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Abstract— This paper extends the application of the recently
proposed satis£cing control strategy to passive systems. The
satis£cing control is based on notions of satis£cing decision
theory. In this framework a set of asymptotically stabilizing
control laws can be parameterized in order to obey an instan-
taneous cost-bene£t inequality. Using the nonlinear version of
the Kalman-Yacubovitch-Popov property this technique can be
extended to passive systems. To illustrate the novelty of this
approach, the paper considers the attitude control problem of
a rigid body.

I. INTRODUCTION

This paper develops a version of satis£cing control [1] for
passive systems. The proposed approach has the advantage
of obtaining a globally asymptotically stabilizing control
law as an output feedback. The satis£cing approach can
be seen as a formal application of cost-bene£t analysis to
decision and control problems [2], [3], [4]. The approach is
based on the Epistemic Utility Theory introduced in [5].

The basic idea is to de£ne two utility functions that
quantify the bene£ts and costs of an action. At a state x,
the bene£ts of choosing a control u are given by the “se-
lectability” function ps(u, x). Similarly, the costs associated
with choosing u are given by the “rejectability” function
pr(u, x). The satis£cing set is constituted by the relationship
ps ≥ bpr: i.e, S(x, b) = {u : ps(u, x) ≥ bpr(u, x)} where
the selectivity index b is a positive parameter.

The satis£cing control developed in [1] is a nonlinear
state feedback which is based on Control Lyapunov Func-
tion (CLF). In general, £nding a CLF is an open problem.
In this paper, a satis£cing control for passive systems is pro-
posed. For this class of systems, using the nonlinear version
of the Kalman-Yacubovitch-Popov lemma, the satis£cing
set can be reformulated resulting in an output feedback
which does not depend on CLFs.

This paper is organized as follows. In Section 2, we
£x our notation and nomenclature and reviewing some of
the basic de£nitions and concepts from passive systems
theory. In Section 3, is developed the passive satis£cing
control. In Section 4, the proposed controller is £rst applied
to linear systems. Then the rigid body orientation control
problem is considered. Global asymptotic stability under
linear error quaternion feedback and nonlinear angular
velocity feedback is shown. Simulation results are presented
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in the Section 5, where attitude control of a satellite model
is used. Section 6 offers some conclusions.

II. PASSIVE SYSTEMS

In this paper, we consider nonlinear systems described
by equations of the form

ẋ = f(x) + g(x)u
y = h(x)

(1)

where x ∈ IRn, u ∈ IRm and y ∈ IRm. The set U
of admissible inputs consists of all piecewise continuous
functions de£ned on IRm. The vector £elds f(x) and the
m columns of g(x) are smooth (i.e., C∞) and h(x) is a
smooth mapping. We suppose that the vector £eld f(·) has
at least one equilibrium; thus, without loss of generality,
after possibly a coordinate shift, we can assume f(0) = 0
and h(0) = 0.

We review in this section a number of basic concepts
related to the dissipativity and passivity notions (see [6],
[7] for additional details).

Let w(u, y) be a real-valued function, called the sup-
ply rate. We assume that for any control signal u ∈ U
and for any initial condition x0, for t = 0, the output
y(t) = h(φ(t, x0, u)) of (1), where φ(t, x0, u) is the system
solution at time t, is such that w(u(s), y(s)) satis£es

∫ t

0

|w(s)|ds <∞ (2)

for all t ≥ 0.
De£nition 1: A system (1) with supply rate w is said

to be dissipative if there exists a C0 nonnegative function
V : IRn → IR, called the storage function, such that for all
u ∈ U , initial condition x0 and t ≥ 0

V (x)− V (x0) ≤
∫ t

0

w(s)ds (3)

where x = φ(t, x0, u).
Through the paper, we shall be interested in studying

dissipative systems with supply rate given by inner product,
i.e.,

w =< u, y >= yTu. (4)

De£nition 2: The system (1) is passive if it is dissipative
with supply rate w =< u, y >, and the storage function V

satis£es V (0) = 0.



In other words, a system (1) is passive if there exists a
C0 nonnegative function V : IRn → IR, which satis£es
V (0) = 0, such that

V (x)− V (x0) ≤
∫ t

0

yT (s)u(s)ds (5)

We now present a fundamental property of passive sys-
tems which is a nonlinear enhancement of the Kalman-
Yacubovitch-Popov (KYP) lemma for positive real linear
systems [8].

De£nition 3: A system (1) has the KYP property if there
exists a C1 nonnegative function V : IRn → IR, with
V (0) = 0, such that

V T
x f ≤ 0 (6)
V T
x g = hT (x) (7)

for each system state x ∈ IRn.
Lemma 1: A system (1) which has the KYP property

is passive, with storage function V . Conversely, a passive
system having a C1 storage function has the KYP property.

Lemma 1 will be useful to develop a satis£cing control
version for passive systems.

III. PASSIVE SATISFICING CONTROL

In this section we will extend to passive systems the
control strategy based on the satis£cing paradigm presented
in [1].

In [1], Stirling’s satis£cing decision approach (see [4])
was used to derive a new family of universal formulas based
on Control Lyapunov Functions (CLFs). In this approach
the selectivity is de£ned as:

ps(u, x) = −V T
x (f + gu)

where V is a CLF for the system (1). A rejectability function
is de£ned by

pr(u, x) = l(x) + uTRu

where R = RT ≥ 0 and l(x) is a locally Lipschitz non-
negative function. The satis£cing set is therefore de£ned
as:

S(x, b) = {u ∈ IRm : −V T
x (f + gu) ≥ b(l(x) + uTRu)}

In the case of passive systems we are able to de£ne
the rejectability function in term of l(y) instead of l(x).
Since, for passive systems, from (6), V T

x f ≤ 0, in order to
make the rejectability function more positive and to increase
the system stability margins we embedded −V T

x f into pr.
Therefore, we can to rede£ne the rejectability function as

pr(x) = b(l(x) + uTRu)− V T
x f

Therefore, in order to guarantee that the satis£cing set
S(y, b) is nonempty the following inequality has to be
satis£ed:

−V T
x f − V T

x gu ≥ b(l(y) + uTRu)− V T
x f

Considering that system (1) is passive, by Lemma 1 and
De£nition 3, using the KYP property we have that:

−hT (x)u ≥ bl(y) + buTRu (8)

Thus, since y = h(x), it follows that a suf£cient condition
for S(y, b) be a nonempty set is given by:

uT bRu+ yTu+ bl(y) ≤ 0 (9)

Inequality (9) has a quadratic form, which can be solved
applying the following lemma [1].

Lemma 2: If A = AT > 0, then the set of solutions to
the quadratic inequality

ξTAξ + dT ξ + c ≤ 0 (10)

where ξ ∈ IRs, is nonempty if only if

1

4
dTA−1d− c ≥ 0, (11)

and is given by

ξ = −1

2
A−1d+

√

1

4
dTA−1d− cA−1/2ν, (12)

where ν ∈ {ξ ∈ IRs :‖ ξ ‖< 1}.
Considering A = bR, d = y, c = bl(y), inequality (9)

can be solved from Lemma 2. Thus, the satis£cing set is
nonempty if and only if

1

4
yT (bR)−1y − bl(y) ≥ 0, (13)

Furthermore, if S(y, b) is nonempty it is given by:

S(y, b) =

{

u=−1

2
(bR)−1y+ (14)

+

√

1

4
yT (bR)−1y − bl(y)(bR)−1/2ν

}

with ||ν|| < 1.
The satis£cing control is characterized by the following

output feedback:

k(y) = −1

2
(bR)−1y +

√

1

4
yT (bR)−1y − bl(y)(bR)−1/2ν

(15)
From (13), it follows that the condition for the satis£cing

set be nonempty depends on b. Thus, we will determine the
values of b (in terms of y) which satisfy condition (13).

From (13), we have that

1

4b
yTR−1y ≥ bl(y) =⇒ b2 ≥ 1

4l(y)
yTR−1y

Finally

−
√

1

4l(y)
yTR−1y ≤ b ≤

√

1

4l(y)
yTR−1y

Since b ≥ 0, we have that

0 ≤ b ≤ b(y) (16)



where

b(y) =

√

1

4l(y)
yTR−1y (17)

If 0 ≤ b(y) ≤ b(y) the satis£cing set given by (14) is
nonempty.

De£ning b(y) = ηb(y), where 0 < η < 1, and
substituting it in (15), we obtain

k(y) = −1

2
(ηbR)−1y + (18)

+

√

1

4
yT (ηbR)−1y − ηbl(y)(ηbR)−1/2ν,

which represent the satis£cing control law for passive
systems.

Remark 1: The proposed satis£cing controller could be
extended to £nite dimensional nonlinear dynamical system
which can be made passive via state feedback. In [6]
are given necessary and suf£cient conditions for weakly
minimum-phase systems to obtain passivity feedback equiv-
alence.

Remark 2: Performance objectives can be used to select
η(x) and ν(x). A straightforward approach is to make a
prediction of the system state at the next time step and
then to optimize over the selection parameter to minimize
a predicted given cost [9].

IV. CASE STUDIES

In this section, we illustrate the implementation of the
satis£cing control for passive systems given by (18).

A. Linear System

Consider the following £rst order plant:

ẏ = −y + u (19)

De£ning l(y) = y2 and R = r ∈ IR the satis£cing control
law is given by:

k(y) = y

[

−1
2ηbr

+
1

√

ηbr

√

1

4ηbr
− ηbν

]

(20)

where
b =

1

2
√
r

(21)

Substituting (21) in (20) the control law can be rewritten
as:

k(y) = − y

η
√
r

[

1−
√

1− η2ν
]

(22)

From (22), we can observe how the η, ν and r parameters
affect the proportional gain of the controller.

Figure 1 presents the simulations results for initial con-
dition y(0) = 20 and r = 1, η = ν = 0.5.

In the case one considers a non-quadratic cost l(y) =
y2 + y4, the satis£cing control law is given by:

k(y) = − y

rηb̄
+

√

x2

rηb̄
− ηb̄(y2 + y4) + 2 ∗ y

√

ηb̄r
ν
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Fig. 1. Linear Systems Response for quadratic l(y)
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Fig. 2. Linear System: Signal control for quadratic l(y)

where

b̄ =

√
r +

√

r + y2 + y4√
ry(1 + y2)

Figure 3 presents the simulations results for initial con-
dition y(0) = 20, r = 1 and η = ν = 0.5.

Note that for this case an optimal control with cost
function given by

J =

∫ ∞

0

(y2 + y4 + u2)dt

can be calculated solving the Hamilton-Jacobi-Bellaman
equation. The resulting optimal control is given by

u∗ = y − y
√

2 + y2

Comparison between both approach will be addressed in
future works.
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Fig. 3. Linear Systems Response with non-quadratic l(y) = y2 + y4

B. Attitude Control

Consider two orthonormal right-handed coordinate
frames: the inertial (world) coordinate, E0, and body co-
ordinate (attached to the rigid body), EB . De£ne the 3× 3
attitude matrix as A. The rigid body differential can be
written in the inertial coordinate as:

ω̇ = −H−1ω ×Hω + τ

q̇ =
1

2
E(q)ω

(23)

where

E(q) =









−q1 −q2 −q3
q0 q3 −q2
−q3 q0 q1
q2 −q1 q0









,

and H ∈ IR3×3 is the inertia matrix, ω ∈ IR3 is the angular
velocity vector, τ ∈ IR3 is the control torque vector and q =
[q0 qTv ], which qv = [q1 q2 q3]

T , is the unit quaternion
representation of the attitude matrix A (see [10] for a more
detailed discussion).

In this section we apply the passive satis£cing control
to the rigid body orientation control [14]. We consider the
set-point control problem of driving the attitude matrix A

to a steady-state target attitude Ad. De£ne the error attitude
matrix as Ae = AdA

T , and let eT = [e0 eTv ] be the unit
quaternion representation for Ae. The error kinematic is
then given by

ė =
1

2
E(e)ω.

Using the result from [11], which shows that the map
from v to ω is passive, i.e.

∫ T

0
ωT vdt ≥ −γ20 for some γ0

(∀T ), the next theorem shows that the linear feedback of
the vector error quaternion, ev , and the nonlinear feedback
of the ω, called passive satis£cing control, is globally
asymptotically stabilizing.

kp

Rigid body 
Dynamics

+v

ev

ω
τ

-

Fig. 4. Proportional Only Feedback

Theorem 1: Consider the proportional only feedback sys-
tem of Figure 4. If k(ω) is a passive satis£cing control, then
the control input τ = −kpev+k(ω), where kp is a positive
scalar, asymptotically stabilizes the close loop system.

Proof: Consider the following Lyapunov function can-
didate motivated by the total energy of the system (23):

V = kp[(e0 − 1)2 + eTv ev] +
1

2
ωTHω (24)

Using (23), the derivative along the solution can be
computed

V̇ = ωT (τ + kpev) (25)

With the control law

τ = −kpev − k(ω) (26)

the derivative of V is given by

V̇ = ωT k(ω) (27)

Using (18), V̇ is written by:

V̇ = −
1

2ηb
ω

T
R
−1

ω + ω
T

√

1

4(ηb)2
ωTR−1ω − l(ω)R−

1
2 ν

Considering the expression of b̄ given by equation (17),
we have that:

V̇ = −
√
l

η

√
ωTR−1ω +

√

1

η2
− 1
√
lωTR− 1

2 ν (28)

The above equation could be rewritten as:

V̇ = −
√
l

η

[√
ωTR−1ω −

√

1− η2ωTR− 1
2 ν
]

(29)

Since η ∈ (0, 1] we have that:

V̇ ≤ −
√
l

η

[√
ωTR−1ω − ωTR− 1

2 ν
]

(30)

Noting that ||ω||2R = ωTR−1ω is a weighted norm , we
have that:

V̇ ≤ −
√
l

η
[||ω||R − ||ω||R ν] (31)



Thus, from Lemma 2, ‖ν‖ < 1, which implies that V̇ ≤
0.

Since V is continuously differentiable, radially un-
bounded, positive de£nite and V̇ ≤ 0 over the entire state
space, by using the LaSalle Invariance Principle [8], one
has that all trajectories converge to the largest invariant set
Ω̄ in Ω = {(e, ω) : V̇ = 0} = {(e, ω) : ω = 0}. In
the invariant set we have that Hω̇ = −kpev = 0 from
(1). This implies that Ω̄ = {(e, ω) : ev = 0, ω = 0}. As
(e0 = ±1, ev = 0) represents the same physical orientation
(Re = I), the identity error attitude Re and zero angular
velocity is a globally asymptotically stable equilibrium.

C. Attitude Control: Simulation Results

In order to illustrate the result presented in the The-
orem 1, a simple example considered in [12], [13] is
addressed here. The η and ν parameters of the passive
satis£cing control are selected, as seen in [9], using a
model prediction to make a prediction of the system state
at the next time step and then to optimize over the selection
parameters to minimize the predicted cost. Given initializing
values of the η and ν parameters, ηi, νi, the cost of the
system a short time in the future can be estimated at any ω

as follows:

ω(t+ T ) = ω(t) + T ω̇(t)

J(t+ T ) = ωT (t+ T )Qω(t+ T ) + kT (ηi, νi)Rk(ηi, νi)

where, T represents the time-step size, J(ηi, νi, ω(t + T )
is the predicted cost and ω is the system output. A simple
gradient descent algorithm is used to £nd the η and ν values
that minimize this cost function (see [9] for more details).

We consider the satellite set-point control problem of
driving the attitude to a steady-state target attitude [14].
In (23) set the inertia matrix to be

H =





2 .5 1
.5 4 1
1 1 3





Consider the quaternion initial condition

q(0) = [0.8325, −0.2057, 0.3430, 0.3834]

and the desired orientation

qd = [0.8339, 0.4353, 0.1252, −0.3192]

(a representation of Ad) and kp = 1.
The Figures 5 and 6 present the performance of the

proposed scheme for the above regulation problem. Fig. 5
shows the error quaternion and Fig. 6 the control signal,
when the passive satis£cing control is applied in propor-
tional only feedback system of Figure 4

Now the tracking trajectory problem is considered.
The desired orientation, Ad(t) = exp(φd(t)k×), is
given by a rotation along an equivalent axis kT =
[0.4896, 0.2032, 0.8480] of the initial attitude toward the
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Fig. 5. Regulation Problem: Error Quaternion - Vector part.
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Fig. 6. Regulation Problem: Control Signal

desired attitute I3×3. The desired rotational angle is given
by

φd(t) = φf − (φf − φi)e
−αt2

with α = 0.5, φi = 2.4648rad and φf = 0. Thus, the initial
condition is q(0) = [0.332, 0.4618, 0.1917, 0.8]T .

Figures 7–8 illustrate again the nice performance ob-
tained using the proposed scheme.

V. CONCLUSION

This paper considers the satis£cing control strategy for
passive systems. An output feedback control, called passive
satis£cing control, is obtained within this context. The
advantage of this controller is that it does not rely on £nding
a Control Lyapunov Function. The attitude control problem
of a rigid body illustrate the application of the proposed
strategy.



0 2 4 6 8 10 12 14 16 18 20
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time

Q
ua

te
rn

io
n 

er
ro

r

e
1

e
2

e
3

Fig. 7. Tracking Trajectory: Error Quaternion - Vector part.
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