
 
Abstract— Input-output (I/O) linearization is a typical

control method in the nonlinear multi-input multi-output
(MIMO) system. In this paper, adaptive fuzzy control is
combined with input-output linearization control to constitute
the hybrid controller. The proposed control method is applied
to the attitude maneuver control of the flexible satellite, which
is a complex nonlinear system. The basic control structure is
presented. The selection of the controller parameter, which
guarantee the attitude stabilization of the satellite with
parameter uncertainties, has been analyzed. The adaptive
fuzzy control compensates for the plant uncertainties to
increase the robustness of the controller. Simulation results
show that precise attitude control is accomplished in spite of
the uncertainty in the system.

I. INTRODUCTION

OBUSTNESS against modeling uncertainties and
unknown disturbances for the satellite attitude control

system is widely treated in the literature. One of the
popular techniques is input-output (I/O) linearizing control
that is often employed in the nonlinear multi-input multi-
output (MIMO) system. Although the technique of I/O
linearization results in input-output decoupling, it has
limitations. The technique relies on the exact cancellation
of nonlinear terms and the resulting controller’s robustness
cannot be guaranteed for the nonlinear system with
uncertainties. In recent years, the enhancing robustness of
I/O linearization controllers have been widely discussed. In
[1], robustness of linearization control system is obtained
by the integral error feedback. For pitch axis maneuver,
attitude control is accomplished in spite of the parameter
uncertainty in the system. The I/O linearization is
combined with variable structure control to form a hybrid
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controller in [2]-[4]. It requires that the uncertainty be
matched and bounded. The resulting hybrid controllers
increase the robustness of the I/O linearization controllers.
However, the conventional chattering problem of variable
structure control is not completely solved.

In this paper, adaptive fuzzy control is combined with
I/O linearization to constitute the hybrid controller. The
adaptive fuzzy control can compensate for the system
uncertainties so that it can increase the robustness of the
controller. For MIMO system, building MIMO fuzzy rules
is usually required for the controller, which are time
consuming or even difficult in practice. This limits
somehow fuzzy control’s application to MIMO systems.
The proposed technique will exploit the decoupling
property of I/O linearization, so as to decompose MIMO
fuzzy control rules to double-input and single-output
(DISO) rules without any deterioration in the closed-loop
system. Simulation results show the effectiveness of the
proposed hybrid control by incorporating the merits of both
techniques and realizing the accurate attitude control. 

The organization of this paper is as follows. Section II
describes the attitude control problem. The theory of
feedback linearization is applied to the uncertain nonlinear
system in section III. The hybrid control law is derived in
section IV. Section V presents simulation results. 

II. PROBLEM FORMULATION 

The flexible satellite with a solar panel moving in a
circular orbit, an inverse square gravitational field,
equipped with reaction jets for orientation control is
considered. The equations of motion about the center of
mass of the satellite is as follows:
                       uTCJJ d +=++ × ηωωω &&&                         (1)

                       02 2 =+Λ+Λ+ ωηηξη &&&& TC                        (2)

                     ω)( 02
1 Iqqq += ×& ,  ωTqq 2

1
0 −=&              (3)

where 33×∈ RJ denotes the inertia matrix of satellite,
3R∈ω denotes the angular velocity of the satellite with

respect to an inertial frame, 3Ru ∈ denotes the vector of
control torques, 3RTd ∈ denotes the vector of external
disturbances, C is the coupling matrix between rigid body
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and appendage, η  is the vector of five-order model
displacements, ξ  is the modal damping matrix, Λ is modal

frequency matrix, 3Rq ∈ and Rq ∈0 denote the quaternion
of the satellite with respect to an inertial frame and satisfy
the constraint 12

0 =+ qqqT , and I denotes a 33×  identity
matrix. 

For any vector Trrrr ]  [ 321= , the notation ×r stands for

cross product matrix 
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  The inertia matrix of satellite is usually not known
exactly. In this paper, the inertia matrix is assumed that

JJJ ∆+= ∗ , where ∗J  is a known matrix, J∆ denotes
the uncertain parts of the matrix J. In order to apply the
proposed design method, we define state variable

TTTqx ),( ω=  and the controlled output y=q. The
equations of motion of the satellite (1)~(3) can be put in the
form of MIMO uncertain nonlinear system
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and )(xg∆ denote the terms in (4) which arise due to
satellite uncertainties. 2f∆ is a function of J∆ , dT and η&& .

2g∆ is a function of J∆ .The control objective is to design
a control law u(t) which make the output y tracks a desired
trajectory T

ddddd qqqtqy ),,()( 321== in the presence of
bounded disturbance f∆ and g∆ .

  In the following section, we will first apply I/O
linearization control to (4). The error dynamics for the
uncertain system are derived. Then the adaptive fuzzy
controller is designed to achieve zero tracking error and to
increase the robustness of I/O linearization controller.

III. I/O LINEARIZATION OF SATELLITE ATTITUDE SYSTEM
WITH UNCERTAINTIES 

If f∆ =0 and g∆ =0, the nonlinear system (4)
corresponds to the nominal system. The I/O linearization
process is performed on the nominal system by assuming
that the nonlinear system (4) has a vector relative degree

[ 1r ,…, mr ]
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  In (6), Lk (k=r1-1,…, rm-1)denotes the kth successive
Lie derivative. A major drawback of I/O linearization is
that it relies on the exact cancellation of nonlinear terms in
order to achieve linear input-output relation. Thus the
presence of uncertainties causes loss of I/O decoupling,
steady-state tracking errors and deteriorated transient
responses. However, for a certain class of uncertainties
which obey the so called ‘matching condition’, I/O
linearization is guaranteed[3]-[4].

  Matching condition: If the system has a vector relative
degree [ 1r ,…, mr ], then the addition of perturbations

f∆ and g∆ do not change the relative degree of the system
if, ),( txf∆  and

[ ]iiiij hhhdhtxg 2-r
f

2
ff

idL,,dL ,dL ,ker),( L∈∆  for i

,j=1,2,…,m.
where ker(…) denotes the kernel of a matrix. This

‘matching condition’ guarantees that the perturbations
f∆ and g∆  do not appear in derivatives of  iy  of  order

less than ir  . Therefore if the uncertainties f∆ and g∆
satisfy ‘matching condition’, there exists diffeomorphic
coordinate transformation ),()( ηξ=xT  which transforms
system (4) into the nominal form[3]-[4]:
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where Tr
m

rrr myyyy ],, ,[ )()(
2

)(
1

)( 21 L= . A∆ and
B∆ arise due to uncertainty f∆ and g∆ in lineraization

process. The matrix A and B are defined similarly as (6)
with the argument x replaced with ),(1 ηξ−T . If the matrix A



is nonsingular, the control law is  
                                  )(1 BvAu −= −                                (8)

where v is a new synthetic input. Substituting (8) into (7)
gives:

                   )(1)( BvAABvy r −∆+∆+= −                   (9)
  Equation (9) clearly demonstrates that the linear

feedback control law (8) alone is not adequate to achieve
zero tracking error. Consequently, the adaptive fuzzy
controller will be added to the I/O control law(8). 

IV. HYBRID CONTROLLER DESIGN

A. Hybrid controller structure
  Under the control law (8), the input-output relation can

be rewritten as follows
                   ),()( vxEvy r +=                                         (10)

where )(),( 1 BvAABvxE −∆+∆= − , [ ]TmEEE ,,E , 21 L=
denotes the error which arise due to the uncertainties in the
system. The ith output is expressed as iy , i=1,2,…,m, 

                   ),()( vxEvy ii
r

i
i +=                                     (11)

To compensate for the uncertainties in the system, the
adaptive fuzzy control fiv  is added to the linear feedback

control law iv . The modified iv  is defined as
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where diy  is the desired trajectory, diii yye −= , fiv  is

the output of the ith fuzzy neural network which
compensate for the uncertainties. The hybrid controller
structure is shown in Fig.1. The control system comprises
two parts. One part is the conventional linear feedback law
and the other part is the adaptive fuzzy control fiv that

compensate for the uncertainties f∆ and g∆ .
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     Fig. 1 Diagram of adaptive fuzzy linearization control system

According to (11) and (12), the error dynamic equation
is yielded
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 The error dynamics can be defined as a linear dynamic
system containing uncertain elements, i.e.       

                      ),(ˆ txEBvBzAz iifiiiii ++=&                (14)

where ),(ˆ txDE ii ≤ ,
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such that iA  is hurwitz where ),,,( )1(10 −=
iriiii kkkk L .

Thus there exists a positive definite matrix iP  that satisfies

the Lyapunov equation iiii
T
i QAPPA −=+ .

B. Adaptive fuzzy control
  The adaptive fuzzy controller is implemented by the

Takagi-Sugeno(T-S) model with constant consequents. The
output of the adaptive fuzzy controller is )(xCy T

fTS Ψ= .

Where
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ψ , l=1,2,…,L (L is number of

rules). l
iA  represent the fuzzy set of input variables

ix (i=1,2). )( iA
xl

i
µ  is Gaussian membership function. On

the premise of precise attitude control, the only rule
consequent parameters lC  (l=1,2,…,L) are on-line
adjusted. 

There are m T-S models that are employed to
compensate for those m output tracking errors in attitude
control system. Let  

                )( ii
T
fifi zCv Ψ=   i=1,2,…,m                       (15)

Substituting (15) into (14) gives
      ),(ˆ)( txEBzCBzAz iiii

T
fiiiii +Ψ+=&                     (16)

Let )ˆ(ˆˆ ii
T

fiiiii zCBzAz Ψ+= ∗& be an identification model

and iii zz ˆ−=ε , where ∗
fiC  denotes the optimal fiC ,

defined as 
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Therefore         iiii
T
iiiii EBBA ˆ)( +Ψ+= εφεε&           (18)

       Where   ∗−= fifii CCφ                          

In the following, the adaptive control law for updating



rule parameter fiC  is derived in order to ensure that

0→iε  as ∞→t . A candidate Lyapunov function is
chosen as:
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where ir  is a design parameter. The time derivative of

iV  is

           
))( ˆ(        

ˆ

iiiii
T
iii

T
i

iii
T
iii

T
ii

BpEr

EBpQV

φεεφ

εεε
&

&

+Ψ+

+−=
              (20)

Choosing the adaptive law (recalling that fii C&& =φ )         
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Equation (20) is reiterated using vector norms      
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When the adaptive fuzzy control fiv  is added. Let
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 where 0>iα       

 Substituting (23) into (22) gives   iiiV εα  −≤&

To avoid that fiC  take arbitrarily large values, the

estimate of  fiC  is restricted to a compact set B(M) (where

MC fi ≤  denotes a ball of radius M). Using a Lyapunov

function, an adaptive law with projection can be defined as
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Based on the above discussion, the proposed hybrid
control design is outlined as follows. In satellite attitude
control system, the overall control law is

               [ ])()( ln
1 xBvvxAu f −+= −                         (26)
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 In order to incorporate the adaptive fuzzy control fiv

into (26), the premise condition is to make the error

iÊ satisfy (23). This involves choosing a value for iα

which clearly depends on bounds of the satellite

uncertainty, i=1,2,3.
   In (26), )( ir

diy  denotes the derivatives of the desired

quaternion diq of order ir , diii qqe −= , iq denotes the
actual quaternion, i=1, 2, 3. iε denotes the terms of the
difference between the nominal satellite model error in
tracking the desired diq  and the error of the uncertain
satellite model in tracking diq , i.e. iii ee ˆ−=ε . The input
of the ith T-S model are iε  and its rate iε&  The output
is fiv , i=1, 2, 3. In simulation, the fuzzy sets of input

variables ( iε , iε& ) are defined as negative big(NB), zero(E),
and positive big(PB). The initial mean of NB, E, and PB in

iε  is respectively -0.01, 0 and 0.01. The corresponding
initial variance is 0.0047. The initial mean of NB, E, and
PB in iε&  is respectively -0.008,0 and 0.008. The
corresponding initial variance is 0.0038. In order to
improve the self-learning speed, the parameter vector fiC

is initialized as a linear PD controller with an acceptable
performance. The initial fuzzy rules are given in Table I,
i=1, 2, 3. 

  The satellite dynamic (4) can easily be verified that it
has a relative degree of [2,2,2]. Integral error feedback is
added to the linear feedback control law vln[1]. Thus vln is
written as

   iiiiiidii dpekekqv −−−= 01ln &&&     i=1, 2, 3              (27)

where ii ed =& . The parameters 1ik , 0ik and ip  are selected
such that 001 =+++ iiiiiii epekeke &&&&&& is Hurwitz. The desired
trajectory )(tqdi  is selected as       

              indindindi Rwqwqwq 222 =++ &&& ξ                      (28)

where 08.0,707.0 == nwξ , external input 0== ∗
ii qR ,

i=1, 2, 3.

TABLE I 
THE INITIAL FUZZY RULES

iε& NB E PB

NB -0.001 -0.0005 0
E -0.0005 0 0.0005

PB 0 0.0005 0.001

V. SIMULATION

The first elastic mode is considered for the
simplification. The parameter values used for the flexible
satellite are as follows: inertia matrix

iε



2mkg 
8400110020
1100507090
20906100
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−
=I , coupling matrix

[ ] )m(kg 21183.0 2
1T−=C , modal frequency srad /  02.1=Λ ,

modal damping 001.0=ξ , control torque range [-10, 10],

orbital rate srad /10078.1 3
0

−×=ω .
Further, the follow initial conditions are chosen as: the

actual attitude ]5327.0  0.6461  1070.0[)0( −=q ,

5361.0)0(0 =q ,(namely roll angle o351 =θ , pitch

angle o802 =θ  , yaw angle o603 =θ ),

s/  ]04.0  04.0  04.0[)0( o=ω , 0)0( =η , 0)0( =η& , the
desired attitude 10 =q , ]0  0  0[=q . The linear feedback
parameters are selected as follows by observing the
simulated response of the satellite, ]056.0  06.0  05.0[0 =k ,

]46.0  5.0  4.0[1 =k , 410]4.1  6.1  1.1[ −×=p . For the
adaptive fuzzy control, the parameters are set as follows

)1,1(321 diagQQQ === , 06.0321 === ααα , 1.01 =r ,
15.02 =r , 12.03 =r . 

The proposed hybrid control is compared with the
conventional PID control. Fig.2 shows the three attitude
angles under PID control and the hybrid control in the case
of nominal parameters. Fig.3 shows the result in the case of
inertia matrix increment of 20%. Under the hybrid control,
attitude angles converge to zero in around 100s and the
overshoot is -0.17°. Under PID control, the response time
is around 160s and the overshoot is -6.23°.

To further demonstrate the effectiveness of the hybrid
control under larger inertia matrix variations, the inertia
matrix is increased to 150%J. Fig.4 shows the response of
the satellite using the hybrid control and PID control.
Because of space limitation, we only show modal
displacement in the last case. Under PID control, the
response time is extended to around 220s and the overshoot
arrived to -9.45°. The modal displacement of panel is
between -0.003m and 0.003m. Under the hybrid control,
the response time is around 110s and the overshoot is –
2.6°, the oscillation of panel attenuates to zero in around
200s.

Comparing with PID control, the hybrid control offers
quicker response and is insensitive to the parameter change
of the flexible satellite. It could effectively damp out the
oscillation of the solar panel that is yielded in the attitude
maneuver process, so as to obtain the accurate attitude
control of flexible satellite. Furthermore, since the
parameter vector fiC is updated from the set initial values

incorporating the expert’s knowledge, the attitude tracking
error could converge rapidly to zero so as to offer a faster
process response.

                                (a) PID control

                               (b) the hybrid control
      

Fig.2  Attitude angle in the case of nominal parameter

   
                                    (a) PID control

                                   (b) the hybrid control

Fig.3  Attitude angle in the case of inertia matrix increment of 20%



 
                      (a) attitude angle under PID control

                     (b) attitude angle under the hybrid control

   
(c) modal displacement under PID control

            (d) modal displacement under the hybrid control 

Fig. 4 Satellite attitude in the case of inertia matrix increment of 50%

VI. CONCLUSION 

The proposed hybrid control structure that combines I/O
linearization with adaptive fuzzy control has been outlined.
The adaptive fuzzy control compensate for the uncertainties
of satellite attitude system so as to enhance the closed-loop
system performance by reducing the output tracking error.
Based on I/O linearization, the fuzzy control rules
employed in MIMO system are decomposed to DISO fuzzy
rules, which facilitates the incorporation the experts’
experience into the control system. In the practice
realization, the hybrid control method needs good quality

quaternion measurements, computations and high-speed
control loop closure. The proposed control law has the
analytical form and can be implemented using the
microprocessor. Simulation results show the derived
controller can achieve robust tracking performance for
large parameter uncertainty. 
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