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Abstract— This paper deals with problems of stability analysis
of feedback and cascade interconnection of dissipative nonlinear
systems. The purpose is to establish stability of systems having
more general and stronger nonlinearity than systems considered
by classical small-gain theorems and modern stability criteria such
as the ISS small-gain theorem. This paper employs a unique idea
of “state-dependent scaling of supply rates” to achieve the goal.
Novel techniques to manipulate scaling functions are developed,
and they play a key role in establishing stability for broader classes
of systems. One of important results is a small-gain theorem for
feedback interconnection of integral Input-to-State Stable(iISS)
systems. The results not only demonstrate applicability to general
systems, but also substantiate the effectiveness and usefulness of
the state-dependent scaling in obtaining solutions successfully for
classes of systems broader than Input-to-State Stable(ISS) systems.

I. I NTRODUCTION

Recently, a number of stability problems of interconnected
nonlinear dissipative systems have been formulated via state-
dependent scaling in [2], [3], [5]. Systems to which the state-
dependent scaling framework is applicable are not limited to
finite L2-gain systems, passive systems, sector nonlinearities and
ISS(Input-to-State Stable) systems. The state-dependent scaling
not only enables us to assess stability, but also gives us Lyapunov
functions establishing the stability of interconnected systems ex-
plicitly. Classical stability criteria for systems with mild nonlin-
earities such as finiteLp-gain systems, passive systems and Lur’e
systems can be extracted exactly from a fundamental type of state-
dependent scaling criterion as special cases[5]. More importantly,
it has been shown in [4] that the state-dependent scaling criterion
covers the ISS small-gain theorem[6], [10] for interconnection of
ISS systems. The study has also revealed that state-dependence of
scaling is vital to the establishment of stability for systems whose
nonlinearity is stronger than classical classes of mild nonlinear
systems. The framework of state-dependent scaling of supply rates
is applicable to nonlinear systems whose nonlinearity disagrees
with ISS. State-dependent scaling criteria prove interconnected
systems stable when there exist scaling functions that fulfill certain
requirements. In order to make the criteria more useful in view
of implementation, it is desirable to develop a systematic way to
find appropriate scaling functions explicitly for systems which are
broader and more diverse than ISS systems.

The class of ISS systems has been extensively investigated
and has been playing a important role in the recent literature of
nonlinear control theory[8], [7], [1]. For instance, the fact that
cascades of ISS systems are ISS is widely used in stabilization.
The ISS small-gain theorem is also a popular tool to establish
stability of feedback interconnection of ISS systems. In contrast,
the concept of integral ISS(iISS) has not yet been fully exploited
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Fig. 1. Feedback interconnected systemΣ

in analysis and design although the property of iISS by itself
has been investigated deeply[9]. The iISS captures a important
characteristic essentially nonlinear systems often have[9], and
there are many practical systems which are iISS, but not ISS. There
are, however, still few tools of making full use of the iISS property
in systems analysis and design. For instance, stability criteria
similar to the ISS small-gain theorem have not been developed
for interconnection involving iISS systems so far. Extension of
the ISS small-gain condition to iISS systems is anticipated.

The purposes of this paper are

• to demonstrate that the state-dependent scaling leads us to
stability conditions for various classes of nonlinear intercon-
nected systems;

• to propose small-gain theorems for interconnection involving
iISS systems;

• to provide new techniques to manipulate scaling functions in
state-dependent scaling criteria.

To the author’s knowledge, the result of small-gain theorems
involving iISS systems is the first of its kind. This paper addresses
issues beyond universal formal applicability of the state-dependent
scaling and unification of existing stability criteria. By deriving
several new stability criteria for iISS systems from a general form
of state-dependent scaling criterion, this paper demonstrates that
the state-dependent scaling theory is truly effective in establishing
stability for nonlinear systems which are much broader than
classical nonlinear systems and ISS systems.

II. STATE-DEPENDENT SCALING CRITERION FOR STABILITY

This section briefly reviews the state-dependent scaling criterion
for stability proposed in [5]. Consider the interconnected system
Σ shown in Fig.1. Suppose that the subsystems are described by

Σ1 : ẋ1 = f1(t,x1,u1, r1) (1)

Σ2 : ẋ2 = f2(t,x2,u2, r2) (2)

These two systems are connected each other throughu1 = x2 and
u2 = x1. For eachi = 1,2, assume thatfi(t,0,0,0) = 0 holds for
all t ∈ [t0,∞), t0 ∈ R+ := [0,∞), and fi(t,xi ,ui , r i) is piecewise
continuous int, and locally Lipschitz in the other arguments.
The state vector of the interconnected systemΣ is denoted by
x = [xT

1 ,xT
2 ]T ∈ Rn. The exogenous input ofΣ is denoted by

r = [rT
1 , rT

2 ]T ∈Rnr . In this section, for eachi = 1,2, it is supposed
that there exists aC1 functionVi(t,xi) such that

α i(|xi |)≤Vi(t,xi)≤ ᾱi(|xi |), ∀xi ∈ Rni , t ∈ R+ (3)
∂Vi

∂ t
+

∂Vi

∂xi
fi(t,xi ,ui , r i)≤ρi(xi ,ui , r i)

, ∀xi ∈Rni ,ui ∈Rnui , r i ∈Rnri , t∈R+ (4)



are satisfied withα i , ᾱi ∈ K∞, and a continuous function
ρi(xi ,ui , r i) fulfilling ρi(0,0,0) = 0. The functionVi(t,xi) is called
the storage function, andρi(xi ,ui , r i) is called the supply rate.
A system furnished with the pair ofVi and ρi is said to be
dissipative[11]. The next theorem is essentially the same as a result
proposed in [5].

Theorem 1:Suppose that there exist continuous functionsλi :
R+ → R, i = 1,2 such that

λi(s) > 0 ∀s∈ (0,∞) (5)

lim
s→0+

λi(s) < ∞,

∫ ∞

1
λi(s)ds= ∞ (6)

hold, and

λ1(V1(t,x1))ρ1(x1,u1, r1)+λ2(V2(t,x2))ρ2(x2,u2, r2)

≤ ρe(x, r), ∀x∈Rn, r∈Rnr , t∈R+ (7)

is satisfied for a continuous functionρe : Rn×Rnr → R. If

ρe(x,0) < 0 ,∀x∈ Rn \{0} (8)

holds, the equilibriumx = 0 of the interconnected systemΣ is
globally uniformly asymptotically stable. Furthermore, there exist
a C1 functionVcl(t,x) andαcl , ᾱcl ∈K∞ such that

αcl(|x|)≤Vcl(t,x)≤ ᾱcl(|x|), ∀x∈ Rn, t ∈ R+ (9)

is satisfied and
dVcl

dt
≤ ρe(x, r), ∀x∈Rn, r∈Rnr , t∈R+ (10)

holds along the trajectories of the systemΣ.
Note thatlims→0+ λi(s) < ∞ in (6) is redundant mathematically

since eachλi is a continuous function onR+ = [0,∞). The explicit
statement may be helpful to direct the readers’ attention to it. If
we chooseρe(x, r) =−|x|2 + γ2|r|2, the property (10) becomes

∫ T
t0 γ2|r|2dt ≥ ∫ T

t0 |x|2dt, ∀T ∈ [t0,∞)

for x(t0) = 0, which represents thatL2-gain betweenr and x is
less than or equal toγ .

We next suppose thatΣ1 in Fig.1 is static and described by

Σ1 : z1 = h1(t,u1, r1) (11)

Two systemsΣ1 andΣ2 are connected each other throughu1 = x2
andu2 = z1. Assume thath1(t,0,0) = 0 holds for all t ∈R+, and
h1(t,u1, r1) is piecewise continuous with respect tot and locally
Lipschitz with respect tou1 and r i . It is also assumed that

ρ1(z1,u1, r1)≥ 0, ∀u1∈Rnu1, r1∈Rnr1, t∈R+ (12)

holds for a continuous functionρ1(z1,u1, r1) satisfying
ρ1(0,0,0) = 0. The state vector ofΣ is x = x2 ∈ Rn2. The
exogenous input ofΣ is r = [rT

1 , rT
2 ]T ∈ Rnr . The next theorem is

a slight extention of a result presented in [5].
Theorem 2:Suppose that there exist continuous functions

λ1,λ2,λ3,ξ1 : R+ → R such that

λ1(s)≥ 0, λ3(s) > 0, ξ1(s)≥ 0, ∀s∈ R+ (13)

λ2(s) > 0, ∀s∈(0,∞), lim
s→0+

λ2(s)<∞,

∫ ∞

1
λ2(s)ds=∞ (14)

hold, and

λ1(|z1|)ξ1(ρ1(z1,u1, r1))

+λ2(V2(t,x2))λ3(V2(t,x2))ρ2(x2,u2, r2)

≤ λ3(V2(t,x2))ρe(x2, r), ∀x2∈Rn2, r∈Rnr , t∈R+(15)

is satisfied for a continuous functionρe : Rn2 ×Rnr → R. If

ρe(x2,0) < 0 ,∀x2 ∈ Rn2 \{0} (16)

holds, the equilibriumx2 = 0 of the interconnected systemΣ is
globally uniformly asymptotically stable. Furthermore, there exist
a C1 functionVcl(t,x2) andαcl , ᾱcl ∈K∞ such that (9) is satisfied
and (10) holds along the trajectories of the systemΣ.

The functionsλi andξ used in Theorem 1 and 2 are referred to
as the state-dependent scaling functions[5]. The scaling functions
are functions of state variables and they scale supply rates of
subsystems. The stability of the interconnection is deduced from
the sum of scaled supply rates of subsystems. The universality of
the state-dependent scaling in terms of relations with classical and
modern stability criteria are discussed in [4], [5].

III. I NTERCONNECTION OFi ISS SYSTEMS

Theorem 1 is applicable to dissipative systems admitting supply
rates in the very general form of (4). This section consider a subset
of the general dissipative systems. A systemΣi is said to be integral
input-to-state stable (iISS) with respect to input(ui , r i) and state
xi if the exists aC1 functionVi : R+×Rni → R+ such that

α i(|xi |)≤Vi(t,xi)≤ ᾱi(|xi |), ∀xi ∈ Rni , t ∈ R+ (17)
∂Vi

∂ t
+

∂Vi

∂xi
fi(t,xi ,ui , r i)≤−αi(|xi |)+σi(|ui |)+σri (|r i |) (18)

∀xi ∈Rni ,ui ∈Rnui , r i ∈Rnri , t∈R+

are satisfied for a positive definite functionαi , classK functions
σi andσri , and a pair of classK∞ functionsα i and ᾱi [9]. In the
single input case, the second inputr i is null, and the functionσri
vanishes. The functionVi(t,xi) is called theC1 iISS Lyapunov
function. If αi is a classK∞ function, the systemΣi is said
to be input-to-state stable(ISS) with respect to input(ui , r i) and
statexi [8]. Trajectory-based definition of ISS and iISS may be
seen more often than the Lyapunov-based definition this paper
adopts. The two types of definition is equivalent in the sense that
the existence of ISS (iISS) Lyapunov functions is necessary and
sufficient for ISS (iISS, respectively). It is clear from the definition
that ISS implies iISS. The converse is not true. Therefore, stability
of interconnection of iISS systems should requires more restrictive
conditions than that of ISS systems. In order to exclude some of
ISS systems from iISS systems, the following lemma is useful.

Lemma 1:Suppose thatΣi is iISS with respect to input(ui , r i)
and statexi , and (17) and (18) are satisfied accordingly. If

liminf
s→∞

αi(s)=∞ or liminf
s→∞

αi(s)> lim
s→∞

{σi(s)+σri (s)} (19)

is satisfied, the systemΣi is ISS with respect to input(ui , r i) and
statexi .

We now seek an explicit condition under which there exist
scaling functionsλ1 and λ2 fulfilling (5)-(6) and (7) to establish
stability of the interconnected systemΣ in Fig.1. One of main
results is obtained on the basis of Theorem 1 as follows.

Theorem 3:Suppose that the systemsΣ1 andΣ2 are iISS, and
(17) and (18) are satisfied accordingly. If there exist constants
c1,c2 > 0 andq > 0 such that

[σ2(α−1
1 (s))]q ≤ c1α1(ᾱ−1

1 (s)), ∀s∈ R+ (20)

c2σ1(α−1
2 (s))≤ [α2(ᾱ−1

2 (s))]q, ∀s∈ R+ (21)

c1 < c2 (22)

are satisfied, the interconnected systemΣ is iISS with respect to
input r and statex. Furthermore, ifα1 and α2 are additionally



assumed to be classK∞ functions, the interconnected systemΣ is
ISS with respect to inputr and statex.

Proof: If there exists constantsc1,c2 > 0 and0< q≤ 1 such
that (20)-(22) hold, the inequalities

[σ1(α−1
2 (s))]q̂≤ ĉ2α2(ᾱ−1

2 (s)), ĉ1σ2(α−1
1 (s))≤ [α1(ᾱ−1

1 (s))]q̂

ĉ2 < ĉ1

are satisfied witĥq= 1/q≥ 1 andĉi = c−1/q
i > 0. Therefore, it suf-

fices to prove the two cases ofq= 1 andq> 1 in (20)-(22). First,
we consider the case ofq = 1. Pick λ1 = (c1 +c2)/2 andλ2 = 1.
These positive constants clearly satisfy (5)-(6). The inequalities
in (20)-(22) guarantee thatρe(x, r) = −0.5(c2− c1){α1(|x1|) +
α2(|x2|)}+0.5(c1+c2)σr1(|r1|)+σr2(|r2|) satisfies (7)-(8). Next,
assumeq > 1. Suppose thatλ2(s) is a non-decreasing continuous
function defined onR+. Using Young’s inequality

xy≤ 1
p

∣∣∣∣
x
µ

∣∣∣∣
p

+
1
q
|µy|q ,∀x,y∈ R,

1
p

+
1
q

= 1

which holds for anyµ ∈ R\{0}, we obtain

λ2(V2(t,x2)){−α2(|x2|)+σ2(|x1|)+σr2(|r2|)}
≤ −λ2(V2(t,x2))α2(|x2|)+

1
pµ p λ2(V2(t,x2))p +

µq

q
σ2(|x1|)q

+
1

pµ p
r

λ2(V2(t,x2))p +
µq

r

q
σr2(|r2|)q (23)

for any µ ,µr > 0. Define µ̃ > 0 satisfying µ̃ < µ as follows:

1
µ̃ p =

1
µ p +

1

µ p
r

(24)

Let λ1 = d1 > 0 be a constant, and defineρe(x, r) by

ρe(x, r) =−(1−δ ) [d1α1(|x1|)+λ2(α2(|x2|))α2(|x2|)]
+d1σr1(|r1|)+

µq
r

q
σr2(|r2|)q

for 0 < δ < 1. Then, a sufficient condition for (7) is

−d1δα1(|x1|)+
µq

q
σ2(|x1|)q ≤ 0, ∀x1 ∈ Rn1 (25)

1
pµ̃ p λ2(V2(t,x2))p−δλ2(V2(t,x2))α2(|x2|)

+d1σ1(|x2|)≤ 0, ∀x2 ∈ Rn2, ∀t ∈ R+ (26)

If we setc1 = d1δq/µq, the inequality (25) is identical to

[σ2(s)]q ≤ c1α1(s), ∀s∈ R+

which is ensured by (20). The inequality (21) guarantees the
existence of a classK function α̂2 which satisfies

α̂2(s)≤ α2(s), cσ1(α−1
2 (s))≤ [α̂2(ᾱ−1

2 (s))]q, ∀s∈ R+ (27)

Sinceα̂2 is non-decreasing, the inequality (26) holds if

1
pµ̃ p λ2(s)p−δλ2(s)α̂2(ᾱ−1

2 (s))+d1σ1(α−1
2 (s))≤ 0 (28)

is satisfied. The left hand side of (28) takes the minimum value
over λ2 ∈ [0,∞) at

λ2 = µ̃ p/(p−1)[δ α̂2(ᾱ−1
2 (s))]1/(p−1) (29)

which is an increasing continuous function ofs∈R+. The mini-
mum is less than or equal to zero for alls∈R+ if and only if

d1σ1(α−1
2 (s))≤ (µ̃δ )q

q
[α̂2(ᾱ−1

2 (s))]q ∀s∈ R+

is satisfied. This inequality is identical to (21) with the choice
c2 = d1q/(δ µ̃)q. The inequality (21) also implieslims→∞ α̂2(s) >
0 sinceσ1 is a classK function. Therefore, if there exist constants
c1,c2 > 0 andq > 1 such that (20)-(22) hold, there exist constant
0 < δ < 1, µ ,µr > 0 and d1 > 0 such that the scaling function
λ2 given in (29) and the scaling constantλ1 = c1µq/(δq) fulfill
(5)-(6) and guarantee thatρe(x, r) satisfies (7)-(8). Finally, ifα1
and α2 are classK∞ functions, the definition ofρe(x, r) yields
ISS with respect to inputr and statex.

Remark 1:When the scaling functionsλ1 and λ2 are limited
to constants, the two conditions in (20) and (21) reduce to

σ2(s)≤ c1α1(s), c2σ1(s)≤ α2(s), ∀s∈ R+ (30)

Thus, state-dependence of the scaling is necessary for the intro-
duction of the free parameterq > 0 which provides us with less
conservative and more useful conditions. Note that the property
(30) is the same as the pair of (20) and (21) withq = 1 except
the small amount of difference arising froms≤ α−1

i ◦ ᾱi(s) due
to (17). The slight discrepancy is inevitable as far as we derive
trajectory-based conditions from Lyapunov-based properties.

Now, we consider cascade connection of iISS and iISS systems.
We assume thatx2 andu1 disconnected in Fig.1. The following is
obtained from Theorem 3 directly.

Theorem 4:Suppose that the systemsΣ1 andΣ2 are iISS, and
(17) and (18) are satisfied accordingly. If there exist constants
c1 > 0 andq > 0 such that

q≥ 1, [σ2(s)]q ≤ c1α1(s), ∀s∈ R+ (31)

or

q < 1, [σ2(α−1
1 (s))]q ≤ c1α1(ᾱ−1

1 (s)), ∀s∈ R+ (32)

is satisfied, the cascade ofΣ1 andΣ2 is iISS with respect to input
r and statex. Furthermore, ifα1 andα2 are additionally assumed
to be classK∞ functions, the cascade is ISS with respect to input
r and statex.

IV. I NTERCONNECTION OFi ISS AND ISS SYSTEMS

In this section, we assume that one of the systems in Fig.1 is
ISS. Consider the feedback interconnection defined withu1 = x2
andu2 = x1 shown in Fig.1. For eachi = 1,2, we suppose thatΣi
admits aC1 functionVi :R+×Rni →R+ satisfying (17) and (18)
with someα i , ᾱi ∈ K∞ and someαi ,σi ∈ K . We also assume
α1 ∈ K∞, so that Σ1 is ISS while Σ2 may be only iISS. The
purpose of this section is again to derive explicit conditions under
which there exist scaling functionsλ1 andλ2 fulfilling (5)-(6) and
(7) in Theorem 1. The following is one of main results.

Theorem 5:Suppose that the ISS systemΣ1 and the iISS system
Σ2 satisfy (17) and (18) accordingly. If there exist constantsk > 0
andc1,c2 > 1 such that

max
w∈[0,s]

[c2σ2 ◦α−1
1 ◦ ᾱ1 ◦α−1

1 ◦c1σ1(w)]k

c1σ1(w)

≤ [α2 ◦ ᾱ−1
2 ◦α−1

2 (s)]k

c1σ1(s)
, ∀s∈R+ (33)

c2σ2 ◦α−1
1 ◦ ᾱ1 ◦α−1

1 ◦c1σ1(s)≤ α2 ◦ ᾱ−1
2 ◦α2(s), ∀s∈R+ (34)

are satisfied, then the interconnected systemΣ is iISS with respect
to input r and statex. Furthermore, ifα2 is additionally assumed
to be a classK∞ function, the interconnected systemΣ is ISS with
respect to inputr and statex.

Proof: Suppose thatλ1, λ2 : R+ → R+ are non-decreasing
continuous functions which have yet to be determined. Using



constantsτ > 1, τr > 1 and τ̃ > 1 satisfying(1/τ)+(1/τr ) = 1/τ̃.
we define classK functions by

θ1(s) = ᾱ1 ◦α−1
1 ◦ τσ1(s), θr1(s) = ᾱ1 ◦α−1

1 ◦ τr σr1(s) (35)

Combining calculations for individual cases separated by
α1(|x1|) ≥ τσ1(|x2|), α1(|x1|) < τσ1(|x2|), α1(|x1|) ≥ τr σr1(|r1|)
andα1(|x1|) < τr σr1(|r1|), we obtain

λ1(V1(t,x1)){−α1(|x1|)+σ1(|x2|)+σr1(|r1|)}
≤ − τ̃−1

τ̃
λ1(V1(t,x1))α1(|x1|)+λ1(θ1(|x2|))σ1(|x2|)

+λ1(θr1(|r1|))σr1(|r1|)
Using Young’s inequality, we obtain (23) for arbitraryµ ,µr > 0
and q > 1 satisfying (1/p)+ (1/q) = 1. Define µ̃ > 0 satisfying
µ̃ < µ as in (24). Pickρe(x, r) as

ρe(x, r) =−(1−δ )
[

τ̃−1
τ̃

λ1(α1(|x1|))α1(|x1|)+

λ2(α2(|x2|))α2(|x2|)
]

+λ1(θr1(|r1|))σr1(|r1|)+
µq

r

q
σr2(|r2|)q

with 0 < δ < 1. Then, a sufficient condition for (7) is

−δ
τ̃−1

τ̃
λ1(s)α1(ᾱ−1

1 (s))+
µq

q
[σ2(α−1

1 (s))]q≤0, ∀s∈R+(36)

1
pµ̃ p λ2(s)p−δλ2(s)α2(ᾱ−1

2 (s))

+λ1(θ1(α−1
2 (s)))σ1(α−1

2 (s))≤ 0, ∀s∈ R+(37)

The inequality (36) holds if and only if

λ1(s)≥
µqτ̃[σ2(α−1

1 (s))]q

δq(τ̃−1)α1(ᾱ−1
1 (s))

, ∀s∈ R+ (38)

The left hand side of (37) takes the minimum overλ2 ∈ [0,∞) at

λ2 = µ̃ p/(p−1)[δα2(ᾱ−1
2 (s))]1/(p−1) (39)

which is an increasing continuous function ofs∈ R+ fulfilling
(5)-(6). The minimum value is

λ1(θ1(α−1
2 (s)))σ1(α−1

2 (s))− p−1
p

µ̃ p/(p−1)[δα2(ᾱ−1
2 (s))]p/(p−1)

This minimum value is less than or equal to zero for alls∈ R+
if and only if λ1 satisfies

λ1(θ1((s))≤
µ̃q

q

[δα2(ᾱ−1
2 (α2(s)))]

q

σ1(s)
, ∀s∈ R+ (40)

Defined = lims→∞ θ1(s) ∈ (0,∞]. Let θ−1
1 (·) : [0,d)→R+ denote

a continuous function such thatθ−1
1 (θ1(s)) = shold for alls∈R+.

The pair of (38) and (40) holds if and only if

µqτ̃[σ2(α−1
1 (s))]q

δq(τ̃−1)α1(ᾱ−1
1 (s))

≤ λ1(s), ∀s∈ [d,∞) (41)

µqτ̃[σ2(α−1
1 (s))]q

δq(τ̃−1)α1(ᾱ−1
1 (s))

≤ λ1(s)≤
µ̃q

q

[δα2 ◦ ᾱ−1
2 ◦α2 ◦θ−1

1 (s)]q

σ1 ◦θ−1
1 (s)

, ∀s∈ [0,d) (42)

There exists a continuous functionλ1 such that (41) and (42) are
achieved if

[νσ2 ◦α−1
1 ◦θ1(s)]q

α1 ◦ ᾱ−1
1 ◦θ1(s)

≤ [α2 ◦ ᾱ−1
2 ◦α2(s)]

q

τσ1(s)
, ∀s∈ R+ (43)

is satisfied with

ν = δ−
q+1

q
µ
µ̃

(
τ̃

(τ̃−1)τ

)1/q

The inequality (43) becomes

[c2σ2 ◦α−1
1 ◦ ᾱ1 ◦α−1

1 ◦c1σ1(s)]q

c1σ1(s)
≤ [α2 ◦ ᾱ−1

2 ◦α2(s)]
q

c1σ1(s)
, ∀s∈ R+

if we pick τ > 1 andδ > 0 as

τ = c1, δ =
(

µ
c2µ̃

) q
q+1

(
τ̃

(τ̃−1)c1

) 1
q+1

Note that the standing assumptionδ < 1 is fulfilled if and only if
(

c2µ̃
µ

)q

>
τ̃

(τ̃−1)c1
(44)

Let ε be a constant satisfyingc2>ε >1, and chooseµ ,µr so that

µ >0, µr >0,

(
µ p

r

µ p + µ p
r

)1/p

=
ε
c2

holds. For any giveñτ >1 andc1, c2>1, there existŝq such that

q̂>1,

(
c2µ̃
µ

)q̂

>
τ̃

(τ̃−1)c1

is satisfied. Defineq = max{k, q̂}> 1. Clearly, (44) holds. Due to

max
w∈[0,s]

c2σ2 ◦α−1
1 ◦ ᾱ1 ◦α−1

1 ◦c1σ1(w) ≤ α2 ◦ ᾱ−1
2 ◦α2(s)

guaranteed by (34), the assumption (33) implies that (33) still
holds even ifk is replaced byq. Thus, (43) is achieved. Indeed,

λ1(s) = max
w∈[0,s]

µqτ̃[σ2(α−1
1 (w))]q

δq(τ̃−1)α1(ᾱ−1
1 (w))

(45)

satisfies (41) and (42). The functionλ1 : R+ → R+ is non-
decreasing, so that it fulfills (5)-(6).

Remark 2:The assumption (33) can be replaced by the exis-
tence of a constantk > 0 achieving at least one of

[σ2 ◦α−1
1 (s)]k

α1 ◦ ᾱ−1
1 (s)

is non-decreasing (46)

[α2 ◦ ᾱ−1
2 (s)]k

σ1 ◦α−1
2 (s)

is non-decreasing (47)

In fact, it is easily verified that each of (46) and (47) implies (33)
under the assumption (34).

Remark 3: If we replace|xi | by Vi(xi) in (18), the functionsα i
and ᾱi vanish in all arguments of Theorem 5. For instance, the
conditions (33) and (34) are replaced by

max
w∈[0,s]

[c2σ2 ◦α−1
1 ◦c1σ1(w)]k

c1σ1(w)
≤ [α2(s)]k

c1σ1(s)
, ∀s∈R+

c2σ2 ◦α−1
1 ◦c1σ1(s)≤ α2(s), ∀s∈ R+

Here,α i and ᾱi are eliminated. This argument is applicable to all
results in this paper.

Remark 4:The conditions (20)-(22) implies (33) and (34). To
see this, suppose that (20)-(22) holds. The inequality (20) implies

[σ2 ◦α−1
1 ◦ ᾱ1 ◦α−1

1 ◦ c̃1σ1(s)]q ≤ c1c̃1σ1(s)

for arbitrary c̃1 > 0. Combining this with (21), we obtain

c̃2σ2 ◦α−1
1 ◦ ᾱ1 ◦α−1

1 ◦ c̃1σ1(s)≤α2 ◦ ᾱ−1
2 ◦α2(s), c̃2=

(
c2

c1c̃1

)1/q



Under the assumption (22), there existsc̃1 > 1 such thatc̃2 > 1
holds. Thus, we arrive at (34). On the other hand, from (20) and
(21) it follows that, for arbitraryĉ1, ĉ2 > 0,

max
w∈[0,s]

[ĉ2σ2 ◦α−1
1 ◦ ᾱ1 ◦α−1

1 ◦ ĉ1σ1(w)]q

ĉ1σ1(w)
≤ ĉq

2c1, ∀s∈R+

c2

ĉ1
≤ [α2 ◦ ᾱ−1

2 ◦α−1
2 (s)]q

ĉ1σ1(s)
, ∀s∈R+

hold. Takingĉ1 = c̃1 and ĉ2 = c̃2, we obtain (33).
Remark 5:The inequality (34) is the same as the ISS small-

gain condition derived in [6], [10]. It is known that the feedback
interconnection of “ISS systems” are ISS if the ISS small-gain
condition is met[6], [10]. The ISS small-gain condition has been
also explained through the existence of state-dependent scaling
functions[4]. Theorem 5 demonstrates that the ISS small-gain
condition can lead us to stability of the feedback interconnection
“even if one of the systems is only iISS” under an additional
condition (33).

The author refers to Theorem 3 as the iISS small-gain theorem
since it deals with the interconnection of iISS systems and the
conditions are given in terms of gain functions. In a similar
manner, the author calls Theorem 5 the iISS-ISS small-gain
theorem. According to Remark 4 and Remark 5, we have a
reasonable relationship between the iISS small-gain theorem, the
iISS-ISS small-gain theorem and the ISS small-gain theorem as
illustrated in Fig.2(a).

We next consider the cascade of ISS and iISS systems. Suppose
thatx2 andu1 disconnected in Fig.1. The iISS systemΣ2 is driven
by the ISS systemΣ1.

Theorem 6:Suppose that the ISS systemΣ1 and the iISS system
Σ2 satisfy (17) and (18) accordingly. If there exists a constantk> 0
such that

lim
s→0+

[σ2 ◦α−1
1 (s)]k

α1 ◦ ᾱ−1
1 (s)

< ∞ (48)

holds, the cascade ofΣ1 andΣ2 is iISS with respect to inputr and
statex. Furthermore, ifα2 is additionally assumed to be a class
K∞, the cascade is ISS with respect to inputr and statex.

Each of (31) and (32) implies (48) if we admit small gap arising
from α1(s) ≤ ᾱ1(s). This relationship reflects the fact that ISS
implies iISS forΣ1.

Remark 6: It is known that the cascade of “ISS systems” are
ISS. Theorem 6 demonstrates that the stability of the cascade
connection is ensured “even if one of the systems is only iISS”
under an additional condition (48).

Remark 7:According to Lemma 1, there are ISS systems
whose initial functionα1 ∈K does not meetlims→∞ α1(s) = ∞.
In fact, a systemΣ1 is ISS if

∞ > lim
s→∞

α1(s) > lim
s→∞

{σ1(s)+σr1(s)} (49)

is satisfied. It is possible to write the iISS-ISS small-gain theorem
directly for α1 ∈ K satisfying (49) instead ofα1 ∈ K∞. More
precisely, Theorem 5 remains the same except thatl < c1 is
required for some constantl ≥ 1. The numberl can be easily
calculated. It becomesl = 1 when the exogenous signalr1 is
absent. The explicit formula ofl is, however, omitted due to
the space limitation. In the cascade case, Theorem 6 remains
unchanged exactly even forα1 ∈K \K∞ if (49) holds.

iISS small-gain
theorem

⇒ iISS-ISS small-gain
theorem

⇒ ISS small-gain
theorem

(a) fulfillment of conditions

interconnection of
iISS and iISS

systems
⇐

interconnection of
iISS and ISS

systems
⇐

interconnection of
ISS and ISS

systems

(b) system properties
Fig. 2. Relation between small-gain theorems

V. I NTERCONNECTION OFi ISS AND STATIC SYSTEMS

Consider the static system described by

Σi : zi = hi(t,ui , r i) (50)

Assume thathi(t,0,0) = 0 holds for all t ∈ R+. The function
hi(t,ui , r i) is supposed to be piecewise continuous with respect
to t on R+, and locally Lipschitz with respect toui on Rnui and
r i on Rnri . For the static system, a property analogous to iISS is

αi(|zi |)≤ σi(|ui |)+σri (|r i |), ∀ui ∈Rnui , r i ∈Rnri , t∈R+ (51)

with some positive definite functionαi and some pair of classK
functionsσi andσri . We can assume

liminf
s→∞

αi(s)≥ lim
s→∞

{σi(s)+σri (s)} (52)

without loss of generality. To see this, suppose that the sys-
tem Σi does not admitαi , σi and σri satisfying (52). Due to
liminfs→∞ αi(s) < σi(∞)+σri (∞) and (51), the boundedness of
the inputsui(t) and r i(t) does not guarantee the boundedness of
the outputzi(t). The size ofui(t) andr i(t) needs to be sufficiently
small to obtain boundedzi(t). This fact contradicts the assumption
that hi(t,ui , r i) is locally Lipschitz with respect toui on Rnui and
r i onRnri . Hence, (52) is justified. The inequality (52) also allows
us to assumeαi ∈K∞ in the following sense.

Lemma 2:Suppose that the static systemΣi satisfies (51) and
(52) accordingly. Then, there exist a classK∞ function α̂i and
classK functionsσ̂i , σ̂ri such that

α̂i(|zi |)≤ σ̂i(|ui |)+ σ̂ri (|r i |), ∀ui ∈Rnui , r i ∈Rnri , t∈R+ (53)

is satisfied.
The inequality (53) implies that there existβi ,βri ∈K satisfy-

ing |zi | ≤ βi(|ui |)+βri (|r i |). Therefore, the magnitude of outputzi
is nonlinearly bounded by the magnitude of the inputsui and r i .

Consider the interconnected system shown in Fig.1. We suppose
that Σ1 is a static system described by (50). The vectorz1 is fed
back to the inputu2 of Σ2, so thatx1 in Fig.1 is replaced byz1.
The systemΣ2 is supposed to be dynamic and iISS. We are able
to obtain the following corollary based on Theorem 2.

Corollary 1: Suppose that the static systemΣ1 satisfies (51) for
a classK∞ function α1 and classK functionsσ1 and σr1, and
the iISS dynamic systemΣ2 satisfies (17) and (18) accordingly. If
there exist constantsc1,c2 > 1 such that

c2σ2 ◦α−1
1 ◦c1σ1(s)≤ α2(s), ∀s∈ R+ (54)

is satisfied, then the interconnected systemΣ is iISS with respect
to input r and statex. Furthermore, ifα2 is additionally assumed
to be a classK∞ function, the interconnected systemΣ is ISS with
respect to inputr and statex.

Proof: For η ∈K andζ > 0, we obtain

η(|u2|)≤ η ◦α−1
1 (σ1(|x2|)+σr1(|r1|))

≤ η ◦α−1
1 ◦ (1+1/ζ )σ1(|x2|)+η ◦α−1

1 ◦ (ζ +1)σr1(|r1|)



from (51). The condition (54) withc1 >1 and c2 >1 guarantees
the existence ofη ∈ K and ζ > 0 achieving (15) withξ (s)=
η ◦α−1

1 (s) andλ1=λ2=λ3=1.
Consider the cascade of a static systemΣ1 and an iISS dynamic

systemΣ2. The connection betweenx2 and u1 is cut in Fig.1.
It is expected that the cascade is iISS since the static system is
nonlinearly bounded. The next corollary ensures the fact based on
Theorem 2.

Corollary 2: Suppose that the static systemΣ1 satisfies (51) for
a classK∞ function α1 and classK functionsσ1 and σr1, and
the iISS dynamic systemsΣ2 satisfies (17) and (18) accordingly.
Then, the cascade ofΣ1 andΣ2 is iISS with respect to inputr and
statex. Moreover, ifα2 is a classK∞ function, the cascade is ISS
with respect to inputr and statex.

Remark 8: It can be shown thatc1≥ 1 is allowed in Corollary
1 if σr1(s) ≡ 0 holds. Corollary 1 is also applicable toα1 ∈K
satisfying (52) directly instead ofα1 ∈K∞ if l ≤ c1 is satisfied for
an appropriate constantl > 1. In the cascade case, due to Lemma
2, Corollary 2 is applicable toα1 ∈K as it is.

VI. EXAMPLES

Suppose thatΣ1 andΣ2 in Fig.1 are given by

Σ1 : ẋ1 =− 2x1

x1 +1
+

x2

(x1 +1)(x2 +1)
, x1(0) ∈ R+(55)

Σ2 : ẋ2 =− 2x2

x2 +1
+x1, x2(0) ∈ R+ (56)

Note thatx= [x1,x2]T ∈R2
+ holds for allt ∈R+. This example is

for a compact illustration of the theoretical developments in this
paper. It is, however, motivated by models of biological processes
which usually involve Monod nonlinearities and exhibit the non-
negative property. The choiceV1(x1) = x1 yields

dV1(x1)
dt

≤−α1(x1)+σ1(x2), α1(s) =
2s

s+1
, σ1(s) =

s
s+1

(57)

Lemma 1 proves thatΣ1 is ISS. The systemΣ2 is not ISS since we
havex2 → ∞ as t → ∞ for x1(t)≡ 3. The systemΣ2 is, however,
iISS sinceV2(x2) = x2 yields

dV2(x2)
dt

=−α2(x2)+σ2(x1), α2(s) =
2s

s+1
, σ2(s) = s (58)

Global asymptotic stability ofx= 0 can be proved using the state-
dependent scaling criterion presented in Section II. Pickλ1(x1) =
b(x1 +1) andλ2(x2) = 1. Then, we obtain

λ1
dV1

dt
+λ2

dV2

dt
=−(2b−1)x1− (2−b)

x2

x2 +1
(59)

For anyb∈ (1/2,2), the right hand side of (59) is negative definite.
Due to Theorem 1, the originx = 0 is globally asymptotically
stable. Note that if bothλ1 andλ2 are restricted to constants, we
cannot render the left hand side of (59) negative definite.

We can establish the stability without calculatingλ1 and λ2
explicitly if we use the iISS-ISS small-gain theorem developed in
Section IV. The condition (34) is obtained as

4−c1c2−2c1 ≥ 0 (60)

There exist suchc1, c2 > 1 fulfilling (34). Remember thatΣ2 is
not ISS, so that we cannot invoke the ISS small-gain theorem.
However, we have

σ2(s)
α1(s)

=
s+1

2
,

α2(s)
σ1(s)

= 2

which fulfill both (46) and (47) fork = 1. Thanks to Theorem 5,
Remark 2 and 7, the fulfillment of the small-gain condition (34)
proves that the originx = 0 is globally asymptotically stable.

Consider the following interconnected system.

Σ1 : ẋ1 =−
(

x1

x1 +1

)2

+3

(
x2

x2 +1

)2

, x1(0) ∈ R+(61)

Σ2 : ẋ2 =− 4x2

x2 +1
+

2x1

x1 +1
+6r2, x1(0) ∈ R+ (62)

It is defined onx = [x1,x2]T ∈ R2
+ for r2 ∈ R+. Both Σ1 and Σ2

are not ISS, but iISS. ForV1(x1) = x1 andV2(x2) = x2, we obtain

dV1

dt
=−α1(|x1|)+σ1(|x2|),

α1(s)=
(

s
s+1

)2

, σ1(s)=3

(
s

s+1

)2

(63)

dV2

dt
=−α2(|x2|)+σ2(|x1|)+σr2(|r2|),

α2(s)=
4s

s+1
, σ2(s)=

2s
s+1

, σr2(s)=6s (64)

Let λ1 = 1 andλ2 = bx2/(x2 +1) for b > 0. Then, we have

λ1
dV1

dt
+λ2

dV2

dt
≤−

(
1−b

2

)
x2

1

(x1+1)2 −
(2b−3)x2

2

(x2+1)2 +6br2 (65)

Hence, withb ∈ (3/2,2) we can prove that the interconnected
systemΣ is iISS by using Theorem 1.

The iISS small-gain theorem developed in Section III also leads
us to the iISS property successfully without calculating scaling
functionsλ1 andλ2 explicitly. For (61)-(62), the inequalities (20)
and (21) are obtained as

2q
(

s
s+1

)q

≤c1

(
s

s+1

)2

, 3c2

(
s

s+1

)2

≤4q
(

s
s+1

)q

, ∀s∈R+

These two inequalities and0 < c1 < c2 are achieved byq =
2, c1 = 4 and c2 ∈ (4,16/3]. Hence, the iISS property of the
interconnection follows from Theorem 3. It is worth mentioning
that the inequalities are never achieved forq 6= 2.
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