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Abstract— This paper reports experimental results con-
cerning the lane-following problem for mobile robots. The
path to be followed is acquired by a video-camera and the
current advancing velocity of the vehicle is decided on-line by
a fuzzy algorithm; this takes into account some geometric
characteristics of the lane estimated in real time and the
nominal desired speed of the robot. The obtained experimental
results on a unicycle-like mobile robot confirm the effectiveness
of the proposed approach.

I. INTRODUCTION

In recent years much research effort has been devoted to
the development of automated vehicle navigation systems;
in fact, these might provide many advantages, ranging
from increased safety of highways to decreased costs in
automated factories. In this paper the problem of automated
lane-following for mobile robots is considered; this consist
in an autonomous vehicle which is in charge of following
the path traced by a lane marked out on the floor. One major
application field for the lane-following problem is, e.g., that
of automated highways.

Effective experimental results of lane following have been
obtained in [11] for a platoon of vehicles; in this work the
case of fault diagnosis is studied in the Californian NAHSC
(National Automated Highway System Consortium), in this
case, however, the lane is recognized by a magnetic marker
sensing system.

A more promising approach for applications in partially
structured environments, such as in outdoor autonomous
navigation, the lane-detection problem is faced by means of
vision systems. Reference [15] adopts a stereo vision system
working at 20 Hz where, together with lane finding, ob-
stacle detection is also performed. A monocular approach,
using neural network and fuzzy logic techniques, is instead
presented in [8]. To optimally select the parameters of the

lane, dynamic programming is used in [13]; the frequency
of image acquisition varies from 11 Hz to 29 Hz. For the
above papers [8], [13], [15], experimental results with data
extracted by a human-driven car in normal traffic condition
are reported. In [4] a monocular, monochromatic camera
is used together with a statistical model of the lane in
order to provide fast and robust lane detection. A theoretical
approach to the vision-based road-following problem is
given in [12]; the approach is unified with the camera
fixation problem and it is grounded in the domain of the
optical flow.

Concerning unicycle-like mobile robots, the work in [10]
presents a visual servoing approach to solve the path-
following control law directly in the image plane, thus
without decomposing the problem into the lane detection
and lane following subproblems.

In [1], [2] the problem of tracking a desired trajectory
in presence of kinematic constraints is addressed. The
trajectory is given in terms of the time history of desired
vehicle positions and, by suitably introducing a virtual time,
the algorithm slows down the time law so as to guarantee
tracking of the given path under the assigned kinematic
constraints. When the trajectory is slown down, a Fuzzy
Inference System (FIS) [7] allows to exploit the forward
path knowledge (i.e., the set of vehicle positions to be
attained since the current virtual time to the current real
time) by giving the vehicle some predictive actions.

In this paper the FIS algorithm developed in [1], [2] is
used for the lane-tracking problem. In detail, a monocular
video system acquires the data for the real-time lane detec-
tion; the estimated geometric characteristics of the lane in
front of the vehicle then provide the forward path knowl-
edge needed to decide on-line a proper advancing velocity.
The overall algorithm, thus, only need to be initialized with



the desired nominal cruise velocity. Experimental results
with the unicycle-like Magellan Pro mobile robot confirm
the effectiveness of proposed approach.

II. PROPOSED ALGORITHM

Our aim is to develop an algorithm capable of au-
tonomously steering a mobile robot at a desired cruise
velocity on a path marked out by a lane on the ground. The
geometric characteristics of the path are estimated on-line
by processing in real time the images of the lane acquired
by means of a camera-based vision system; moreover, the
cruise velocity should be lowered when not compatible with
the maximum allowed vehicle acceleration at some point
along the path. The algorithm’s output is thus the linear
and angular vehicle velocity to be fed as reference velocity
to the low level motion control of the mobile robot.

Since the problem at hand is similar to that faced by car
drivers, the proposed approach is to emulate a human-like
behavior to adapt the cruise velocity to the characteristics
of the path. The idea of giving a desired behavior to
an autonomous robot is not new in the robotic literature,
see, e.g., [3], [5], in this paper the desired behavior is
implemented through a FIS. This is based on a set of very
simple fuzzy rules, detailed in the next Subsection, e.g.,
allowing the full nominal cruise velocity on a straight and
clear road, while conveniently decreasing the speed in the
approach of a narrow bend.

At each time instant, the output of the fuzzy system
is the current reference advancing velocity of the mobile
robot; this is then converted into proper linear and angular
velocity references for the low level motion control of the
vehicle [2].

A. Fuzzy Inference System

The FIS is in charge of handling information such as
“the next bend is too narrow for the current velocity” or
“how far is next narrow bend?”. The output of the FIS is
a reference cruise velocity of the vehicle that best fits the
geometric characteristics of the path.

Being vague concepts, narrowness of a bend and the
distance from a narrow bend can be considered as fuzzy
variables; of course, the narrowness of a bend is related to
its curvature, that can be computed by several methods, e.g.,
as in [1], [14].

The output of the FIS is the variable v ∈]0, vmax], that
represents the value of the currently allowed cruise velocity;

by making v sufficiently small, the vehicle can describe any
large path curvature.

Under the constraint of a maximum allowed angular ve-
locity ωmax, the maximum curvature c that can be achieved
by the vehicle travelling at the speed v is

c =
ωmax

v
. (1)

By defining as ĉ an estimate of the first next curvature
narrower than c that will be met in the incoming path, the
following value is used as the FIS input curvature

∆c = ĉ − c. (2)

This value can be viewed as a measure of how much the
next bend is narrower than the one currently achievable by
the vehicle.

The membership functions of the variable curvature are
shown in Figure 1. Notice that the membership sets small,
appropriate, large have been chosen considering that a large
value means that the achievable curvature is smaller with
respect to the required one. Moreover, after normalization,
the value ∆c = 0 corresponds to the value 0.5 and thus the
membership function appropriate takes its highest value.
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Fig. 1. Membership function of the normalized variable curvature.

The value of the distance from the next narrow bend
is expressed by means of the variable q. Its definition
is strongly influenced by the sensor used to extract path
information; for example, in [1], [2] a time distance is used,
since the desired trajectory is given in terms of a time law.
In case of the use of a video-camera the curvilinear abscissa
reconstructed from the image might be used.



The membership functions of the variable distance are
similar to those shown in Figure 1 with reference to the
variable curvature. In this case, the membership sets are
close, medium, far and they have been chosen considering
the space needed to stop the vehicle at the current velocity
with the given acceleration bound.

Based on the two defined variables, the set of fuzzy rules
that implements our human-inspired behavior for the lane-
following problem is:

1. if (curvature is small) then

(increase v);

2. if (distance is far) then

(increase v);

3. if (distance is medium) and

(curvature is not small) then

(keep the value of v);

4. if (distance is close) and

(curvature is appropriate) then

(keep the value of v).

5. if (distance is close) and

(curvature is large) then

(decrease v).

Notice that, due to the hierarchical approach, all the 9

possible cases are compacted in 5 rules. Figure 2 represents
the surface of the rules above.
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Fig. 2. Surface of the developed rules.

It must be remarked that the FIS described in this Section
adopts practically the same rules and membership functions
as those used in [2]. There is a major difference, however,

in the fuzzyfication step, since the desired path is now
acquired on-line through a video system. In particular, the
fuzzyfication process also filters the data in order to generate
smooth values and the filter’s bandwidth must be properly
chosen.

III. EXPERIMENTAL RESULTS

The vehicle used in the experiments is the Magellan Pro
mobile robot, shown in Figure 3, manufactured by Real
World Interface [9]. The low level controller, working at a
sampling frequency of 40 Hz, is derived from the controller
reported in [6]. The tracking error is affected by friction,
gear backlash, wheel slippage and other undesired effects,
e.g., a strong overshoot in step response of the native PID
controller of each wheel of the vehicle.

Fig. 3. Magellan Pro mobile robot.

The video acquisition system is composed by a ccd
monochrome camera with a framegrabber mounted on the
vehicle, working at a sampling frequency of 2 Hz. Because
of this low sampling frequency the maximum linear velocity
has been limited to 20 cm/s, in order to allow lane detection
in real-time. A sample image acquired during one of the ex-
periments is shown in Figure 4. The quality of the image is
poor and the resolution is low (160×120 pixels); moreover,
high distortion on the image’s borders is experienced.
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Fig. 4. Sample image acquired during an experiment.

To model the camera view a pin-hole projection is
assumed [14]. Let define as fc = [ fc,1 fc,2 ]

T
∈ IR2 the

effective focal lengths and as cc ∈ IR2 the principal point,
both expressed in pixels. The vector pc = [ xc yc zc ]

T
∈

IR3 is a point in the camera reference frame, expressed in
meter. The pin-hole projection is defined as:

p p =

[

x p

y p

]

=

[

xc/zc

yc/zc

]

. (3)

In pixels, it is

pp =

[

fc,1 0

0 fc,2

]

∗ p p + cc. (4)

The given point can be expressed in a different reference
frame, e.g., a vehicle-fixed frame, pv

∈ IR3 by the known
relation:

pc = Rc

v
pv + tc (5)

where Rc

v
∈ IR3×3 is the rotation from the vehicle-fixed to

the camera-fixed frame and tc ∈ IR3 is the vector connecting
the camera-fixed frame to the vehicle-fixed frame expressed
in the camera frame.

For our specific experimental set-up a calibration proce-
dure has been followed, using a software toolbox developed
by J.-Y. Bouguet and inspired by [16]. The following
numerical values have been obtained:

fc = [ 213 218 ]
T

cc = [ 80 60 ]
T

tc = [ 0 0.3945 −0.0032 ]
T m,

with the camera-fixed frame rotated of 26 deg with respect
to the y axis of the vehicle-fixed frame. The radial distortion

has been neglected. The conversion from the image’s pixels
to the vehicle-fixed frame, and further to an inertial-fixed
frame, is correctly defined since, by definition, we make the
assumption that all the relevant points are on the ground.
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Fig. 5. View on the ground plane (in vehicle-fixed coordinates) of the
image in Figure 4. The yellow (gray) area is the map of the image area,
the extracted lane and its interpolation can be noticed.

Figure 5 shows how the image data reported in Figure 4
are projected on the ground plane with reference to the
vehicle-fixed frame. The lane is modelled as a third-order
polynomial [14] and, in order to obtain the polynomial
coefficients, a simple interpolation between the points rec-
ognized as owning to the lane (see the tick line in Figure 5)
is performed. Due to the poor quality of the image and the
low sampling frequency those are further smoothed by a
first-order filter and used to generate the reference angular
velocity. Notice that image processing techniques for lane
extraction are out the scope of this paper and this problem
is not discussed here.

The case study has been designed to reproduce in scale a
highway-like path: considering a curvature of ≈ 500 m for
cars travelling at ≈ 100 km/h, we have chosen a curvature of
the lane of about 3 m for our robot travelling at a maximum
speed of 20 cm/s. The maximum angular velocity ωmax has
been set to

ωmax = 7◦ deg/s.



In Figure 6, the normalized input curvature to the FIS
is shown. Around t ≈ 10 s the algorithm detects a narrow
bend; in fact, at the current linear velocity, the bend cannot
be approached keeping the desired path.
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Fig. 6. Normalized input curvature of the FIS algorithm.

At that point, the FIS must command the vehicle to
decrease its velocity; this can be seen in Figure 7, where the
output of the FIS is plotted. It can be easily recognized that
across the high-curvature tract the velocity is quickly slowed
down from the nominal 20 cm/s to 15 cm/s; afterward, the
cruise velocity is progressively restored to its nominal value.
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Fig. 7. Output of the FIS algorithm. It can be recognized that the
algorithm requires to slow down the vehicle in presence of the band and
to successively accelerate when the band is terminated.

Figures 8 and 9 show the linear and angular velocities
commanded to the low level controller. It can be recognized

that, for this specific experimental study, the linear velocity
is close to the FIS output while the angular velocity is
affected by the noise of the lane-extraction algorithm.
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Fig. 8. Time history of the linear velocity of the vehicle.
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Fig. 9. Time history of the angular velocity of the vehicle. The signal is
affected by the noise coming from the features extraction that suffers from
the poor resolution and low sampling frequency of the vision system.

The total path executed by the vehicle, drawn with respect
to an inertial frame, is reported in Figure 10.

Finally, to investigate the robustness of the proposed
approach with respect to different operating conditions, a
number of experiments have been run by changing the light-
ing and varying the low level control gains. These resulted
in the set of paths plotted in Figure 11, which show the
reliability of the developed algorithm. It must be remarked
that the plotted inertial coordinates have been obtained by
resorting to dead reckoning techniques; therefore, a certain
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Fig. 10. Path followed by the vehicle during an experiment.

inaccuracy must be considered.

IV. CONCLUSIONS

In this paper experimental results concerning the lane-
following problem for Magellan PRO, a unicycle-like mo-
bile robot, have been presented. A fuzzy algorithm has been
designed that handles the real-time information about the
incoming path’s characteristics given by a video-camera to
decide on-line the cruise velocity of the mobile robot. The
fuzzy rules developed easily take into account the path’s
curvature; future improvement might concern a FIS aimed
at handling different sources of information such as, e.g., the
velocity of a leader vehicle or the presence of an obstacle
coming from several sensors.
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