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Abstract— This paper compares two different friction com-
pensation techniques on a machine tool table: a friction model
based feedforward technique and a disturbance observer
which does not depend on a friction model. For the first tech-
nique, the performance of different friction models proposed
in literature is compared. The disturbance observer estimates
the friction force using a Kalman filter with a second order
random walk model. Both approaches are complementary,
yielding that their combination results in accurate tracking
performance if the novel Generalized Maxwell-slip friction
model is used.

I. INTRODUCTION
Friction in mechanical systems is a nonlinear phe-

nomenon which can cause control problems such as static
errors, limit cycles and stick-slip. In order to design con-
trollers for highly accurate machines, friction has to be com-
pensated. Detailed analysis of friction experiments reveals
two friction regimes: the pre-sliding regime and the sliding
regime. In the pre-sliding regime the adhesive forces (at
asperity contacts) are dominant such that the friction force
appears to be a function of displacement rather than veloc-
ity. This is so because the asperity junctions deform elasto-
plastically thus behaving as nonlinear hysteretic springs. As
the displacement increases, more and more junctions will
break resulting eventually in gross sliding. In the sliding
regime all the asperity junctions are broken such that the
friction force becomes also a function of the velocity in
addition to the other states of the system [2].

This paper discusses the compensation of friction in pre-
sliding regime only. A feedforward friction model based
technique, using four different state-of-the-art models, and a
non-model based technique, called disturbance observer, are
described, implemented and compared experimentally on a
machine tool table, which is an industrially relevant system.
In order to use a compensation technique on a real industrial
setup the following conditions have to be kept in mind:
(i) the used technique should be stable, (ii) it should be
easy to use in an existing control device, (iii) the computer
memory needed for implementation should be as small as
possible, and (iv) the computational cost must be as low as
possible. Therefore the criteria of comparison are not only
accuracy of compensation, but also stability, complexity of
implementation (including parameter identification in case
of the model based approaches) and computational cost.

The models that we selected for the feedforward com-
pensation technique are some of the most effective ones

given in the open literature: the Dahl model [4], the LuGre
model [3], the Leuven model [12] [9], and the Generalized
Maxwell-slip (GMS) friction model [7].

Section II discusses briefly the above mentioned friction
models. Section III describes the machine tool table which
is used to validated the different approaches. Section IV
describes the friction-model-based feedforward compensa-
tion technique, its implementation for the different friction
models, including the experimental identification of the
model parameters, and the obtained results. Section V
describes the disturbance observer its implementation and
results. Section VI combines both techniques and shows the
improved performance. Section VII formulates the conclud-
ing remarks.

II. FRICTION MODELS FOR CONTROL

This section briefly describes the four selected friction
models.

A. The Dahl model

Dahl [4] developed a comparatively simple model which
was used extensively to simulate systems with ball bearing
friction and which has been used as a standard simulation
model in aerospace industry. This friction model is an
extension of Coulomb friction but it produces a smooth
transition around zero velocity. The frictional hysteresis
at pre-sliding is approximated by a generalized first order
differential equation of the position depending only on the
sign of the velocity v :
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with Ff the friction force, σ0 the initial stiffness of the
contact at velocity reversal, and Fs the static friction force.
The exponent δd determines the shape of the hysteresis.

B. The LuGre model

A model which is in line with Dahl’s considerations
and employing the idea of an averaged deformation of the
contact asperities has been developed at the universities of
Lund and Grenoble [3] and is called the LuGre-model. It
combines the pre-sliding behaviour of the Dahl model with
the steady-state friction characteristic in sliding regime such



as the Stribeck curve s(v). The friction force is given as a
function of the state variable z and the velocity v:

Ff = σ0z + σ1

dz

dt
+ σ2v. (2)

where the parameters σ0, σ1 and σ2 are the asperity stiff-
ness, the micro-viscous friction coefficient and the viscous
friction coefficient. The interpretation of the internal state
is linked to the bristle friction model [6], viz. the state
variable z represents the average deflection of the contacting
asperities:

dz

dt
= v − σ0

v

s(v)
z, (3)

where s(v), the Stribeck curve, is a decreasing function
for increasing velocity bounded by an upper limit equal to
the static force Fs and a lower limit equal to the Coulomb
friction force Fc:

s(v) = sgn(v)
(

Fc + (Fs − Fc)e
−|v/VS |

δVS

)

, (4)

with VS the Stribeck velocity and δVS
the Stribeck shape

factor.

C. The Leuven model
The Leuven model, presented by the authors [9], [12] was

based on the experimental findings that the friction force in
pre-sliding regime is a hysteresis function of the position,
with non-local memory, which was only approximated by
the former models. The Leuven model tries to fit this spe-
cific behavior into the LuGre-model in order to obtain better
tracking results at velocity reversals [8]. The equations of
the Leuven model are:
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Ff = Fh(z) + σ1

dz

dt
+ σ2v. (6)

σ1 and σ2 have the same meaning as for the LuGre model.
δl is the Leuven shape factor determining the transformation
between the state variable z and the position x of the
moving mass. The hysteresis function Fh(z) can easily
be implemented by using the Maxwell-Slip approximation
[5],[9]. Its main advantages are the ease of implementation
and the limited number of required memory. It consists of
N elasto-plastic elements in parallel. Each element i has
one common input z and one output Fi and each element
is characterised by its own maximum elementary Coulomb
force Wi, an elementary stiffness value ki and a state
variable ζi (see figure 1). The state variable ζi describes the
position of element i. The elements have no mass, yielding
a static relationship between the force Fi and the relative
displacement (z−ζi) for each element. The relationship can
be described as:

if |z − ζi| < Wi

ki
then

{

Fi = ki (z − ζi)
ζi = const.

else
{
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Fig. 1. Representation of the Maxwell-slip friction model using N
elementary models.

The total hysteresis force is equal to the sum of hysteresis
forces (Fi) of each element:

Fh(z) =

N
∑

i=1

Fi(z). (7)

D. The generalized Maxwell-Slip Friction Model

The generalized Maxwell-Slip (GMS) friction model [7]
is developed from a physically motivated friction model
[1] and is based explicitly on three friction properties: (i)
the Stribeck curve for constant velocities, (ii) the hysteresis
function with non-local memory in the pre-sliding regime,
and (iii) the frictional memory in the sliding regime. The
developed model is a parallel connection of different single
state friction models, all having the same input namely the
velocity v. The friction force is given as the summation of
the outputs of the N elementary state models plus an extra
viscous term, if viscous friction is present at the interface:

Ff (t) =

N
∑

i=1

Fi(t) + σ2v(t).

The dynamic behavior of each elementary model i can be
written as:

• If the elementary model is sticking, the state equation
is given by:

dFi

dt
= kiv.

The elementary model remains sticking until Fi >
αis(v) (αi = const).

• If the elementary model is slipping, the state equation
is given by:

dFi

dt
= sgn(v)C

(

αi −
Fi

s(v)

)

.

The elementary model remains slipping until the ve-
locity goes through zero.

The parameter σ2 and the Stribeck curve s(v) are the
same as for the LuGre and Leuven model. The attraction
parameter C determines the attraction of the total friction
force towards the Stribeck curve in sliding. Each elementary
model i has its own elementary stiffness ki, and elementary



fractional parameter αi. This latter determines the maximal
force for each Fi during sticking.

Further details of these models can be found in the
mentioned references. The identification of the model pa-
rameters is discussed in section IV.

III. MACHINE TOOL TABLE SYSTEM
Figure 2 shows the machine tool table system used to

validate experimentally the friction models. The table is
guided and supported by two recirculating-roller guideways
each with two carriages. All the bearings in the system are
of rolling-element type. A 50-mm pitch-size ball-screw cou-
ples the table to a screw which is directly connected to the
rotor of a brushless permanent magnet servo motor (Parvex
LD840EE) by a stiff coupling without any reduction.

motor

guideways

fixed 
mirror

ball−screw

moving
mirror

Fig. 2. The machine tool table setup used to validate experimentally the
tracking performance for sliding trajectories. The motor (top of the figure)
is directly connected to the screw which is coupled to the table (bottom
of the figure) via a ball-screw.

A Renishaw interferometer with a resolution of 10 nm
measures the position of the table by measuring the relative
distance between two mirrors, one attached to the frame,
the other attached to the table. The control input to the
system is a voltage between ± 10 Volt which is converted by
the motor’s current amplifier (Parvex AMS2) into a current
signal. This current signal is proportional to the applied
force to the rotor. The friction force itself is not directly
measurable. However, after compensation the cogging force
and for small accelerations of the table, the friction force
corresponds to the applied force and can thus be derived
therefrom.

The cogging force is a magnetic disturbance force. It is
the force needed to keep the rotor at a certain position due to
the magnets and depends only on the position of the rotor
with respect to the stator. The cogging force is identified
using the technique described in [13]. It has been modelled
using a finite Fourier series and compensated by means of
table position-driven feedback.

The different friction compensation techniques, discussed
below, are tested in combination with a weak PD feedback
controller. Without feedback controller, the machine tool
table will drift. A weak controller is selected in order to
clearly see the influence of the compensation techniques.

To investigate the tracking performance in pre-sliding
regime, a desired position signal as shown in figure 3A
is applied to the system. This pre-sliding trajectory is
chosen such that a large range of the pre-sliding regime
is covered and two inner hysteresis loops are made during
one reference period. With this signal it is possible to
investigate the influence of the nonlocal memory on the
tracking behavior. The resulting peak-to-peak position error
for the feedback controller only equals 46.2 µm.
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Fig. 3. Experimental results on the machine tool table using a simple
feedback controller. Fig. A: the desired (dashed line) and real (full line)
position as a function of time. Fig. B: the position error as a function of
time.

IV. FEEDFORWARD FRICTION-MODEL-BASED
COMPENSATION

This section discusses feedforward friction-model-based
compensation using the four friction models discussed in
section II. The applied force to the system corresponds to
the sum of the output u of the feedback controller and the
estimated friction force F̂f :

Fa = u(t) + F̂f (xd,
dxd

dt
),

where xd represents the desired position trajectory.
The parameters of the different friction models have to

be identified. This is a nonlinear parameter identification
problem, consisting of different steps and dedicated exper-
iments, as described in the following paragraph.

A. Friction model parameter identification

The Stribeck curve (Eq. 4), used by the LuGre, Leuven,
and GMS model, can be identified by imposing on the
system different constant velocities and using a nonlinear
least-squares curve-fitting techniques. Figure 4 shows the
measured and estimated Stribeck curve. The estimated pa-
rameters are Fs = 54 N , Fc = 39.2 N , δVS

= 0.98,
VS = 698 µm/s, and σ2 = 8.4e − 5 Ns/µm.

In order to identify the pre-sliding regime parameters
a low-velocity saw-signal is imposed to the system using
a stiff PID-controller. Figure 4B shows the measured and
identified hysteresis shape for the Maxwell-slip model with
12 elements, using standard linear least squares techniques.
The estimated Dahl parameters, δd = 5.14 and σ0 =
1.4N/µm, are estimated using a nonlinear curve-fitting
technique.
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Fig. 4. Figure A: the crosses correspond to the measured friction
force values for different steady-state velocities. The full line is the
estimated Stribeck curve. Figure B: The full line corresponds to a measured
hysteresis curve of the friction force in pre-sliding regime. The dotted line
corresponds to the estimated curve using elementary Maxwell-Slip models.

memory + x exp pow
Dahl 8 4 8 1 2

LuGre 8 6 9 1 1

Leuven 8 + 3N 6 + 2N 9 + 2N 1 2

GMS 6 + 4N 2 + 3N 2 + 10N 1 1

TABLE I
REQUIRED PARAMETER COMPUTER MEMORY AND COMPUTATIONAL

COST NECESSARY TO APPLY THE FRICTION-MODEL-BASED

FEEDFORWARD COMPENSATION TECHNIQUE.

The remaining three parameters are hand-tuned to min-
imize the maximum position error for the given trajectory,
yielding: C = 65 N/s, δl = 0.1, and σ1 = 0.01 Ns/µm.

Table I shows, for the considered friction models, the
computer memory required to store the model parameters
and variables and computational cost for one model eval-
uation. N is the number of used elementary (Generalized)
Maxwell-slip models in the Leuven and GMS model.

B. Compensation results for the machine tool table

Figure 5A shows the position error using the feedback
controller and the Dahl model as feedforward model. The
error using the Dahl model is smaller than the error using
the LuGre model (figure 5B). This is due to the fact that the
Dahl model offers more flexibility (by the shape factor δd)
than the LuGre model to model the pre-sliding hysteresis
curve.

The GMS model gives best results (figure 5D), better than
the Leuven model (figure 5C), although the Leuven model
uses a Maxwell-slip model to approximate the hysteresis
function. This is a result of the nonlinear transformation
between the z-variable (Eq. 5), which is the real input to the
Maxwell-slip model in the Leuven model, and the position
x which has been used to identify the Maxwell-slip model.
As a result of this transformation the friction force in pre-
sliding will be a deformed hysteresis curve. Figure 6 shows
the estimated friction force as a function of the desired
position signal for the different used friction models. A
better way to identify the parameters of the Maxwell-slip
model in the Leuven model, is first to convert the position
signal into the z-variable and then perform the Maxwell-
slip model parameter identification. This approach is how-
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Fig. 5. The position error as a function of time: (A)Dahl model, (B)LuGre
model, (C)Leuven model, (D)GMS model.

ever not straightforward, since the nonlinear transformation
depends on the hysteresis curve.
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Fig. 6. The estimated friction force as a function of the desired position:
(A)Dahl model, (B)LuGre model, (C)Leuven model, (D)GMS model.

Despite the accuracy of the Maxwell-Slip model used in
the GMS model, the tracking error remains relatively large.
This is due to the fact that the friction force compensa-
tion uses the desired position instead of the real position
signal, which is lagging behind due to the weak feedback
controller. Friction-model-based feedback compensation is
not attempted here to avoid instability problems.

V. DISTURBANCE OBSERVER

This section discusses the use of the disturbance observer
technique to compensate friction, where the applied force
to the system equals:

Fa = u(t) + F̂dist (x, Fa) ,
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with F̂dist the output of the disturbance observer. Different
types of disturbance observers exist. This paper considers
the approach proposed by Ray et al. [11]. The basic idea
behind it is the following: by measuring motion along
with applied force Fa, and knowing the system dynamic
model, one can estimate the external friction force using
an observer as shown in figure 7. Kalman filter techniques
can be used to design this observer. Ray et al. [11] model
the friction force as an n-th order random walk. This paper
considers a disturbance observer based on a second order
random walk. The state vector of the system is X =
[

v(k) x(k)
]T

and the system matrices (see figure 7)
describing the system dynamics, are:

F =

[

1 − σ2Ts/M 0
Ts 1

]

, G =

[

Ts/M
0

]

, H =
[

0 1
]

.

The state vector of the observer equals X̂ =
[

v̂(k) x̂(k) F̂f (k) dF̂f (k)
]T

and the matrices
representing the observer dynamics are:

F̂ =









1 − σ̂2Ts/M̂ 0 −Ts/M̂ 0
Ts 1 0 0
0 0 1 Ts

0 0 0 1









,

Ĝ =









Ts/M̂
0
0
0









, Ĥ =
[

0 1 0 0
]

,

K =
[

0 0 1 0
]

,

and L is the observer gain vector, which is tuned by
considering the following trade-off: fast response, minimal
overshoot, low-noise sensitivity, and robustly stable behav-
ior.

Fifteen floating point variables/parameters are required to
implement this disturbance observer, and the computational
cost equals 10 summations and 15 multiplications in case
of fixed observer gains.

Figure 8A shows the tracking error for the specified
trajectory. The maximum error (peak-to-peak error equals
9.7 µm) is comparable with the best feedforward friction
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Fig. 8. The position error as a function of time using a disturbance
observer. Fig A: the position error for the reference pre-sliding trajectory.
Fig. B: the position error for the reference pre-sliding trajectory executed
ten times faster.

compensation results. These good results are due to the
fact that the disturbance observer not only compensates
the friction disturbance, but also the error due to the
weakly tuned PD-controller. However, for faster reference
trajectories, the position error increases (see figure 8B)
because the disturbance observer has a limited disturbance
rejection bandwidth.

VI. FEEDFORWARD FRICTION COMPENSATION IN
COMBINATION WITH A DISTURBANCE OBSERVER

This section combines the techniques of the previous two
sections. A similar combination is described in Lee and
Tomizuka [10], using static friction model. The input of
the disturbance observer is now the difference between the
applied force and the estimated friction force instead of the
applied force only:

Fa = u(t) + F̂f (xd,
dxd

dt
) + F̂dist

(

x, Fa − F̂f

)

.
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Fig. 9. The pre-sliding tracking performance using a disturbance observer
and a feedforward friction-model-based compensator. The position error as
a function of time using the Dahl model (fig. A), the LuGre model (fig.
B), the Leuven model (fig. C), and the GMS model (fig. D).

Figure 9 shows the tracking error for the different friction
models in feedforward. The peak-to-peak position errors are



6.6 µm, 7.6 µm, 6.1 µm, and 2.6 µm, using the Dahl,
LuGre, Leuven, and GMS friction model, respectively. The
tracking error is reduced significantly for all the friction
models. The best results are obtained using the GMS
friction model.

This significant reduction of the tracking error indicates
that both techniques are complementary to each other.
The disturbance observer is able to compensate arbitrary
disturbances up to a limited bandwidth. It reduces the
tracking error in general, but is not able to compensate
for fast friction force changes at velocity reversal. The
feedforward technique can compensate these fast friction
force changes provided that the tracking error is already
small, which can be accomplished using the disturbance
observer, and provided that the friction model is accurate.
The recently developed Generalized Maxwell-slip friction
model [7] yields the best results.

VII. CONCLUSIONS

Combining a friction-model-based feedforward compen-
sation and a disturbance observer yields many advantages
with respect to the individual techniques. Firstly, a signif-
icant improvement of the pre-sliding tracking accuracy is
achieved, which is mainly because both techniques com-
plement each other. Secondly, stability is not compromised
in order to get this level of accuracy. This is because the
bandwidth of the disturbance observer does not have to be
pushed to the limit in order to compensate fast friction
changes since these are taken care of by the feedforward
part, which is inherently stable. Thirdly, the disturbance
observer increases the robustness against model parameter
changes.

The GMS friction model yields significantly better track-
ing results than the other presented models, while its
computational cost and the complexity of its parameter
identification are comparable with the others.
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