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Abstract— We consider the problem of finite-time stabi-
lization for nonlinear systems. In the previous work [14], it
was proved that global finite-time stabilizability of uncertain
nonlinear systems that are dominated by a lower-triangular
system can be achieved by non-Lipschitz continuous state
feedback. The proof was based on the finite-time Lyapunov
stability theorem and the nonsmooth feedback design method
proposed in [18], [17] for the control of nonlinear systems that
are impossible to be dealt with by any smooth feedback. In this
paper, a simpler design algorithm is given for the construction
of a non-Lipschitz continuous, global finite-time stabilizer as
well as a C1 positive definite and proper Lyapunov function
that guarantees finite-time stability.

I. INTRODUCTION

In this paper, we consider a family of uncertain nonlinear
systems of the form

ẋ1 = x2 + f1(x, u, t)

ẋ2 = x3 + f2(x, u, t)

...

ẋn = u + fn(x, u, t), (1.1)

where x = (x1, · · · , xn)T ∈ IRn and u ∈ IR are the system state
and input, respectively, and fi : IRn×IR×IR → IR, i = 1, · · · , n,
are C1 uncertain functions with fi(0, 0, t) = 0, ∀t.

The objective of this paper is to address the questions: (i) when
is there a state feedback control law that renders the trivial solution
x = 0 of (1.1) finite-time globally stable (i.e. global stability in
the sense of Lyapunov plus finite-time convergence)? (ii) how to
design systematically a finite-time, globally stabilizing controller
if it exists?

Our interest in these two questions is motivated by several
papers and books in the literature [1], [9],[4]-[6], [10], [13], [12],
which discussed how finite-time stabilization problems can arise
naturally in practice and how they can be addressed by using finite-
time stability theory. In classical control engineering, there is an
important control design technique known as dead-beat control. As
we shall see, what to be studied in this paper is indeed a nonlinear
enhancement of the well-known dead-beat control technique that
has found wide applications, for instance, in process control and
digital control, just to name a few. On the other hand, the concept
of finite-time stability also arises naturally in time optimal control.
A classical example is the double integrator with bang-bang time
optimal feedback control [1]. Using the maximal principle, a time-
optimal controller can be obtained, steering all the trajectories of
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the closed-loop system to the origin in a minimum time from
any initial condition. The time-optimal control system exhibits a
very special property, namely, finite-time convergence rather than
infinite settling time. In contrast to the commonly used notion of
asymptotic stability, finite-time stability requires essentially that
a control system be stable in the sense of Lyapunov and its
trajectories tend to zero in finite time.

The problem of finite-time stabilization has been studied, for
instance, in the papers [4], [5], [6], [20], [10], [13], [12], in which
it was demonstrated that finite-time stable systems might enjoy not
only faster convergence but also better robustness and disturbance
rejection properties. In the recent work [6], a Lyapunov stability
theorem has been presented for testing finite-time stability of con-
tinuous autonomous systems. This result provides a basic tool for
analysis and synthesis of nonlinear control systems. The Lyapunov
theory for finite-time stability was employed in [4], resulting in
C0 finite-time stabilizing state feedback controllers for the double
integrator. Later, finite-time output feedback stabilizers were also
derived for the double integrator [13] by means of the Lyapunov
finite-time stability theorem given in [6]. This output feedback
stabilization result, together with the homogeneous systems theory
[2], [7], [8], [9], [11], [15], [16], particularly, the robust stability
theorem for homogeneous systems and the idea of homogeneous
approximation [11], [19], led to a local result on output feedback
stabilization of feedback linearizable systems in the plane [13].

Most of the finite-time stabilization results available in the
literature [4], [5], [6], [20], [10], [13] are only applicable to two
or three dimensional control systems. Moreover, these results are
local because of the use of a homogeneous approximation. In the
higher-dimensional case, the paper [12] derives continuous state
feedback control laws achieving local finite-time stabilization for
triangular systems and certain class of nonlinear systems. It also
contains some interesting global finite-time stabilization results
for certain class of nonlinear systems. However, a nontrivial but
important issue on whether global finite-time stabilization of n-
dimensional nonlinear systems can be achieved by continuous state
feedback remains unknown and unanswered.

In the previous paper [14], we addressed this issue and provided
an affirmative answer for a family of uncertain nonlinear systems.
In particular, we proved that for the nonlinear system (1.1)
dominated by a lower-triangular system, it is possible to achieve
global finite-time stabilization by non-Lipschitz continuous state
feedback. This conclusion was proved based on the Lyapunov
theory for finite-time stability [6] and a feedback domination
design method, leading to a construction of C0 finite-time global
stabilizers [14]. However, the proof given in [14] is quite com-
plicated and the design of a finite-time stabilizer is less intuitive.
In this paper, we give a simpler proof and provide some new
insights on the construction of finite-time stabilizers. The finite-
time feedback control scheme in this paper is inspired by the
papers [18], [17], where non-Lipschitz continuous state feedback



controllers were constructed via the adding a power integrator
technique, achieving global asymptotic stabilization for a wide
class of inherently nonlinear systems that cannot be dealt with,
even locally, by any smooth feedback. The new ingredient of the
proposed finite-time control strategy is the explicit construction of
subtle homogeneous-like Lyapunov functions and non-Lipschitz
continuous state feedback controllers, so that global finite-time
stabilization of the closed-loop system can be concluded from
the finite-time stability theorem [6]. In contrast to the adding a
power integrator design [18], [17], the feedback design method
in this paper is more subtle and delicate because to guarantee
global finite-time stability of the closed-loop system, the derivative
of the control Lyapunov function V (x) along the trajectories of
the closed-loop system must be not only negative definite but
also less than −cV α(x), for suitable real numbers c > 0 and
0 < α < 1. The contribution of this work is to show how to find
such a control Lyapunov function and a finite-time global stabilizer
simultaneously for the whole family of nonlinear systems (1.1),
under appropriate conditions.

II. LYAPUNOV THEORY FOR FINITE-TIME STABILITY

In this section, we review some basic concepts and termi-
nologies related to the notion of finite-time stability and the
corresponding Lyapunov stability theory. We also recall Lyapunov
theorem and the converse theorem for finite-time stability of
autonomous systems, which were discussed previously in the paper
[6].

The classical Lyapunov stability theory (e.g. see [9]) is only
applicable to a differential equation whose solution from any initial
condition is unique. A well-known sufficient condition for the
existence of a unique solution of the autonomous system

ẋ = f(x) with f(0) = 0, x ∈ IRn (2.1)

is that the vector field f : IRn → IRn is locally Lipschitz
continuous. The solution trajectories of the locally Lipschitz con-
tinuous system (2.1) can have at most asymptotic convergent rate.
However, in many practical situations it is not only necessary but
also rather important to achieve finite-time convergence. It should
be observed that only non-smooth or non-Lipschitz continuous
autonomous systems can have a finite-time convergent property.
The simplest example may be the scalar system

ẋ = −x
1
3 , x(0) = x0,

whose solution trajectories are unique and described by

x(t) =







sgn(x0)
(

x
2
3

0 − 2
3
t
)3/2

, 0 ≤ t < 3
2
x

2
3

0 ,

0, t ≥ 3
2
x

2
3

0 .

(2.2)

Clearly, all the solutions converge to the equilibrium x = 0
in finite time. This example suggests that in order to achieve
finite-time stabilizability, non-smooth or at least non-Lipschitz
continuous feedback must be employed, even if the controlled
plant ẋ = f(x, u, t) is smooth.

In what follows, we recall the Lyapunov stability theorems for
finite-time stability, which will be used in the next section. In
a series of papers [4], [5], [6] and books [9], [3], the notion of
finite-time stability was introduced and a necessary and sufficient
condition was given for non-Lipschitz continuous autonomous
systems to be finite-time stable.

Definition 2.1: Consider the autonomous system (2.1), where
f : D → IRn is non-Lipschitz continuous on an open neighbor-
hood D of the origin x = 0 in IRn. The equilibrium x = 0 of
(2.1) is finite-time convergent if there are an open neighborhood
U of the origin and a function Tx : U\{0} → (0,∞), such that

every solution trajectory x(t, x0) of (2.1) starting from the initial
point x0 ∈ U\{0} is well-defined and unique in forward time for
t ∈ [0, Tx(x0)), and limt→Tx(x0) x(t, x0) = 0. Here Tx(x0) is
called the settling time (of the initial state x0). The equilibrium of
(2.1) is finite-time stable if it is Lyapunov stable and finite-time
convergent. If U = D = IRn, the origin is a globally finite-time
stable equilibrium.

Since finite-time stability requires that every solution trajectory
reaches the origin in finite time, finite-time stability is therefore
a much stronger requirement than asymptotic stability. The fol-
lowing theorem [6] provides sufficient conditions for the origin of
system (2.1) to be a finite-time stable equilibrium.

Theorem 2.2: Consider the non-Lipschitz continuous au-
tonomous system (2.1). Suppose there are a C1 function V (x)
defined on a neighborhood Û ⊂ IRn of the origin, and real
numbers c > 0 and 0 < α < 1, such that

1) V (x) is positive definite on Û ;
2) V̇ (x) + cV α(x) ≤ 0, ∀x ∈ Û .

Then, the origin of system (2.1) is locally finite-time stable. The
settling time, depending on the initial state x(0) = x0, satisfies

Tx(x0) ≤
V (x0)

1−α

c(1 − α)
,

for all x0 in some open neighborhood of the origin. If Û = IRn and
V (x) is also radially unbounded (i.e., V (x) → +∞ as ||x|| →
+∞), the origin of system (2.1) is globally finite-time stable.

Remark 2.3: In the case of asymptotic stability, the con-
ventional Lyapunov stability theorem requires only V̇ (x) be
negative definite and V (x) be positive definite. On the contrary,
the finite-time stability theorem above requires a much stronger
condition such as the assumption 2). In [6], it has been shown
that the condition 2) is also necessary for continuous autonomous
systems to be finite-time stable. For this reason, the problem
of finite-time stabilization is far more difficult than the asymp-
totic stabilization problem. Indeed, according to Theorem 2.2,
in order to achieve finite-time stabilization, one must construct
not only a non-Lipschitz continuous state feedback control law
(because finite-time convergence is not possible in the case of
either smooth or Lipschitz-continuous dynamics), but also a subtle
control Lyapunov function V (x), so that the closed-loop system
satisfies the relationship: V̇ (x) ≤ −cV α(x), which is of course
a nontrivial task. In other words, although Theorem 2.2 provides
a basic tool for testing finite-time stability of nonlinear systems,
how to effectively use it to design globally stabilizing finite-time
controllers for the nonlinear system (1.1) is still a challenging issue
that needs to be addressed.

In the next section, we shall prove that under an appropriate
condition, global finite-time stabilization can be achieved for a
family of nonlinear systems (1.1), by means of non-Lipschitz con-
tinuous state feedback. This will be done by explicitly constructing
a non-Lipschitz C0 controller u(x) and a C1 Lyapunov function
V (x), such that the closed-loop system satisfies Theorem 2.2. To
this end, we introduce the following lemmas that will be used in
the sequel.

Lemma 2.4: For x ∈ R, y ∈ R and 0 < b ≤ 1, the following
inequality holds:

(|x|+ |y|)b ≤ |x|b + |y|b. (2.3)

As a consequence, for any real numbers xi, i = 1, · · · , n,

(|x1|+ |x2|+ · · ·+ |xn|)
b ≤ |x1|

b + |x2|
b + · · ·+ |xn|

b. (2.4)



When b = p
q
≤ 1, where p > 0 and q > 0 are odd integers,

|xb + yb| ≤ 21−b|x + y|b. (2.5)

Proof. If xy = 0, inequality (2.3) holds clearly. In the case when
xy 6= 0, observe that due to 1 ≥ b > 0,
(

|x|

|x| + |y|

)b

≥
|x|

|x| + |y|
and

(

|y|

|x|+ |y|

)b

≥
|y|

|x|+ |y|
.

Hence,
(

|x|

|x| + |y|

)b

+

(

|y|

|x|+ |y|

)b

≥ 1.

This in turn yields (2.3). The inequality (2.4) follows immediately
from (2.3).

To prove inequality (2.5), we first consider the simplest situation
where xy = 0. Clearly, (2.5) is true. We then consider the
following two cases: Case 1: if xy > 0, without loss of generality,

suppose x > 0 and y > 0. Note that f(x) = x
1
b is a convex

function because b = p/q ≤ 1. Then,

f(
α + β

2
) ≤

1

2
(f(α) + f(β)).

Let α = xb and β = yb. A straightforward calculation results
in (2.5). Case 2: if xy < 0, without loss of generality, suppose

x ≥ |y| = −y > 0. Observe that

21−b|x + y|b − yb = 21−b|x + y|b + (−y)b

≥ |x + y|b + (−y)b ≥ |x + y + (−y)|b.

The last step is deduced from (2.4). Thus, inequality (2.5) is also
true.

The next lemma is a direct consequence of the Young’s inequal-
ity. Its proof can be found in [18].

Lemma 2.5: Let c, d be positive real numbers and γ(x, y) > 0
a real-valued function. Then,

|x|c|y|d ≤
c

c + d
γ(x, y)|x|c+d +

d

c + d
γ−

c
d (x, y)|y|c+d. (2.6)

III. NONSMOOTH FEEDBACK STABILIZATION IN FINITE

TIME

Using Theorem 2.2, together with Lemmas 2.4–2.5, we can
prove the following theorem that is the main result of this paper.
The proof is much simpler than the one given in [14] and provides
a more intuitive way for the design of C0 global finite-time
stabilizers for system (1.1).

Theorem 3.1: The uncertain nonlinear system (1.1) is globally
finite-time stabilizable by non-Lipschitz continuous state feedback
if the following conditions hold: for i = 1, · · · , n, and for all
(x, u, t),

|fi(x, u, t)| ≤ (|x1|+ · · · + |xi|)γi(x1, · · · , xi), (3.1)

where γi(x1, · · · , xi) ≥ 0 is a known C1 function.

Proof. Initial step: Choose the Lyapunov function V1(x1) =
x2
1

2
.

Then, a simple computation gives

V̇1(x1) = x1x2 + x1f1(x, u, t)

≤ x1(x2 − x∗2) + x1x
∗

2 + x
4n

2n+1

1 ρ̃1(x1), (3.2)

where ρ̃1(x1) ≥ x
2

2n+1

1 γ1(x1) ≥ 0 is a C1 function. For
instance, one can simply choose ρ̃1(x1) = (1 + x2

1)γ1(x1).
From (3.2), it is easy to see that the C0 virtual controller x∗2 =

−x
2n−1

2n+1

1 (n+ρ̃1(x1)) := −ξq2
1 β1(x1) with β1(x1) > 0 being C1,

results in

V̇1(x1) ≤ −nx
4n

2n+1

1 + x1(x2 − x∗2).

Clearly, V1(x1) = 1
2
x2

1 := 1
2
ξ2
1 < 2ξ2

1 .

Inductive step: Suppose at step k − 1, there are a C1 Lya-
punov function Vk−1(x1, · · · , xk−1), which is positive definite and
proper, satisfying

Vk−1(x1, · · · , xk−1) ≤ 2(ξ2
1 + · · ·+ ξ2

k−1), (3.3)

and a set of parameters q1 = 1 > · · · > qk = 2n+3−2k
2n+1

> 0, and
C0 virtual controllers x∗1, · · · , x

∗

k, defined by

x∗1 = 0, ξ1 = x
1/q1
1 − x∗1

1/q1 ,

x∗2 = −ξq2
1 β1(x1), ξ2 = x

1/q2
2 − x∗2

1/q2 ,
...

...
x∗k = −ξqk

k−1βk−1(x1, · · · , xk−1), ξk = x
1/qk

k − x∗k
1/qk ,

with β1(x1) > 0, · · · , βk−1(x1, · · · , xk−1) > 0 being C1, such
that

V̇k−1(x1, · · · , xk−1) ≤ −(n− k + 2)(

k−1
∑

l=1

ξ
4n

2n+1

l )

+ξ
2−qk−1

k−1 (xk − x∗k). (3.4)

We claim that (3.3) and (3.4) also hold at step k. To prove this
claim, consider

Vk(x1, · · · , xk) = Vk−1(x1, · · · , xk−1) + Wk(x1, · · · , xk),
(3.5)

where

Wk(x1, · · · , xk) =

∫ xk

x∗
k

(

s1/qk − x∗k
1/qk

)2−qk

ds. (3.6)

The Lyapunov function Vk(x1, · · · , xk) thus defined has several
nice properties collected in the following two propositions.

Proposition 1. Wk(x1, · · · , xk) is C1. Moreover,
∂Wk

∂xk
= ξ

2−qk

k ,

and for l = 1, · · · , k − 1,

∂Wk

∂xl
= −(2− qk)

∂(x∗k
1/qk )

∂xl

∫ xk

x∗
k

(

s1/qk − x∗k
1/qk

)1−qk

ds.

Proposition 2. Vk(x1, · · · , xk) is C1, positive definite and proper,

and satisfies

Vk(x1, · · · , xk) ≤ 2(ξ2
1 + · · ·+ ξ2

k).

The proofs of Propositions 1 and 2 are quite straightforward and

therefore are left to the reader as an exercise. Using Proposition
1, it is deduced from (3.4) that

V̇k(x1, · · · , xk) = −(n− k + 2)(ξ
4n

2n+1

1 + · · ·+ ξ
4n

2n+1

k−1 )

+ ξ
2−qk−1

k−1 (xk − x∗k) + ξ
2−qk

k (xk+1 − x∗k+1)

+ ξ2−qk

k x∗k+1 + ξ2−qk

k fk(x, u, t) +

k−1
∑

l=1

∂Wk

∂xl
ẋl. (3.7)



Now we estimate each term on the right hand side of (3.7).
First, it follows from Lemma 2.4 that

|xk − x∗k| =

∣

∣

∣
(xk)

qk−1−
2

2n+1

qk − (x∗k)
qk−1−

2
2n+1

qk

∣

∣

∣

≤ 21−qk

∣

∣

∣
xk

1
qk − (x∗k)

1
qk

∣

∣

∣

qk−1−
2

2n+1

≤ 2|ξk|
qk−1−

2
2n+1 .

Consequently,

|ξ
2−qk−1

k−1 (xk − x∗k)| ≤ 2|ξk−1|
2−qk−1 |ξk|

qk−1−
2

2n+1

≤
1

3
ξ

4n
2n+1

k−1 + ckξ
4n

2n+1

k , (3.8)

where ck > 0 is a fixed constant.
To continue the proof and facilitate the construction of a finite-

time stabilizer, we introduce two additional propositions whose
proofs are given in the appendix. They are very useful when
estimating the last two terms in the inequality (3.7).

Proposition 3. For k = 1, · · · , n, there are C1 functions
γ̃k(x1, · · · , xk) ≥ 0 such that

|fk(x, u, t)| ≤ (|ξ1|
qk + · · ·+ |ξk|

qk )γ̃k(x1, · · · , xk).

Proposition 4. For l = 1, · · · , k − 1, there are C1 functions
Ck,l(x1, · · · , xk) ≥ 0, such that
∣

∣

∣

∂(x∗k
1/qk )

∂xl
ẋl

∣

∣

∣
≤ (|ξ1|

2n−1

2n+1 + · · · + |ξk|
2n−1

2n+1 )Ck,l(x1, · · · , xk).

Using Proposition 3 and Lemma 2.5, we have

|ξ
2−qk

k fk(x, u, t)|≤ |ξk|
2−qk (

k
∑

i=1

|ξi|
qk−

2
2n+1 )γ̄k(·)

≤
1

3
(

k−1
∑

i=1

ξ
4n

2n+1

i ) + ξ
4n

2n+1

k ρ̃k(x1, · · · , xk), (3.9)

for C1 functions γ̄k(·), ρ̃k(·) > 0.
To estimate the last term in (3.7), we observe from Propositions

1 and 4 that
∣

∣

∣

∣

∣

k−1
∑

l=1

∂Wk

∂xl
ẋl

∣

∣

∣

∣

∣

≤(2−qk)|xk−x∗k||ξk|
1−qk (

k
∑

l=1

|ξl|
2n−1

2n+1 )

k−1
∑

l=1

Ck,l(·)

≤2(2 − qk)|ξk|(

k
∑

l=1

|ξl|
2n−1

2n+1 )

k−1
∑

l=1

Ck,l(·)

≤
1

3
(

k−1
∑

i=1

ξ
4n

2n+1

i ) + ξ
4n

2n+1

k ρk(x1, · · · , xk), (3.10)

where ρk(x1, · · · , xk) > 0 is a C1 function.
Substituting (3.8), (3.9) and (3.10) into (3.7) yields

V̇k ≤ −(n− k + 1)(

k−1
∑

i=1

ξ
4n

2n+1

i ) + ξ
2−qk

k (xk+1 − x∗k+1)

+ξ
2−qk

k x∗k+1 + ξ
4n

2n+1

k

(

ck + ρ̃k(·) + ρk(·)
)

.

Clearly, the C0 virtual controller

x∗k+1 = −ξ
qk−

2
2n+1

k

(

n− k + 1 + ck + ρ̃k(·) + ρk(·)
)

:= −ξ
qk+1

k βk(x1, · · · , xk)

with βk(·) > 0 being C1 and 0 < qk+1 = qk −
2

2n+1
< qk,

results in

V̇k(x1, · · · , xk)≤−(n−k+1)(

k
∑

i=1

ξ
4n

2n+1

i )+ξ2−qk

k (xk+1−x∗k+1).

This completes the proof of the inductive step.

Using the inductive argument above, one concludes that at the
n–th step, there exist a non-Lipschitz continuous state feedback
control law of the form

u = x∗n+1 = −ξ
qn+1
n βn(x1, · · · , xn) (3.11)

with βn(·) > 0 being C1, and a C1 positive definite and proper
Lyapunov function Vn(x1, · · · , xn) of the form (3.5)-(3.6), such
that

Vn(x1, · · · , xn) ≤ 2(ξ2
1 + · · ·+ ξ2

n),

V̇n(x1, · · · , xn) ≤ −(ξ
4n

2n+1

1 + · · · + ξ
4n

2n+1
n ).

Let α := 2n
2n+1

∈ (0, 1). By Lemma 2.4, one has

V α
n (x1, · · · , xn) ≤ 2(ξ

4n
2n+1

1 + · · · + ξ
4n

2n+1
n ).

With this in mind, it is easy to see that

V̇n +
1

4
V α

n ≤ −
1

2
(ξ

4n
2n+1

1 + · · · + ξ
4n

2n+1
n ) ≤ 0.

By Theorem 2.2, the closed-loop system (1.1)-(3.11) is globally
finite-time stable.

As an consequence of Theorem 3.1, we have the following
important finite-time stabilization result.

Corollary 3.2: For nonlinear systems in the following trian-
gular form

ẋ1 = x2 + f1(x1)

ẋ2 = x3 + f2(x1, x2)

...

ẋn = u + fn(x1, · · · , xn), (3.12)

where fi : IRi → IR1, i = 1, 2, · · · , n, are C1 functions with
fi(0, · · · , 0) = 0, the problem of global finite-time stabilization is
solvable by non-Lipschitz continuous state feedback.

Proof. The proof of this corollary follows immediately by verify-
ing that the assumption (3.1) in Theorem 3.1 holds automatically
in the case of (3.12).

So far we have shown that global finite-time stabilization of
the nonlinear systems such as (1.1) and (3.12) is possible using
non-Lipschitz continuous state feedback, under the condition (3.1)
which is always fulfilled for the triangular nonlinear system (3.12).
In the remainder of this section, we use a simple example to
illustrate that the hypothesis (3.1) of Theorem 3.1 is by no means
necessary and can indeed be relaxed. In other words, global finite-
time stabilization may still be achieved for a larger class of
nonlinear systems than (1.1) and (3.12), which are only continuous
but not necessarily smooth.

Example 3.3: Consider the following nonlinear system in the
plane:

ẋ1 = x2 + f1(x1)

ẋ2 = u, (3.13)



where f1(x1) is a non-smooth but continuous function defined by

f1(x1) =

{

x1 ln(|x1|) x1 6= 0,
0 x1 = 0.

Due to the presence of ln(|x1|) that tends to −∞ as x1 tends to 0,
the planar system fails to satisfy the assumption (3.1) of Theorem
3.1 nor the condition of Corollary 3.2. However, it is easy to verify
that

|f1(x1)| ≤ |x1|
3/5(3 + 3x2

1). (3.14)

Hence, an argument similar to the proof of Theorem 3.1 can
be given to indicate that the growth condition (3.14) suffices to
guarantee the existence of a C0 globally finite-time stabilizer for
the planar system (3.13) as follows:

First, choose Lyapunov function V1(x1) =
x2
1

2
, whose time

derivative satisfies

V̇1(x1) ≤ x1(x2 − x∗2) + x1x
∗

2 + x
8/5
1 (3 + 3x2

1).

The virtual controller x∗2 = −x
3/5
1 (5 + 3x2

1) yields

V̇1(x1) ≤ x1(x2 − x∗2)− 2x
8/5
1 .

Next, let ξ2 = x
5/3
2 − x

∗5/3
2 and choose

V2(x1, x2) = V1(x1) +

∫ x2

x∗
2

(s5/3 − x
∗5/3
2 )7/5ds.

Similar to (3.8) and (3.10), we have

V̇2 ≤ |x1||ξ2|
3
5 − 2x

8
5

1 + ξ
7
5

2 u

−
7

5

∫ x2

x∗
2

(s
5
3 − x

∗
5
3

2 )
2
5 ds

∂(x
∗

5
3

2 )

∂x1
(x2 + x

3
5

1 )

≤ −x
8/5
1 + ξ

7/5
2 u + ξ

8/5
2 γ1(x1),

for a C1 function γ1(x1) > 0.
By choosing u = ξ

1/5
2

(

γ1(x1)+1
)

, we arrive at V̇2(x1, x2) ≤

−x
8/5
1 − ξ

8/5
2 . On the other hand, it can be verified that

V2(x1, x2) ≤ 2x2
1 + 2ξ2

2 . Therefore

V̇2(x1, x2) +
1

4
V

4/5
2 (x1, x2) ≤ 0,

which means the system (3.13) is finite-time stabilizable.

IV. CONCLUSION

In this paper, we have presented a simpler design method for
achieving global finite-time stabilization of a family of uncertain
nonlinear systems (1.1), under the condition (3.1) which turns
out to be naturally fulfilled in the case of a lower-triangular
system (3.12). Motivated by the adding a power integrator design
approach [18], [17], an iterative algorithm was developed, making
it possible to simultaneously construct a globally finite-time, non-
Lipschitz continuous stabilizer as well as a C1 control Lyapunov
function that satisfies the Lyapunov theory for finite-time stability,
i.e., Theorem 2.2, particularly, the Lyapunov inequality V̇ (x) ≤
−cV α(x), for suitable real numbers c > 0 and 0 < α < 1. The
result of this paper has taken a significant step in the direction
of the study of various finite-time control problems using non-
Lipschitz continuous feedback. We hope that this work would
generate interest in the control community, and eventually lead
to a more practically feasible finite-time controller for nonlinear
systems.

V. APPENDIX

The proofs of Propositions 3 and 4 are given in this section.

Proof of Proposition 3. By Lemma 2.4, for l = 2, · · · , k,

|xl| ≤ |ξl + x∗l
1
ql |ql ≤ |ξl|

ql + |x∗l | ≤ |ξl|
ql + |ξl−1|

ql |βl−1(·)|.
(5.1)

Using (3.1) and 0 < qk < · · · < q1 = 1, we have

|fk(x, u, t)| ≤ (|x1|+ · · ·+ |xk|)γk(·)

≤
[

|ξ1|+
(

k
∑

l=2

|ξl|
ql + |ξl−1|

qlβl−1(·)
)]

γk(·)

≤ (|ξ1|
qk + · · ·+ |ξk|

qk )γ̃k(x1, · · · , xk), (5.2)

where γ̃k(x1, · · · , xk) ≥ 0 is a C1 function.

Proof of Proposition 4. Using the inequalities (5.1),(5.2) and
ql+1 = ql −

2
2n+1

, one can see that for l = 1, · · · , k − 1,

|ẋl| ≤
(

|ξl+1|
ql+1 + |ξl|

ql+1βl(·)
)

+ (

l
∑

i=1

|ξi|
ql )γ̃l(·)

≤ (

l+1
∑

i=1

|ξi|
ql−

2
2n+1 )ρl(·), (5.3)

for a C1 function ρl(x1, · · · , xl) > 0.

The estimate of

∣

∣

∣

∣

∂(x∗k
1/qk )

∂xl

∣

∣

∣

∣

can be done by using an inductive

argument. First of all, it is clear that the following holds:

∣

∣

∣

∣

∂(x∗2
1/q2 )

∂x1

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∂[x1β
1

q2
1 (x1)]

∂x1

∣

∣

∣

∣

∣

≤ C̃2,1(x1).

where C̃2,1(x1) ≥ 0 is a C1 function.
Inductive assumption: For l = 1, · · · , k − 2, there exist smooth
functions C̃k−1,l(·) ≥ 0 such that

∣

∣

∣

∣

∣

∂(x
∗1/qk−1

k−1 )

∂xl

∣

∣

∣

∣

∣

≤ (

k−2
∑

i=l−1

ξ1−ql
i )C̃k−1,l(x1, · · · , xk−1). (5.4)

Our objective is to prove that there are C1 functions C̃k,l(·) ≥
0, l = 1, · · · , k − 1, such that

∣

∣

∣

∣

∂(x∗k
1/qk )

∂xl

∣

∣

∣

∣

≤ (

k−1
∑

i=l−1

ξ1−ql
i )C̃k,l(x1, · · · , xk). (5.5)

First, we consider the case where l = 1, · · · , k − 2. Note that
(x∗k)1/qk = −ξk−1[β

1/qk

k−1 (·)] := −ξk−1β̃k−1(·). This, together
with (5.4), results in

∣

∣

∣

∣

∂(x∗k
1/qk )

∂xl

∣

∣

∣

∣

≤

∣

∣

∣

∣

ξk−1
∂β̃k−1(·)

∂xl

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

β̃k−1(·)
∂(x

∗
1

qk−1

k−1 )

∂xl

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

ξk−1
∂β̃k−1(·)

∂xl

∣

∣

∣

∣

+ β̃k−1(·)(

k−2
∑

i=l−1

ξ1−ql
i )C̃k−1,l(·)

≤ (

k−1
∑

i=l−1

ξ
1−ql
i )C̃k,l(x1, · · · , xk), (5.6)

where C̃k,l(x1, · · · , xk) ≥ 0 is a C1 function.



Next we shall prove that (5.6) also holds for l = k−1. In fact,
we have

∣

∣

∣

∣

∂(x∗k
1/qk )

∂xk−1

∣

∣

∣

∣

≤

∣

∣

∣

∣

ξk−1
∂β̃k−1(·)

∂xk−1

∣

∣

∣

∣

+
β̃k−1(·)

qk−1
x

1
qk−1

−1

k−1

≤

∣

∣

∣

∣

ξk−1
∂β̃k−1(·)

∂xk−1

∣

∣

∣

∣

+
β̃k−1(·)

qk−1
(ξ

1−qk−1

k−1 +ξ
1−qk−1

k−2 β̃
1

qk−1
−1

k−2 (·))

≤ (

k−1
∑

i=l−1

ξ1−ql
i )C̃k,k−1(x1, · · · , xk), (5.7)

where C̃k,k−1(x1, · · · , xk) ≥ 0 is a C1 function.
Putting (5.6) and (5.7) together, one arrives at (5.5), which, as

well as (5.3), implies that for l = 1, · · · , k − 1,

∣

∣

∣

∂(x∗k
1

qk )

∂xl
ẋl

∣

∣

∣
≤ (

l+1
∑

i=1

|ξi|
ql−

2
2n+1 )ρl(·)(

k−1
∑

i=l−1

ξ
1−ql
i )C̃k,l(·)

≤ (

k
∑

i=1

|ξi|
2n−1

2n+1 )Ck,l(x1, · · · , xk),

where Ck,l(x1, · · · , xk) ≥ 0 are C1 functions.
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