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Abstract

We consider field-oriented speed control of induction
motors without rotor position sensors. We augment the
traditional approach with flux and speed observers and
derive a sixth-order nonlinear model that describes the
motor in field-oriented coordinates. The model takes
into consideration the error in flux estimation. The flux
regulation problem is a simple one and we follow the tra-
ditional approach of using PI controllers. For the speed
regulation problem, we simplify the model by assuming
that flux regulation takes place relatively fast and by
using a (high-gain) PI controller to regulate the q-axis
current to its command. This results in a third-order
nonlinear model in which the speed and two flux esti-
mation errors are the state variables, the q-axis current
is the control input and a speed estimate (provided by
the high-gain observer) is the measured output. This
nonlinear model is the main contribution of this paper
because it enables us to perform rigorous analysis of
the closed-loop system under different controllers. In
the current paper, we limit our analysis to the design
of PI controllers via linearization. The linearized model
is used to study when a PI controller can stabilize the
nonlinear third-order model at the desired equilibrium
point. The analysis reveals an important role played by
the steady-state product of the flux frequency and the
q-axis current in determining the control properties of
the system.

1 Introduction

During the last decade, there has been a considerable in-
terest in electric drives without mechanical sensors (e.g.,
optical encoders, tacho generators, resolvers, etc.) be-
cause of their low cost and high reliability. The main
idea is to use intrinsic motor electro-mechanical prop-
erties to estimate the rotor speed or position. Several
methods have been proposed in the literature; see, for
example, [3], [8], [9], [10], and [12].

There are two basic approaches for speed and position
estimation in induction motors. The first approach uses
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the fundamental machine model to design model ref-
erence adaptive systems, nonlinear observers, extended
Kalman filters, or adaptive observers. It has long been
recognized that the challenging part in this approach
is keeping a load stationary at (or near) zero flux fre-
quency. The second approach uses secondary phenom-
ena or the parasitic effects of the machine to develop
methods that will be effective at low frequency. This
paper belongs to the first approach.

Examination of the literature on the first approach
shows the following drawbacks:

• Analysis is limited to local linear models;

• Model uncertainty is usually ignored;

• No analysis of the closed-loop system.

The goal of this paper is to address the foregoing
drawbacks. We study a traditional field-oriented con-
trol [7, 8], where a flux observer is used to estimate the
rotor flux. We concentrate on the speed control prob-
lem, where the motor speed is required to track a given
speed command in the presence of unknown load. In
earlier work [11], we studied the torque control prob-
lem where the motor torque is required to track a given
torque while the speed is treated as a given input. The
two key elements of our approach are:

• To keep track of the error in estimating the rotor
flux, field orientation is performed using the esti-
mated flux angle and two additional state variables
are added by projecting the flux estimation error
into the field-oriented coordinates.

• A high-gain observer is used to estimate the speed
from current measurements.

We derive a sixth-order nonlinear model that de-
scribes the motor in field-oriented coordinates and for-
mulate the flux and speed regulation problems. For the
flux regulation problem we follow the traditional ap-
proach of using PI controllers. For the speed regula-
tion problem we simplify the model by assuming that
flux regulation takes place relatively fast and by using a
(high-gain) PI controller to regulate the q-axis current
to its command. This results in a third-order nonlinear
model in which the speed and two flux estimation errors
are the state variables, the q-axis current is the control
input and a speed estimate (provided by the high-gain
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observer) is the measured output. This nonlinear model
is the main contribution of this paper because it en-
ables us to analyze the closed-loop system under differ-
ent controllers. We limit our analysis to the design of
PI controllers via linearization. The linearized model is
used to study when a PI controller can be designed to
stabilize the nonlinear third-order model at the desired
equilibrium point. The analysis reveals an important
role played by the steady-state product of the flux fre-
quency and the q-axis current in determining the control
properties of the system. When this product is zero, it
is impossible to stabilize the system by a PI controller;
in fact, it is impossible to robustly stabilize the sys-
tem by any controller that uses integral action. When
it is positive, the system is minimum phase and a PI
controller can be designed to achieve good performance
and robustness properties. Finally, when it is negative,
the system is non-minimum phase and a PI controller
cannot stabilize the system; one has to resort to a more
complex controller. We present simulation results that
confirm our analysis findings.

2 Controller design

The induction motor is represented in the stator frame
of reference by the equations [7]

d

dt
λr =

(
− Rr

Lr
I + pωJ

)
λr +

Rr

Lr
Lmis (1)

σLs
d

dt
is = − Lm

Lr

(
− Rr

Lr
I + pωJ

)
λr

−
(

Rs +
L2

mRr

L2
r

)
is + vs (2)

m
dω

dt
= − 3pLm

2Lr
λT

r Jis − b1ω − 1
m

TL (3)

where λr ∈ R2 is the rotor flux, is ∈ R2 is the stator
current, vs ∈ R2 is the stator voltage, and ω is the rotor
speed. The parameters Lr, Ls, and Lm denote the ro-
tor, stator, and mutual inductances, σ = 1− L2

m/LsLr

is the leakage parameter, Rr and Rs are rotor and
stator resistances, m is the rotor’s moment of inertia,
b1 is a friction coefficient, p is the number of pole pairs,

I is the 2×2 identity matrix, and J =
[

0 −1
1 0

]
. The

resistances Rs and Rr, the moment of inertia m, and
the friction coefficient b1 will be treated as uncertain
parameters with R̂s, R̂r, m̂, and b̂1 as their nominal
values, respectively. The load torque TL will be treated
as a bounded time-varying disturbance. Our goal is to
design a feedback controller for the stator voltage vs

that uses only measurements of the stator current is
such that the speed ω asymptotically tracks a bounded
time-varying reference speed ωref .

Flux Observer
We would like to design the controller using field
orientation along the rotor flux λr [7, 8]. Since λr is
not measured, we use the open-loop observer [13]

˙̂
λr =

(
− R̂r

Lr
I + pωrefJ

)
λ̂r +

R̂r

Lr
Lmis (4)

to estimate λr. The observer duplicates the flux equa-
tion (1), with the unavailable speed ω replaced by its
reference ωref . Orienting the vectors λ̂r, is, vs, and
e = λ̂r−λr along the vector λ̂r, and denoting the direct-
axis components by λd, id, vd, and ed, respectively, and
the quadrature-axis components by λq(= 0), iq, vq, and
eq, respectively, we represent the motor by the equations

dλd

dt
= −α̂rλd + α̂rLmid (5)

did
dt

= αrβλd − (αsη + αrβLm)id + pωref iq

+α̂rLmi2q/λd + γvd − αrβed − βpωeq (6)
diq
dt

= −βpωλd − pωref id − (αsη + αrβLm)iq

−α̂rLmidiq/λd + γvq + βpωed − αrβeq(7)
dω

dt
= µ[iq(λd − ed) + ideq]− bω − TL/m (8)

ded

dt
= −αred + (pωref − pω + α̂rLmiq/λd)eq

+ (α̂r − αr)(Lmid − λd) (9)
deq

dt
= −(pωref − pω + α̂rLmiq/λd)ed − αreq

+ (α̂r − αr)Lmiq + p(ωref − ω)λd (10)

where αr = Rr

Lr
, α̂r = R̂r

Lr
, αs = Rs

Ls
, b = b1

m , β = 1−σ
σLm

,
γ = 1

σLs
, η = 1

σ , and µ = 3pLm

2mLr
. For later use, define

α̂s = R̂s

Ls
, µ̂ = 3pLm

2m̂Lr
, and b̂ = b̂1

m̂ . The variables λd, id
and iq are available on line, since they can be calculated
from is and λ̂, while ω, ed and eq are not available.
Flux Regulation
In field orientation, the flux λd is regulated to a refer-
ence flux λref > 0, which is taken here as a constant.
We follow the traditional approach of using two PI con-
trollers [8]. First, we view id as a control input to equa-
tion (5) and design the PI controller

I∗d =
(Kfps + Kfi)

s
[λref − λd]

Then, we design the PI controller

Vd =
(Kdps + Kdi)

s
[I∗d − Id]

With tight feedback loops, we can ensure the regulation
of λd to λref for a wide range of variation of the term
(pωref iq+α̂rLmi2q/λd−αrβed−βpωeq), which acts as an
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input on the right-hand side of (6). The design should
ensure that λd starts at a positive value and approaches
λref monotonically so that λd is always positive. The
initial condition of λd is determined by the initial con-
dition of the observer (4), which is at our disposal.
Speed Observer
With the flux regulated, we turn now to the design of
the speed controller. Since we do not measure the speed
ω, we need to use an observer to estimate it. Towards
that end, rewrite equations (7) and (8) as

diq
dt

= −βpλdω − f1 + γvq + δ1 (11)

dω

dt
= µ̂iqλd − b̂ω + δ2 (12)

where f1 = pωref id + (α̂sη + α̂rβLm)iq + α̂rLmidiq/λd

is available on line, and δ1 and δ2 are uncertain terms,

δ1 = [(α̂s − αs)η + (α̂r − αr)βLm]iq + βpωed − αrβeq

δ2 = (µ− µ̂)iqλd + µ(−iqed + ideq)− (b− b̂)ω − TL

m
The change of variables

Ω = ω − δ1

βpλd
(13)

=
(

λd − ed

λd

)
ω − 1

βpλd
{[(α̂s − αs)η

+ (α̂r − αr)βLm]iq − αrβeq}
brings equations (11) and (12) into the form

diq
dt

= −βpλdΩ− f1 + γvq (14)

dΩ
dt

= µ̂iqλd − b̂Ω + δ3 (15)

where δ3 = δ2 − b̂δ1/(βpλd) − d
dt [δ1/(βpλd)] is a con-

tinuous function of (λd, id, iq, ω, ed, eq, TL, ωref ). The
change of variables (13) is invertible provided λd− ed 6=
0. We use the high-gain observer

dîq
dt

= −βpλdΩ̂− f1 + γvq +
(α1

ε

)
(iq − îq)(16)

dΩ̂
dt

= µ̂iqλd − b̂Ω̂−
(

α2

ε2βpλd

)
(iq − îq) (17)

where ε is a small positive parameter and α1 and α2 are
positive constants that assign the roots of s2+α1s+α2 =
0 at desired locations in the left-half plane. The scaled
estimation errors η1 = (iq− îq)/ε and η2 = Ω−Ω̂ satisfy

εη̇1 = α1η1 − βpλdη2 (18)

εη̇2 = −
(

α2

βpλd

)
η1 − εb̂η2 − εδ3 (19)

For small ε, the closed-loop system will be a singu-
larly perturbed one [6], with η1 and η2 as the fast vari-
ables. The stability of the fast dynamics is determined

by the matrix
[ −α1 −βpλd

α2
βpλd

0

]
, in which λd > 0

is treated as a constant. The characteristic equation
s2 + α1s + α2 = 0 is Hurwitz. From the high-gain
observer theory [1], we know that if the control input
vs is bounded uniformly in ε, then the estimation error
Ω−Ω̂ will be O(ε) after a short transient period [0, T (ε)],
where limε→0 T (ε) = 0. Moreover, the closed-loop sys-
tem with feedback from Ω̂ recovers the performance of
the closed-loop system with feedback from Ω as ε tends
to zero. Hence, we design the speed controller as if Ω
was available for feedback. The boundedness of vs uni-
formly in ε is ensured by limiting vs to the rated voltage,
imposed by the limitation of DC voltage in the inverter.
Speed Controller
The design can be simplified by reducing the order of
the system. First, assuming that the flux regulator acts
fast enough to regulate λd to λref , we take λd = λref

and id = λref/Lm and drop equations (5) and (6). Sec-
ond, we note from equation (7) that for any current
command i∗q , we can design vq as the PI controller

Vq =
(Kqps + Kqi)

s
[I∗q − Iq]

with sufficiently large gains to regulate iq to i∗q . This
allows us to view iq as the control input. Thus, the
speed controller can be designed using the third-order
model

ded

dt
= −αred +

(
pωref − pω +

α̂rLmiq
λref

)
eq (20)

deq

dt
= −

(
pωref − pω +

α̂rLmiq
λref

)
ed − αreq

+ (α̂r − αr)Lmiq + p(ωref − ω)λref (21)
dω

dt
= µ

[
iq(λref − ed) +

eqλref

Lm

]
− bω − TL

m
(22)

Ω =
(

λref − ed

λref

)
ω +

αreq

pλref
− aiq (23)

where Ω is viewed as the measured output, a = [(α̂s −
αs)η + (α̂r − αr)βLm]/(βpλref ) and the goal is to have
Ω track ωref .

It is natural to use integral control to ensure zero
steady-state error when ωref and TL are constant [4].
With Ω = ωref , the equilibrium equations are

0 = −αr ēd +
(

pωref − pω̄ +
α̂rLmīq

λref

)
ēq (24)

0 = −
(

pωref − pω̄ +
α̂rLmīq

λref

)
ēd − αr ēq

+ (α̂r − αr)Lmīq + p(ωref − ω̄)λref (25)

0 = µ

[
īq(λref − ēd) +

ēqλref

Lm

]
− bω̄ − TL

m
(26)

ωref =
(

λref − ēd

λref

)
ω̄ +

αr ēq

pλref
− aīq (27)
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Solving (24) and (25) for ēd and ēq in terms of īq and

ω̃
def= ω̄ − ωref and substituting in (27), we obtain
(
−pω̃ +

α̂rLmīq
λref

)(
−pω̃ +

(α̂r − αr)Lmīq
λref

)
ωc =

− (α̂s − αs)η∆īq
βλref

(28)

where ωc = pωref + α̂rLmīq/λref and ∆ = α2
r +(−pω̃ +

α̂rLmīq/λref )2. To gain insight into the problem, let
us consider first the case when α̂s = αs, for which (28)
reduces to

(
−pω̃ +

α̂rLmīq
λref

)(
−pω̃ +

(α̂r − αr)Lmīq
λref

)
ωc = 0

Assuming that ωc 6= 0, the equation has two solutions:

ω̃ =
(α̂r − αr)Lmīq

pλref
or ω̃ =

α̂rLmīq
pλref

It is clear that the first solution is the one we should be
interested in because it yields zero steady-state speed
error in the nominal case α̂r = αr. The equilibrium
point corresponding to this solution is

ēd = ēq = 0, īq =
bωref + TL/m

µλref − b(α̂r−αr)Lm

pλref

,

ω̄ = ωref +
(α̂r − αr)Lmīq

pλref
(29)

Can we stabilize this equilibrium point using a PI con-
troller? To answer this question, we linearize equations
(20)–(23) at the equilibrium point (29), to obtain the
linear model

ẋ = Ax + B(iq − īq), Ω− ωref = Cx + D(iq − īq)

where A =




−αr
αrLm īq

λref
0

− αrLm īq

λref
−αr −pλref

−µīq
µλref

Lm
−b




BT =
[

0 (α̂r − αr)Lm µλref

]

C =
[
− ω̄

λref

αr

pλref
1

]
, D = − (α̂r − αr)Lm

pλref

with the transfer function G(s) = n(s)/d(s), in which

n(s) = µλref

[
s2 + αrs +

ωcαrLmīq
λref

]

×
[
1− (α̂r − αr)Lm

µpλ2
ref

(s + b)

]

d(s) = (s + b)

[
(s + αr)2 +

(
αrLmīq

λref

)2
]

+
pµλ2

ref

Lm

(
s + αr −

αrL
2
mī2q

λ2
ref

)

Let us note the important role played by ωcīq in the
control design. When ωcīq = 0, G(s) has a zero at the
origin. Hence, it is impossible to design any controller
with integral action. This follows from the well-known
theory of servomechanisms [2]. When ωcīq < 0, G(s)
has a real zero in the right-half plane; hence, it is non-
minimum phase. It is possible to design a controller
with integral action to stabilize the system, but such a
controller cannot be a PI controller. This fact can be
seen by root locus analysis. This leaves us with the case
when ωcīq is positive. In this case the transfer function
G(s) is minimum phase and we can design a PI con-
troller with high-gain feedback to stabilize the closed-
loop system and achieve good tracking properties. Such
PI controller takes the form

Iq =
(Kwps + Kwi)

s
[ωref − Ω]

The condition ωcīq = īq(pωref + α̂rLmīq/λref ) > 0 is
satisfied when the motor is operated in the motoring or
braking modes, but not in the generating mode.

The condition ωcīq = 0 is satisfied if īq = 0 or ωc = 0.
The case ωc = 0 indicates operation at zero frequency,
that is, in a braking mode corresponding to certain
speed and torque. It is well known in the induction
motor literature on sensorless control that operating the
motor at zero (or low) frequency is challenging, and that
a design for such case will have to exploit secondary phe-
nomena of the machine, which are not conveyed in the
model (1)–(3). The case īq = 0, regardless of speed,
indicates that the power into the machine is negative.

In the foregoing discussion we assumed that R̂s = Rs.
When R̂s 6= Rs, but (α̂s − αs)/ωc is relatively small,
we view the right-hand side of (28) as a perturbation
term. By perturbation analysis it can be verified that
if īq 6= 0, so that the equilibrium point (29) is isolated,
then equations (23)–(27) will have an equilibrium point
that is O((α̂s − αs)/ωc) perturbation of (29).

To appreciate the usefulness of the nonlinear model
(20)–(23), let us look at the naive alternative of assum-
ing perfect field orientation (λ̂ = λ) and nominal param-
eters (R̂s = Rs and R̂r = Rr). The model for this case
can be obtained from (20)–(23) by setting ed = eq = 0
and a = 0, resulting in the linear model

ω̇ = µλref iq − bω − TL/m, Ω = ω

For constant ωref and TL, there is a unique equilib-
rium point (ω̄ = ωref , īq = bωref +TL/m

µλref
) and the transfer

function at this point is µλref/(s + b). It is clear that
this model does not convey the wealth of information
we gained from the nonlinear model (20)–(23) and does
not show the difficulties associated with designing PI
controllers in the generating mode or at zero frequency.
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3 Simulation Results

We demonstrate the utility of the model developed in
the previous section by simulating an induction motor
under PI controllers. We use an induction motor that
has the following constants and rating (taken from [7,
Example 5.6]): 200 V, 4 pole, 3 phase, 60 Hz, Y con-
nected, Rs = 0.183 Ω, Rr = 0.277 Ω, Lm = 0.0538 H,
Ls = 0.0553 H, Lr = 0.056 H, m = 0.0165 kg-m2, and
base power 5 hp. We added b1 = 0.01 Kg-m2/sec as a
friction coefficient. We design the parameters of the con-
trollers for the nominal case R̂r = Rr and R̂s = Rs. The
constants of the PI controllers of vd, id, and vq, chosen
using linearized models, are Kdp = 20, Kdi/Kdp = 5,
Kfp = 20, Kfi/Kfp = 5, Kqp = 300, and Kqi/Kqp = 1.

The flux observer (4) is initiated at λ̂(0) =
[

0.1
0

]
so

that λd(0) = 0.1. The speed observer (16)–(17) is im-
plemented with α1 = α2 = 1, ε = 0.001, µ̂ = µ, and
b̂ = b. In the simulation, the components of vs are
limited to ±200 V, but for all the reported results the
control is not saturated, except for a short period dur-
ing the speed observer transient. The speed reference is
taken as a step input smoothed by the transfer function
1/(0.5s + 1).

Figure 1 shows simulation results for a speed com-
mand of 100 rad/sec applied at zero time with a load
of 20 N.m applied between t = 4 s and t = 8 s. The
simulation is for the nominal parameter case R̂r = Rr

and R̂s = Rs. According to (29), at the equilibrium
point we have ēd = ēq = ω̄ − ωref = 0. The simulation
confirms these equilibrium values.

Figure 2 repeats the simulation of Figure 1 for Rr =
2R̂r. According to (29), the equilibrium values are ēd =
ēq = 0, and ω̄−ωref = (α̂r−αr)Lm īq

pλref
= −0.4435̄iq, where

īq =
bωref + TL/m

µλref − b(α̂r−αr)Lm

pλref

=
60.6061(1 + TL)

52.6714

For TL = 20, we obtain īq = 24.164 and ω̄ − ωref =
−10.716. The simulation results confirm these calcula-
tions.

Figure 3 repeats the simulation of Figure 1 for Rr =
2R̂r and Rs = 2R̂s. We expect the equilibrium point
to be slightly perturbed from the one we obtained in
Figure 2. Indeed, ēd and ēq are no longer zero.

Figure 4 shows speed reversal from 50 to −50 rad/s
at no load, with nominal parameters. Notice that the
system settles back at the equilibrium point following
a transient during speed reversal. The important fac-
tor that limits the performance is control saturation.
In the case of Figure 4, reversing speed from 100 to
−100 rad/s would cause control saturation and the per-
formance would degrade significantly; actually the vari-
ables oscillate during saturation.

Finally, in Figure 5 we demonstrate the importance
of the condition ωcīq > 0. This condition is satisfied for
all the cases in Figures 1 to 4. In the case of Figure 5,
we apply a speed command of 10 rad/sec at zero time.
Then at time t = 4 sec, we apply a load of −1 N.m.
For these values, īq = −1.1546 and ωc = 18.9758; hence
ωcīq < 0. It is clear from the simulation that the equi-
librium has been destabilized after applying the load.
The simulation is shown only until t = 0.521 s because
beyond that time the control saturates.

4 Conclusions

The main contribution of this paper is the nonlinear
model (20)–(23). To illustrate the usefulness of this
model, we focused our attention on one issue; namely,
to analyze PI controllers and derive conditions that
could not have been obtained by the simple linear model
that assumes perfect field orientation. For future work,
a challenging problem would be to use this nonlinear
model to design a nonlinear controller and estimate the
region of attraction.
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Figure 1: Simulation with nominal parameters.
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Figure 2: Simulation with 100% increase in Rr and nom-
inal Rs.
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