynamical systems perspective [6], Scheeres, Hsiao
and Vinh [7] recently phrased the station-keeping problem
using trajectory control and proposed a strategy in which the
control law, by creating additional center manifolds where
the spacecraft could be flown achieves Lyapunov stability
about the unstable orbit. In a similar vein, the problem
is viewed in this paper from a controls perspective and
formulated in terms of asymptotic stabilization of a periodic
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linear time-varying (LTV) system. The approach here is to
use recently developed tools that extend the H∞ control
synthesis techniques to LTV systems [8].

The application of these tools results in a controller
that stabilizes the nonlinear system in the presence of
disturbances. The thrust required by the control law is
reasonable and can be implemented using a low-thrust
propulsion device such as an ion engine. The advantage of
the proposed methodology is the robust performance of the
controller and also the considerable flexibility of the current
formulation. The tools used in this paper can be extended
to include the effects of the invariant manifolds in order
to design a controller with greater fuel efficiency. Another
advantage is the considerable ease with which the problem
of designing controllers for Formation Flight of multiple
spacecraft can be addressed. This is important as formation
flight has been identified by NASA as key technology for
the future scientific missions [9].

II. MODEL OF MOTION AND PROBLEM STATEMENT

A. Lagrangian Formulation

The equations of motion for the circular restricted three-
body problem were adopted from the work done by
Richardson [10], [11]. Here the Lagrangian for the system
(Fig. 1) is constructed by considering the influence of
the Earth and the Sun on the spacecraft as third-body
perturbations.
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Fig. 1. Libration Point Geometry

L =
1

2
( ˙̄ρ· ˙̄ρ)+GE

[ 1

|r̄E − ρ̄|
−

r̄E .ρ̄

|r̄E |3
]
+GS

[ 1

|r̄S − ρ̄|
−

r̄S .ρ̄

|r̄S |3
]
,

(1)



where ρ̄ is the position vector of the satellite relative to the
libration point, ρ̄ = x1i + x2j + x3k. The quantities GE
and GS are gravitation constants of the Earth and the Sun
respectively and the vectors r̄E and r̄S are position vectors
of the Earth and Sun with respect to the libration point.
This formulation allows the expression of the Lagrangian
as a summation of Legendre polynomials, which provides
computational facility when considering higher-order terms.
The equations of motion through third order are given by
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2
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+ ∆x3 + O(4). (2)

The various parameters are tabulated in the Appendix.
Distance and time have been renormalized so that higher-

order terms in the Legendre polynomial expansion fall
off in a regular manner. This allows an estimate of the
error, introduced by ignoring the higher-order terms, to be
obtained. For further details refer to [10], [11].

B. Periodic Solution

The periodic nature of the solution can be seen by
considering the linearized form of the equations of motion.
The frequencies of oscillation in the in-plane and out-of-
plane directions would not, in general, be equal. However,
if the amplitudes of the in-plane and out-of-plane motions
are sufficiently large then the nonlinear terms produce
eigenfrequencies that are equal. This results in the so-called
Halo orbit. The equation of the Halo orbit in physical space
through the third-order is given by,

γ1(t) = a21A
2
x + a22A

2
z + (a23A

2
x − a24A

2
z) cos(2λt)

− Ax cos(λt) + (a31A
3
x − a32AxA2

z) cos(3λt),

γ2(t) = KAx sin(λt) + (b21A
2
x − b22A

2
z) sin(2λt)

+ (b31A
3
x − b32AxA2

z) sin(3λt),

γ3(t) = Az cos(λt) + d21AxAz(cos(2λt − 3)

+(d32AzA
2
x − d31A

3
z) cos(3λt), (3)

where γ1(t), γ2(t) and γ3(t) are the coordinates along
the x1, x2 and x3 axes respectively. Let Γ(t) denote
the Halo periodic orbit in phase-space, i.e. Γ(t) =
[γ1(t), γ̇1(t), γ2(t), γ̇2(t), γ3(t), γ̇3(t)], also Γ(T + t) =
Γ(t), where T is the period of the orbit.

A family of periodic orbits exist and the periodic orbit
proposed for the ISEE-3 mission was chosen for this
work [10]. The values of the various constants, for this
periodic orbit, are tabulated in the Appendix. For further
details regarding how this third-order periodic solution was
obtained refer [10], [11] and the references therein.

C. Problem Statement

The problem that is solved here is that of asymptotically
stabilizing the motion of a space-craft of mass 1000kg,
whose dynamics are governed by (2), about Γ(t), by the
application of thrust along the three directions: x1,x2 and
x3.

III. ‘H∞ SYNTHESIS’: PERIODIC LTV SYSTEMS

Techniques recently developed by Dullerud and Lall,
introduced in [12] for the analysis and control of periodic
LTV systems, were used to design a controller for the
system. The usual discrete-time state-space description of
an LTV system is given by

xk+1 = Akxk + Bkuk

yk = Ckxk + Dkuk, (4)

where xk is the state of the system, uk is the control input,
yk is the sensor measurement, and Ak, Bk, Ck and Dk

are time-varying matrices that capture the dynamics of the
system.

Consider an operator A, defined in the following block-
diagonal form,




A0 0
A1

A2

0
. . .


 .

Similar definitions can be made for B, C and D. Also define
x̃ = (x0, x1, x2, . . .) and with similar definitions for u and
y. Now, the shift-operator is introduced as,

(Zx̃) = (0, x0, x1, x2 · · · ). (5)

It can be seen that an equivalent representation of the system
(4) can be made in terms of block-diagonal operators.

x̃ = ZAx̃ + ZBũ

z̃ = Cx̃ + Dũ (6)

This formulations leads to an operator-based description
of the system and a function, called the system function,
which has many properties analogous to those of transfer
functions for LTI systems, such as the induced norm be-
ing the maximum of a matrix norm over frequency. This
framework thus allows techniques formerly restricted to LTI
systems to be applied to LTV systems.

In particular, the traditional H∞ analysis and synthesis
problem for LTI systems can now be formulated for LTV
systems. The basic set-up for control design is depicted in
Fig. 2. G is the LTV system to be controlled, while K is the
controller to be designed. The variables w are exogenous
signals which consist of disturbances and tracking signals,
z are the error signals that must be kept small, y are the
sensor signals, while u are the control signals.
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Fig. 2. Feedback interconnection

Let the system G be defined by the following discrete
state space equations:

xk+1 = Akxk + B1kwk + B2kuk,

zk = C1kxk + D11kwk + D12kuk,

yk = C2kxk + D21kwk. (7)

A controller K (a relation between the sensor signals y and
the control variables u) is to be designed, of the form

xK
k+1 = AK

k xK
k + BK

k yk,

uk = CK
k xK

k + DK
k yk, (8)

such that the closed loop system is stable and the map from
w to z is minimized. A closed-loop realization of the system
can be written as

xL
k+1 = AL

k xL
k + BL

k wk,

zk = CL
k xL

k + DL
k wk, (9)

where xL
k = [xk, xK

k ]T , has states of both G and K, and
all the matrices are of appropriate dimensions. Equation
(9) is in a form similar to (4), and once again using the
shift-operator the system can be rewritten in an operator
framework. Now following the approach detailed in [8],
[12] the problem of determining a stabilizing controller K
that minimizes the w → z norm can be cast in terms of a
feasibility condition for linear operator inequalities.

The important difference to note here with respect to the
standard formulation is that while the H∞ control problem
for LTI systems is stated using linear matrix inequalities, for
LTV systems the results are in the form of linear operator
inequalities. The problem therefore is typically infinite-
dimensional. However, for the case of periodic LTV systems
the repetitive structure of the block diagonal operators leads
to a solution in the form of linear matrix inequalities, which
can be solved by traditional means.

IV. CONTROL PROBLEM FORMULATION

To obtain the equations of motion in a form suitable
for controller synthesis, the nonlinear equations of motion
(2) are first linearized about the periodic orbit and then
subsequently discretized. Consider the state of the system
to be in the form x = [x1, ẋ1,x2, ẋ2,x3, ẋ3]T . Let X(t) =
Γ(t) and x = X + δx, where δx is assumed to be ‘small’

relative to the state X . Denote the equations of motion (2)
compactly in the form Ẋ = F (X). Then,

δẋ = ẋ − Ẋ (10)

δẋ = F (X + δx) − F (X) (11)

δẋ = F (X) +
∂F

∂X

∣∣∣
Γ(t)

δx + . . . − F (X) (12)

δẋ ∼ A(t)δx (13)

A(t) =
∂F

∂X

∣∣∣
Γ(t)

(14)

A(t + T ) = A(t). (15)

Rewriting δx by x for notational comfort the equations of
motion for the system, linearized about the nominal Halo
orbit, are obtained.

ẋ = A(t)x. (16)

The above equation governs the evolution of the system
in the absence of control. In the presence of control (u)
which is applied by means of three orthogonal thrusters
and unmodeled gravitational forces (w) which act as distur-
bances, the system equation for deviations about the Halo
orbit is given by,

ẋ = A(t)x + Buu + Bww, (17)

where u and w are three-dimensional column vectors and

Bu =




0 0 0
1/M 0 0

0 0 0
0 1/M 0
0 0 0
0 0 1/M


 , (18)

where M is the mass of the spacecraft in kg.
To determine the elements of Bw attention is once again

turned to the celestial mechanics aspect of the problem
and the assumptions and approximations made while de-
termining the equations of motion. The most important
perturbative effects are due to the eccentric nature of the
Earth’s orbit and the gravitational force of the moon, whose
magnitudes are of third and fourth order respectively [10].
Perturbations due to forces from other planets are several
orders of magnitude smaller. Solar radiation, another force
not considered in the modeling, will only cause the locations
of the libration points and the Halo orbits to move outwards,
and as such can be ignored for present purposes.

Simple calculations show that the largest perturbative
force per unit mass of the spacecraft due to the eccentric
nature of the Earth’s orbit approximately is given by

|wE | = GMEarthM |(
1

|~rE |2
−

1

|~re|2
)|, (19)

where ~re is the position vector of the Earth at pericenter
from the Libration point L1). This force is less than about
0.6M normalized force units. To design a conservative
controller the disturbing forces are taken to be of unit
magnitude times the spacecraft mass in the normalized



coordinates. Therefore, Bw = Bu. As the perturbations due
to Earth’s eccentric orbit are essentially of the order of once
every year it would be ideal to incorporate a low-pass filter
in our plant design. However this increases the order of the
plant and therefore the order of the controller resulting in
substantially longer computation times. Therefore a conser-
vative controller is designed without the filter.

For deep space missions fuel efficiency is an important
concern. In this regard ion engines have proven to be
ten time more fuel efficient than other on-board chemi-
cal thrusters. A typical Xenon ion engine at full throttle
provides a thrust of approximately 90mN [13] with a life-
time of 10,000 hours, making it an ideal choice for a Halo
mission. It is therefore important to design a controller
which will satisfactorily perform the mission while at the
same time require thrust that is less than the maximum
thrust that can be provided by the ion engine. Ion engines
can be modeled quite realistically as first-order systems,
but for the present purposes, as the time constant for the
engines is several orders of magnitude smaller than the
periods over which constant thrust will be maintained, it will
be assumed that commanded thrust values can be reached
instantaneously.

The parameter t = [0, T ] is now discretized for one
period and indexed by k = 0 · · ·N − 1 such that the time
interval between two successive points on the periodic orbit
is given by ∆T = T/N . The continuous-time equation of
motion about the point indexed by k is then given by

ẋ = A(k∆T )x + Buu + Bww, (20)

Each of these N continuous-time linear equations are con-
verted into N discrete-time equations with a time-step δT
using a zero-order hold. The discrete-time equation at the
index k on the periodic orbit is then given by

xn+1 = Φkxn + Γu,kun + Γw,kwn, (21)

Also,
Φk = eδTA(k∆T ), (22)

Γu,k =

∫ δT

0

eτA(k∆T )dτBu, (23)

Γw,k =

∫ δT

0

eτA(k∆T )dτBw. (24)

It is important to note that with a choice of δT = ∆T , i.e
if the time-step δT chosen for converting the N continuous-
time equations into discrete-time equations is the same
as the time-step ∆T chosen for the discretization of the
periodic orbit, one can obtain the discrete-time state space
representation of the periodic system in a form similar to
(7). With this choice for δT the system matrices from (21)
can be mapped to (7).

As the state of the plant is to be minimized so as to be
‘close’ to the nominal Halo orbit, while at the same time
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Fig. 3. Simulation of the controller implemented on the non-linear system.
The dashed line indicates the controlled trajectory, the continuous line
indicates the nominal Halo orbit.

penalizing control effort, the following choices are made
for the other matrices in (7),

C1k =

[
I6,6

03,6

]
D11k =

[
06,3

I3,3

]
D12k =

[
09,3

]
.

(25)
It is assumed for the present purposes that the sensor
measurements are not corrupted by noise. Also the time
taken to obtain positional information using ground-based
antennas such as the Deep Space network is of the order
of a few minutes which is small compared to the dynamics
of the open-loop system and shall be ignored. Therefore
designing a control system with a full state feedback C2k

is chosen to be the identity matrix, I6,6 with D21k set to
zero. The periodic orbit was discretized at twenty points
along the orbit, i.e. N = 20.

V. CONTROLLER SYNTHESIS AND NON-LINEAR
SIMULATION RESULTS

The LTV Toolbox developed by Dullerud and Lall [12]
was used for control design and analysis. A controller which
resulted in a stable closed loop system for the linearized
system was designed and the resulting worst-case gain in
the L2 sense from input to output (w to z) was found to be
1.4550.

Fig. 3 shows a plot of the simulated trajectory of the
non-linear system (2) under the application of the H∞

controller obtained from the Toolbox. The starting point
for the simulation is on the Halo orbit. The system is also
simulated in the absence of any disturbances.

Fig. 4 shows a plot of the control effort required to
asymptotically stabilize a spacecraft with a mass of 1000kg.
The effort is plotted for several periods to emphasize
its nearly periodic nature, which is to be expected. The
maximum force required is ≈ 15mN , while the average
force required is about 7mN , 2mN and 0.2mN along the
three axes: x1,x2 and x3. The maximum thrust required
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Fig. 4. Plot of the control effort required in N to control a spacecraft for
3 orbits.

is less than 90mN , which is the maximum that can be
provided by current commercially available ionic engines.
With the fuel efficiency associated with ionic engines the
fuel costs are seen to be reasonable.

Fig. 5 shows a plot of the trajectory when the controller
is implemented on the non-linear system while it is being
subject to a disturbance of L2 norm of about unit magnitude.
As can be seen, the controller performs remarkably well for
the non-linear system even in the presence of disturbance.
The thrust required in this case (Fig. 6) is once again seen to
be reasonable with the maximum required thrust ≈ 20mN .
It is interesting to note though that in the presence of
disturbances the controller stabilizes the spacecraft about
a different periodic orbit that is displaced from the initial
Halo orbit. The significance of this observation is being
investigated further by the authors.

The controller was also seen to stabilize the system
when the starting point was substantially off the Halo
orbit. The controller obtained is thus seen to provide robust
performance in the face of deviation from ideal initial
conditions and also in the presence of disturbances.

A post-fact Floquet analysis of the closed-loop system
was done to determine stability. The stability of periodic
systems can be determined by computing the eigenvalues
of the Monodromy matrix, M = Φ(t0 + T, t0), where Φ
is the state transition matrix of the closed-loop system. A
periodic system is stable when the magnitude of all the
complex eigenvalues of the Monodromy matrix is less than
one. For the controlled system of the spacecraft about the
Halo orbit, the eigenvalues of the Monodromy matrix are
all less than one and the system is stable.

VI. DIRECTIONS FOR FUTURE WORK

One promising extension of the current formulation of
the H∞ framework for LTV systems would be to take into
account the local stable and unstable manifolds and penalize
the elements of the state differently at different times.
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Fig. 5. Simulation of the controller implemented on the non-linear system
with a disturbance of L2 norm equal to one. The dashed line indicates the
controlled trajectory, the continuous line indicates the nominal Halo orbit.
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Essentially the output of the system z would be weighted
with a time varying matrix constructed by using the local
invariant manifolds. It is hoped that with this framework
the control effort would be utilized more effectively.

Another extension of the work is to consider the problem
of Formation Flight in the Halo orbit. Plans for future
space observatories include interferometric imagers with
the spacecraft separated by thousands of kilometers. The
Halo orbits with their relatively tame instability would
serve as ideal locations for these observatories. The method
employed in this paper lends itself rather well to incorpo-
rating multiple spacecrafts in the system and to designing a
stabilizing controller for such a constellation of spacecraft.
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APPENDIX

Values of the various constants in (2) and (3) calculated
for the interior libration point of the Sun-Earth system.

a21 2.092695581 ∗ 100 a22 2.482976703.10−1

a23 −9.059647954 ∗ 10−1 a24 −1.044641164 ∗ 10−1

a31 7.938201951 ∗ 10−1 a32 8.268538529 ∗ 10−3

b21 −4.924458751 ∗ 10−1 b22 6.074646717 ∗ 10−2

b31 8.857007762 ∗ 10−1 b32 2.301982738 ∗ 10−2

d21 −3.468654605 ∗ 10−1 d31 1.904387005 ∗ 10−2

d32 3.980954252 ∗ 10−1 c2 4.06107 ∗ 100

c3 3.0201 ∗ 100 c4 3.03054 ∗ 100

K 3.22927 ∗ 100 ω 9.85050176 ∗ 10−1

λ 2.086453455 ∗ 100 ∆ 2.9221445425 ∗ 10−1

Az 110, 000 (km) Ax 206, 000 (km)
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[2] G. Gómez, A. Jorba, C. Simó, and J. Masdemont, Dynamics and
Mission Design Near Libration Points Vol.III Advanced Method For
Collinear Points. New Jersey: World Scientific, 2001.
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