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Abstract— A method of stabilizing feedback control, known
as adaptive-Q control is applied to a LQG disk drive control
system to improve its disturbance rejection property. This
approach follows the well known result that all stabilizing
controllers for a plant can be synthesized by conveniently
parametrized augmentations to a nominal controller. The
augmentation is parametrized by an arbitrary stable filter
Q which is adapted online. The Q filter is restricted to a
FIR stable filter which minimizes the H2 norm of the transfer
function from the disturbance to the track following error.
Simulations and experimental results show a 15% improve-
ment in the achievable TMR (track misregistration). The Q
filter is adapted using a recursive least squares numercially
stable adaptive array algorithm. Two algorithms based on
inverse QR factorization are considered for implementation.
The computation issues involved in updating the Q filter every
servo cycle are discussed.

I. INTRODUCTION

A. Disk Drive Track Following

The fundamental measure of disk drive tracking perfor-
mance calledtrack misregistration(TMR) is the deviation of
the center of the read/write head from the center of the data
track [1]. TMR is usually reported as a variance parameter
per sample of the disk servo e.g., 10 nanometers 3-sigma
(3σ ). For acceptable performance of the servo system the
3σ value of the TMR must be less than 10% of the track
width. A major function of the servo controller for the
read-write head is to maintain the head accurately on a
selected track of the rotating disk. There are two primary
sources of disturbances in the hard disk servo system.
The first is repeatable runout(RRO) which is a periodic
disturbance that stays locked to the disk rotation (both
frequency and phase). This disturbance is mainly due to
imperfect or eccentric tracks. The second isnonrepeatable
runout (NRRO) which is the cumulative result of disk
drive vibrations, electrical noise in the circuits and the
measurement channels. While synchronous excitations may
be large, standard practise in the disk drive industry includes
using feedforward cancellers to reduce their effect [2].

B. Add-on Adaptive Controller

An add-on adaptive compensator for disk drives based on
plant inversion is discussed in [3]. A feedforward scheme
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to attenuate external vibrations is presented in [4]. This
approach requires an accelerometer mounted on the base
casting of the disk drive and may not be practically viable.
The Adaptive-Q approach has been proposed for vibration
suppression in rotor/magnetic bearing systems [5]. The
purpose of this paper is to present and evaluate the adaptive-
Q approach for rejecting disturbances in a disk drive. The
disk drive open loop plant is first stabilized using a fixed
LQG compensator. The rest of this paper is organized as
follows: Section II details the modeling of the disk drive
used for control design and analysis. In section III we
derive the class of all stabilizing controllers parametrized
by a free parameterQ. Section IV introduces the adaptive-
Q algorithm. In section V we derice the RLS update
equations for the proposed algorithm. We present simulation
and experimental results section VI. We also discuss the
computation issues involved in the adaptive-Q filter update
followed by conclusions in section VII.

II. SYSTEM IDENTIFICATION

A 2 platter (10 GB/platter), 25 kTPI (tracks per inch),
7200 rpm disk drive system was used for experimental
verification of the proposed control scheme. The disk drive
model was identified in the discrete domain. Since the
openloop disk drive plant is marginally stable, a stabilizing
PD controller was first designed to close the loop (see fig 1).
The disk drive sensor output is available at the rate of 9.36
kHz and this is the sampling frequencyT used for both
system identification and control. We have the control law,

uk = Kpek +Kd(ek−ek−1)

whereKp andKd were chosen by trial and error to provide
closed loop stability. Then a swept-sine referencer with
frequency content from 1 Hz to the Nyquist was used to
excite the closed loop plantG. From fig. 1 we have,

L =
GC

1+GC
⇒ G =

L
(1−L)C

From r and y we get the closed loop frequency response
L(ejωT). Using the above relation we calculate the open
loop frequency responseG(ejωT). A fifth order state-space
model of the system was obtained by curve-fitting this
frequency response (see fig. 2). We could also obtain



G(ejωT) directly from u and y. It turns out that the two
procedures lead to almost identical frequency response plots
for the open loop plantG.

III. STABLE Q PARAMETRIZATION

The Disk Drive Assembly is represented by the discrete
time state-space model [6] driven by output disturbance
signalw

xk+1 = Axk +Buk

yk = Cxk +wk (1)

The LQG feedback control is represented as [6]

uk = Fx̂k +sk

x̂k+1 = Ax̂k +Buk−Hrk

rk = yk−Cx̂k (2)

Let the adaptive filterQ have the time varying dynamic
representaion

zk+1 = Aqzk +Bqrk

sk = Cq,kzk (3)

If we restrictQ to a FIR filter form then we would have
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Bq = [ 1 0 . . . 0 ]T

Cq,k = [ q0
k q1

k . . . qL−1
k ] (4)

We combine the plant with the observer and Q filter
dynamics to form the augmented state

Xk =





xk

zk

xk− x̂k





Now we have the augmented system dynamics given by

Xk+1 = AkXk +Bwk

yk = C Xk +wk (5)

where

Ak =





A+BF BCq,k −BF
0 Aq −BqC
0 0 A+HC





B =
[

0 −Bq H
]T

C =
[

C 0 0
]

For output disturbance rejection we look at the transfer
function fromw to y given by

yk =
(

I +C (zI−Ak)
−1

B
)

wk (6)

Our objective is to make this transfer functionaffine in Q.
For conciseness we define the compensator system matrix

Af = A+BF and the observer system matrixAc = A+HC.
Now we have from the definition ofAk

(zI−Ak) =





zI−Af −BCq,k BF
0 zI−Aq BqC
0 0 zI−Ac





This being a upper triangular matrix one can easily compute
the inverse under the assumptions that the diagonal terms
are invertible. We have this from the matricesAf , Aq and
Ac beingHurwitz.

(zI−Ak)
−1 =





(zI−Af )
−1 α β

0 (zI−Aq)
−1 ×

0 0 (zI−Ac)
−1





where

α = (zI−Af )
−1BCq,k(zI−Aq)

−1

β = (zI−Af )
−1B(F +Cq,k(zI−Aq)

−1BqC)(zI−Ac)
−1

We introduce the transfer functions

T11 = I −C(zI−Af )
−1BF(zI−Ac)

−1H

T12 = C(zI−Af )
−1B

T21 = I +C(zI−Ac)
−1H

Q = Cq,k(zI−Aq)
−1Bq (7)

We substitute for(zI−Ak)
−1 in (6) and after some manip-

ulations arrive at

I +C (zI−Ak)
−1

B = I −CαBq +CβH

= I −C(zI−Af )
−1BQ

− C(zI−Af )
−1BF(zI−Ac)

−1H

− C(zI−Af )
−1BQC(zI−Ac)

−1H

= T11−T12QT21

which gives us the well known result characterizing the
class of all stabilizing controllers in terms of a stable
transfer functionQ∈ RH∞,

yk = (T11−T12QT21)wk (8)

The Q filter is adapted online so as to minimizey in a
least mean squares sense as shown in Fig. 4. In the LQG
framework, the input to theQ filter is the estimation residual
r and the outputs is summed with the state feedback to
generate the control signalu (see fig. 3). Also it is noted
that the LQG control system is optimal if we have accurate
plant and disturbance models. In this ideal situation, the
adaptive filter should remain at zero (Q ≡ 0) because it
cannot improve upon the optimal !

IV. ADAPTIVE-Q FILTER

The nominal LQG controller (Q ≡ 0) provides stability
but does not attain satisfactory disturbance rejection. The
Q filter is introduced to enhance the disturbance rejection
whilst still maintaining closed loop system stability. Hence
we restrict the filter to an FIR form which gaurantees stabil-
ity apriori provided the filter coefficients remain bounded.



From fig. 4 we see that the adaptive filter outputs goes
through the blockT12 before it can affect the disturbance
response. In adaptive filtering terminology,T12 is referred to
as the secondary path [7]. It needs to be modeled offline and
used to filter the input to the adaptive filter update. Hence
a Filtered-X RLS adaptive array algorithm [7] is used to
update the coefficients ofQ. The transfer function froms
to y given byT12 = C(zI−A−BF)−1B is readily available
given the plant modelG and the LQG state feedback matrix
F . TheQ filter adaptation loop (see fig. 4) can be executed
offline if we have the system modelsT11,T12,T21 and also
a disturbance model to generatew. Since the disturbances
in a disk drive have both repeatable and random content,
it is better to adaptQ online. Also this eliminates the need
to model T11,T21. In essence, we have an adaptive filter
which minimizes the disturbance response despite having
no apriori knowledge of its dynamics. Online adaptation
requires theQ filter to be updated every servo cycle. Since
the servo update rate in disk drives is around 10kHz, the
RLS algorithm needs to be computationally efficient (fast
update).

V. RLS UPDATE

We denote the FIR filterQ of lengthL and the secondary
pathT12 (modeled as FIR filter of length M) by

qk = [ q0
k . . . qL−1

k ]T (9)

t12 = [ t0 . . . tM−1 ]T (10)

We shall use the recursive prediction error adaptive algo-
rithm [8] to update the filter. This algorithm is based on
minimization of the cost functionξ = E[e2

k]. Since ξ is
generally unknown or the signals are nonstationary, the
algorithm is designed to minimize at each instant of time
the mean square error,ζk = e2

k [9]. The algorithm updates
the coefficient vector in (9) along the negative gradient of
ζk, defined as

∇qζk ≡
∂ζk

∂q
= ek∇qek = −ek∇qs̃k, s̃k =

M−1

∑
j=0

t jsk− j

∇qs̃k =
[

∂ s̃k
∂q0

k
. . . ∂ s̃k

∂qL−1
k

]T

=
M−1

∑
j=0

t j
[ ∂sk− j

∂q0
k

. . .
∂sk− j

∂qL−1
k

]T
(11)

Noting that the adaptive filter output is given by

sk− j =
L−1

∑
l=0

ql
k− j rk− j−l

we have

∇qs̃k =
M−1

∑
j=0

t j
L−1

∑
l=0

rk− j−l

[

∂ql
k− j

∂q0
k

. . .
∂ql

k− j

∂qL−1
k

]T

(12)

Now assuming that the filter coefficients change slowly

qk ≈ qk− j , 1≤ j ≤ L−1

we have

∇qs̃k =
M−1

∑
j=0

t j
L−1

∑
l=0

rk− j−l

[

∂ql
k

∂q0
k

. . .
∂ql

k

∂qL−1
k

]T

=
M−1

∑
j=0

t j [ rk− j . . . rk− j−L+1
]T

=
[

r̃k . . . r̃k−L+1
]T

= r̃k (13)

where we define the filtered input

r̃k = [ r̃k . . . r̃k−L+1 ]T , r̃k =
M−1

∑
j=0

t j rk− j

Finally we have the update equation

P−1
k+1 =

1
λ

(

P−1
k −

P−1
k r̃kr̃T

k P−1
k

λ + r̃T
k P−1

k r̃k

)

qk+1 = qk +P−1
k+1r̃kek (14)

with initial conditions,P0 = εI , q0 ≡ 0 whereε is a small
positive scalar and the forgetting factor satisfies 0<< λ < 1.
If we chooseP−1

k = µ I , then we get the Least mean squares
(LMS) algorithm given by

qk+1 = qk + µ r̃kek (15)

where µ is the step size. The adaptive-Q LQG control
update is given by

uk = Fx̂k +sk, sk =
L−1

∑
j=0

q j
krk− j (16)

There are many efficient algorithms available to carry out
the RLS update [10]. We discuss two such algorithms
based on inverse QR decomposition. The computational
complexity of both algorithms areO(L2) operations per
iteration. The inverse QR method, also known as the square-
root RLS is given by
[

1 λ−1/2r̃TP1/2
k

0 λ−1/2P1/2
k

]

Θk =

[

γ−1/2
k+1 0

gk+1γ−1/2
k+1 P1/2

k+1

]

(17)

qk+1 = qk +[gk+1γ−1/2
k+1 ][γ−1/2

k+1 ]−1ek (18)

This algorithm finds a unitary matrixΘk that lower-
triangulizes the pre-array in (17) and generates a post-
array with positive diagonal entries. It then updates the
Q filter (18) using the elements read from the first col-
umn of the post-array. The matrixΘk is computed in an
iterative fashion using Householder transformations [10].
Lower-triangulization of the pre-array is not an elemantary
operation and it involves considerable computation time.
To reduce this time we look at yet another algorithm which
updatesΘk using elementary Givens rotations [11]. This
second algorithm exploits the structure of the unitary matrix
Θk and eliminates the need for lower triangulization. This
considerably reduces the complexity in implementing the
inverse QR scheme and makes the second scheme faster
than the first (see Table I).



VI. SIMULATION AND EXPERIMENTAL
RESULTS

A. Simulation

The two algorithms discussed in the previous section
were tested on Matlab and implemented on a TMS320C67
floating point DSP. Position error signal (PES) data col-
lected from the 7200 rpm disk drive was used in the
simulations to emulate output disturbance. The simulations
were run for a time period of 1 sec. Fig. 5 plots the
plant output variance under regulation with and without the
adaptive-Q control. The error variance is calculated as a
moving average according to

σ2
k =

σ2
k−1(k−1)+e2

k

k
, σ2

0 = 0

From fig. 5 we see that adaptive-Q withL = 5 gives a 15%
improvement over the fixed LQG (Q ≡ 0) compensator.
Fig. 6 shows the plant output spectrum with and without
the adaptive-Q filter. We see that the adaptive-Q filter
has knocked down some of the peaks in the disturbance
response. Since the sampling rate is high and we need to
update the adaptive filter every servo cycle, computation
time puts a limit on the adaptive-Q filter lengthL. To
calculate the computation time required we tested the two
algorithms discussed in the previous section. The CPU
loading factor for the two algorithms on the C67 DSP is
shown in Table I. The first algorithm does not allow for a
filter length greater than 4. Hence the second algorithm is
chosen for implementation on the 7200 rpm disk drive.

B. Experimental Results

We used the 7200 rpm disk drive for experimental
verification of the proposed control algorithm. The built in
control loop was first opened and then we used the DSP to
close the loop externally. We have the LQG control setup
as the inner loop stabilizing controller and the adaptive-Q
sits on top of it. The outer loop is set up with a software
toggle switch which can turn on/off the adaptive-Q control.
Experiments were performed on all three available disk
drive heads and three different track positions on the inside,
middle and outer edge of the disk. Table II shows the 3σ
value of the position error as a percentage of the track
width. We compare the performance between LQG control
(Q≡ 0) and three different implementations of the adaptive-
Q scheme. The first is an LMS scheme (see eq.15) with step
sizeµ = 0.01 and filter lengthL = 5. The second is an LMS
scheme with step sizeµ = 0.01 and filter lengthL = 10. The
third is the inverse QR based RLS scheme (see eq.14) with
filter length L = 5. As can be seen from Table I it is not
possible to run the RLS scheme with a filter length higher
than 8. LMS algorithm is not preferred because it requires
us to choose a step size (by trial and error) which may
or may not be optimal. Table II shows that irrespective of
head and track position, the adaptive-Q algorithm improves
on the inner loop LQG control system.

VII. CONCLUSIONS

We have demonstrated the effectiveness of the adaptive-
Q control algorithm on a Disk Drive with an existing
inner loop stabilizing LQG control. There is a consistent
improvement in achievable TMR across different heads and
tracks when the add-on adaptive controller is turned on. The
simulations clearly indicate that increasing the adaptivefil-
ter length improves the disturbance rejection property of the
adaptive-Q control system. But this is not viable because of
computation time constraints. A inverse QR based adaptive
array algorithm is chosen for implementation. Future work
will focus on improving the inner loop stabilizing control
so that it rejects all known disturbances (RRO). Then we
hope that the add-on adaptive controller will take care of
the remaining NRRO and other random disturbances.
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Fig. 1. Closed loop PD
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Fig. 2. Disk drive model

Fig. 3. LQG with stabilizing adaptive-Q control

TABLE I

CPU LOADING CHART

L algorithm #1 algorithm #2
4 56% 34%
6 111% 61%
8 192% 95%

Fig. 4. Filtered-X RLS Adaptive-Q filter
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Fig. 5. Error variance curves
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Fig. 6. Plant Output Spectrum

TABLE II

3σ OF ERROR IN TERMS OF% TRACK WIDTH

Head#0 Head#1 Head#2
in, mid, out in, mid, out in, mid, out

LQG (Q ≡ 0) (9.1, 8.9, 6.3) (9.9, 9.7, 8.1) (10.4, 10.4, 8.9)
LMS (L=5) (7.5, 7.7, 6.3) (8.1, 7.9, 6.7) (9.3, 9.5, 8)
LMS (L=10) (7.2, 7.4, 6.2) (7.6, 7.4, 6.4) (9.1, 9.2, 7.8)
RLS (L=5) (7.5, 7.8, 6.4) (8.4, 8.3, 6.8) (9.2, 9.6, 8.3)
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