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Abstract— Complexity of reachability computations for con-
tinuous and hybrid dynamic systems typically grows exponen-
tially with respect to the dimension of the continuous state
space. Consequently, reduced-order models usually need to
be constructed to make reachability analysis tractable. Use
of reduced-order models makes reachability-based verifica-
tion unsound, however. This paper presents a method for
incorporating bounds on errors due to model reduction into
reachability analysis for a class of hybrid control systems so
that the computed sets are guaranteed to be conservative (i.e.,
over-) approximations of the reachable sets for the original
system. We also present an efficient method for computing
error bounds due to model reduction for finite-time horizons
that are less conservative than error bounds from the model-
reduction literature. The effectiveness of the approach is
illustrated with an example.

I. INTRODUCTION

Reachability analysis is a major approach used in verifi-
cation, controller synthesis and analysis of hybrid dynamical
systems [17]. The main difficulty in reachability computa-
tion is the order of the system, i.e., the number of continu-
ous state variables. As the order increases, the complexity
of computation grows exponentially. Consequently, current
verification tools based on reachability analysis are limited
to systems with less than six to eight state variables.

To use existing verification tools for hybrid systems,
one usually has to construct a reduced-order model of the
continuous dynamics with which reachability analysis is
performed. There are two problems with this approach.
First, the reduced-order model is usually an approximation,
so its trajectories do not match the trajectories of the original
model exactly. This deviation, which is called the error
of model reduction, is usually not accounted for in the
verification procedure. Second, the reduced-order model is
often tested using simulation to generate a finite set of
trajectories. There is no guarantee that other trajectories
are close approximations of the associated trajectories of
the original system. These two problems make the verifica-
tion result unsound because reachable sets computed using
reduced-order models are not guaranteed to be conservative
approximations of the reachable sets for the original system.
Properties verified for the reduced-order model might be
violated by the original model.

To address the above problems, we develop a reachability
approximation procedure in this paper that accounts for
the error introduced by model reduction. The key point of
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the procedure is the estimation of the upper bound of the
error for all trajectories, which guarantees the soundness of
verification results based reduced-order models.

Pappas and Tanner proposed the concept ofcontinuous
abstractions for LTI systems to construct reduced-order
models that preserve reachability properties [16], [13]. Their
approach differs from the model reduction method proposed
here in two ways. First, the output trajectory of a continuous
abstraction matches that of the full-order model exactly; a
reduced-order model from standard model reduction algo-
rithms usually introduces output error. Second, a continuous
abstraction does not require the same input signal as the full-
order model; the input to a standard reduced-order model is
identical to the input for the original system. At this point
continuous abstractions are more suitable for hierarchical
modelling of linear control systems than for reachability
analysis and verification [14].

The paper is organized as follows. Section II introduces
the class of hybrid control systems considered in this paper,
defines the reachability problem, and presents some results
from the literature on projection-based model reduction
algorithms. Section III presents our approach to reachability
computations that account for the error introduced by model
reduction. Details of the procedures for continuous-time and
discrete-time hybrid control systems are given in section
IV. In section V, we illustrate and evaluate the reachability
procedure for a model of an electrical throttle control (ETC)
system, a hybrid control system with seven continuous
state variables. The concluding section summarizes the
contributions of this paper.

II. BACKGROUND

A. Hybrid Control Systems and The Reach Set

We consider the class of hybrid control systems com-
posed of a plant and a hybrid controller as shown in Fig. 1.
The plant is a continuous-time linear time-invariant (LTI)
system

ẋ(t) = Ax(t) + Bu(t), y = Cx(t)

or a discrete-time LTI system

x(t + 1) = Ax(t) + Bu(t), y = Cx(t)

Following [19], we use the notationS =
[

A B
C 0

]

as a shorthand notation for an LTI system (the context will
indicate whether it is a continuous- or discrete-time system).

A hybrid controller C = (Q, q0, T, f, G, I) consists of
the following components:
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Fig. 1. A hybrid control system

• Q a finite set of control modes;
• q0 an initial control mode;
• G ∈ 2Y a set of guard conditions over the plant output

spaceY ⊆ Rm;
• I : q → 2Y a plant output invariant set associated with

each control mode;
• T : G → (Q → Q) a set of transitions associated with

guard the conditions;
• f : (Q× Y ) → U a set of control lawsu = f(q, y).

We note that the controller in the above model implements
an output feedback law and has only discrete-state dynam-
ics. Controllers with internal LTI continuous dynamics can
be converted into the above form if the continuous dynamics
are the same in all control modes (e.g., if there is a state
observer in the controller). In this case, the continuous
dynamics of the controller can be incorporated into the plant
model.

We assume the control state makes a transition any time
a guard is enabled (i.e., we assumeurgent semantics for
the discrete state transitions in the controller). The output
invariant set,I(q), indicatesa priori bounds on the value
of the output signal when the controller is in modeq. We
assume that for the reachable output values, if none of the
guards are satisfied by the outputy(t) when the controller is
in modeq, theny ∈ I(q). (This condition is easily satisfied
by makingI(q) the complement of the guards in modeq,
but further knowledge of the reachable output values for the
system may make it possible to makeI(q) smaller.) We use
the invariants to construct the set of possible control values
for each control mode. For each modeq, this set is given
as

U(q) = {u|u = f(q, y), y ∈ Iq}.
These bounds on the plant control input will be used to
estimate bound of the error in the computed reachable
outputs for the closed-loop system. We useφu(·) to denote
a closed-loop trajectory of the control signal. Suppose at
time t the controller is in modeq, then it is true that
φu(t) ∈ U(q). We useU to denote the set of trajectories of
closed-loop control signal,U is a subset of the admissible
control setU ⊆ {u(·)|u(t) ∈ U(q) , t ≥ 0}.

For a hybrid control system, the reach set is typically
defined in terms of the state variables of the plant. For
the continuous-state reachability computations, we focus
on the reachable set while the controller is in a particular
mode. When the control mode switches, the reachability
computations are resumed using the control input set de-
fined for the new mode. In the following we focus on
reachability computation for a given mode. LetX0 denote

the set of initial states of the state variables of plant when
the controller is in modeq and let U denote the set of
closed-loop control signals. In the procedure we proposed,
we use existing tools to compute closed-loop reach set and
use the bound of admissible control signal to estimate the
error introduced by model reduction.

We define the reach set of the closed-loop control signals
as follows.

Definition 1 (Reach set at a time instant):Given a con-

tinuous time LTI control systemS =
[

A B
C 0

]
, the reach

set for a given set of controlsU and initial setX0 ⊂ Rn is
the set

Reach(S,U, X0, t) = {x(t)|x(t) = φx(t, x0)

≡ e
At

x0 +

∫ t

0
e

A(t−τ)
Bφu(τ)dτ, x0 ∈ X0, φu(·) ∈ U}

. The output reach set is the set

Reach
o
(S,U, X0, t) = {y(t, x0)|y(t, u, x0) = Cx, where

x ∈ Reach(S,U, X0, t}

. Reach set for discrete-time systems are defined in the
similar way. In the rest of this paper, thereachability
problemwill refer to the output reachability problem. We
define the reach set for a time interval as follows.

Definition 2 (Reach set for time interval):The reach set
and output reach set for a time interval[t0, tf ] are defined
as

Reach
(o)

(S,U, X0, [t0, tf ]) =
⋃

t∈
[
t0,tf

]
Reach

(o)
(S,U, X0, t).

This definition of the reach set for a time interval
corresponds to the sets computed by reachability-based
verification algorithms [2], [15], [3].

B. Model Reduction of LTI by Projection

Model reduction for linear time-invariant (LTI) systems
has been studied since the 1970’s [1], [11], [19], [12], [9].
Model reduction methods apply only to stable systems. For
unstable systems, the system is decomposed into the stable
and unstable partS = Sstable+Sunstable and only the stable
part is reduced. See [19], [1], [11] for further discussion on
model reduction techniques. We introduce the formulation
of projection and model reduction [1], [18]. It was pointed
out that most of the widely-used model reduction methods
can be formulated as projections [1].

A matrix π ∈ Rn×n is called a projection ifπ = π2. If
π is a projection, it can be written asπ = πLπR, where
πL ∈ Rn×m, πR ∈ Rm×n and πRπL = Im , where
m = rank(π) ≤ n. Projection-based model reduction
methods construct the matrices for the reduced-order model
as follows [1], [18]:

Ar = πRAπL, Br = πRB, Cr = CπL

. For a statex in the original state space, the corresponding
state in the projected state space isxr = πRx



In order to guarantee conservativeness, we need to de-
termine a bound on the additive error between the original
model and the reduced model, given by

er(t, u, x0) = y(t, u, x0)− yr(t, u, πRx0).

The error trajectory is equivalent to the output tra-
jectory of the following augmented systemSaug =


A B
Ar Br

C −Cr 0


 for initial condition

[
x0

πRx0

]
and

input u(·).
The error bound computed from the augmented system

is called a posteriori since it is computed after model
reduction [8]. Thea priori error bounds, which can be
computed before creating the reduced-order model, have
been derived for several model-reduction methods [5].a
priori error bounds can be computed from the solution
of Lyapunov equations, which can be easily solved using
existing efficient numerical packages. They are usually more
conservative thana posteriorierror bounds, however.

In this paper we apply one of the most commonly used
projection-based model reduction methods, the balanced
truncation [10], for which theoretical error bounds can be
obtained [5].

Theorem 1 (A priori error bound [11]): Assume the
original system is of ordern and the reduced-order system
of order k is obtained using balanced truncation. Letσi

denote thei-th Hankel singular value of original systemS.
Then

εx0=0
r (∞) ≤ ‖u(·)‖[0,∞)

∞ (4
n∑

i=r+1

(2i− 1)σi) (1)

wherei is the largest integer such thatσi+1 ≥ 2
√

2Mk and
Mk ≡

∑
i≥1 σk+i

III. R EACHABILITY APPROXIMATION AND ERROR

ANALYSIS

In this section we present a procedure to use reduced-
order models to compute conservative approximation of
the reach set for a hybrid control system. An outline of
the procedure is shown in Fig. 2. Given an LTI plant and
a hybrid controller, first a reduced-order model for the
plant is created. Then it is composed with the controller
to form a hybrid automaton [6], which is analyzed using a
slight modification of the procedures in the verification tool
CheckMate [2]. A bound on the error introduced by model
reduction is computed, which is used by the reachability
analysis routine to provide a conservative result. A sketch
of the reachability procedure using the error bounds is
shown in Fig. 3. We useS and Sr to denote the original
system and the reduced-order system, respectively. First we
compute the reach set of the reduced-order model using
approximation algorithm reachapprox. Then the error of
reduction is computed. The final step is to bloat the reach
set of the reduced-order model to compensate for the error

introduced by model reduction. Details of the procedures
are given in the next section.

Reachability analysis with error estimate

Hybrid controller

Model reduction

LTI model

Fig. 2. Reachability analysis using reduced-order models.

Algorithms for reachability analysis compute reach sets
in terms of state variables [2], [15], [7], [3]. In this paper,
we consider the reach sets in terms of the output variables.
They can be easily computed using the linear transformation
matrix C : Rn → Rm. The conservativeness of the
output reach set is guaranteed by underlying algorithms,
that is, Reacho(S, U,X0) ⊆ Reacho

comp(S, U,X0) where
Reacho

comp(S, U,X0) denotes the computed result. Our
objective is to use reduced-order models to compute these
approximations. In order to be conservative, the reach sets
are bloated to compensate for the error introduced by model
reduction.

The result of bloating is a conservative approximation
of the reach set of original systemS. In the remainder of
this section we focus on the subroutine errorestimate and
discuss the other routines in the next section.

Reach(S,Sr,U,X0,Xr0)
Reach = reachapprox(Sr,U,Xr0);
epsilon = errorestimate(S,Sr,U, X0, Xr0);
R = bloat(Reach, epsilon);
return(R)

Fig. 3. A reachability analysis procedure using reduced-order models

In the procedure in Fig. 3 we only compute the reach
set for the reduced-order model, thereby avoiding the more
expensive reachability algorithms for the full-order model.
However, the routineerror estimate uses both the full-
order and the reduced-order model. We show in the follow-
ing that an error bound can be computed from simulations of

the augmented LTI systemSaug =




A B
Ar Br

C −Cr 0


.

The computation time of simulations is negligible compared
with the reachability computation.

The routine from CheckMate computes the reach set
segments for each discrete state. For a specific stateq,
we assume the controller outputu(t) ∈ U(q) = {u|u =
f(q, y), y ∈ Iq} is bounded. It is sufficient to have a method
to compute an error bound for an arbitrary`∞ bounded
control inputU . An upper bound of the Euclidean norm of
error over all possible initial conditions and input signals
can be formalized as the solution of the following optimal
control problem:

εr(t) = max
u(·)∈U ,x0∈X0

‖e(x0, u, t)‖



= max
u(·)∈U ,x0∈X0

‖y(x0, u, t)− yr(πRx0, u, t)‖ (2)

The error bound is a function of time. We compute a more
conservative error bound as the sum of two error bounds:
εx0=0
r is the error of the zero-state response, given by

εx0=0
r (t) = max

u(·)∈U
‖e(x0 = 0, u, t)‖

= max
u(·)∈U

‖y(x0 = 0, u, t)− yr(xr0 = 0, u, t)‖

and εu=0
r is the error of the zero-input response, given by

εu=0
r (t) = max

x0∈X0, xr0∈Xr0
‖e(x0, u = 0, t)‖

= max
x0∈X0

‖y(x0, u = 0, t)− yr(πRx0, u = 0, t)‖

The error bound for the system can be estimated asεr(t) ≤
εx0=0
r (t) + εu=0

r (t) since the two systems are linear.
We now consider methods to estimate bound of output

signal of a given LTI system at timet for the input setU
and initial statesX0. Given the input signal iǹ∞[0, t], the
bound of the output signal at timet can be estimated using
the following theorem.

Theorem 2 ([19]): For LTI systemS =
[

A B
C 0

]
, let

y and u denote the output and input signals, respectively.
Suppose the input is iǹ∞[0, t] space, Then the norm of
output of the system at timet is bounded by

‖y(t)‖ ≤ ‖y(0)‖+ ‖u(·)‖[0,t]
∞

∫ t

0

‖CeAtB‖dt (3)

Considering the norm of a zero-input response, the upper
bound can be computed directly as

sup
x(0)∈X0

‖y(t)‖ = sup
x0∈X0

‖CeAtx(0)‖ (4)

Using (3) and (4) for the augmented system, the error of
zero-state response is given by

ε
x0=0
r (t)≤‖u(·)‖[0,t]

∞

∫ t

0
‖[ C −Cr ]

[
etA

etAr

][
B
Br

]
‖dt (5)

The error of zero-input response is given by

ε
u=0
r (t) ≤ sup

x0∈X0
‖[ C −Cr ]

[
etA

etAr

][
x0

πRx0

]
‖ (6)

For discrete-time systems, the two error bounds can be
computed as

ε
x0=0
r (t) ≤ ‖u(·)‖k

∞

t−1∑

i=0

‖[ C −Cr ]

[
Ai

Ai
r

][
B
Br

]
‖ (7)

ε
u=0
r (t) ≤ sup

x0∈X0
‖[ C −Cr ]

[
Ai

Ai
r

][
x0

πRx0

]
‖ (8)

Notice that the estimated error bounds vary with timet.
The first error bound clearly increases with time, whereas
the second bound could either increase or decrease as time
increases.

In summary, the computation ofer involves comput-
ing error bounds for zero-state response and zero-input

response. The first computation involves integration of the
norm of the impulse response of the augmented system,
which can be obtained from a simulation. The second
computation involves simulating all the vertices of the initial
setX0 whenX0 is polyhedral.

IV. REACHABILITY ALGORITHM - IMPLEMENTATIONS

There are various tools developed to compute reach set
in state space [2], [3], [7], [15]. Our descriptions are imple-
mentations of the algorithm in Fig. 3 for continuous-time
and discrete-time LTIs. With the specific implementation,
we investigate the underlying numeric computations and
demonstrate the reduction of computation time by using
reduced-order models. It has been shown in [15] that ori-
ented rectangular hull (ORH) representation can reduce the
computation time compared with the convex hull routines,
especially for higher-order models. In this paper we show
that with the ORH representation, reducing the model by
several variables will further shorten the computation time
significantly. This observation makes it attractive to use
reduced-order models in reachability analysis.

A. Algorithm for Discrete-Time Systems

The computation of reach sets for a discrete-time con-
trol system can be performed using linear mapping and
Minkowski sum operations [7]. Following [15], we im-
plement the algorithm in Fig. 4 to compute reach set at
time tf . The first step is to compute the reachable states
using the reduced-order model. This is done by successively
computing the next step reachable set. The ORH is succes-
sively computed to avoid the rapid growth of faces. The
second step is to estimate the error bound using (7) and (8).
The third step is to compute the conservative reach set in
output space. First, we transform each vertex to the output
subspace. Then we compute an ORH. SinceV is unitary,
the bloat r routine bloats the ORH by pushing each face
using the error boundεr(k), where

bloat r{x|d≤ V T x≤ d̄}={x|d− V T ε≤V T x≤ d̄ + V T ε}
The algorithm computes the reach set for a time instanttf ,
it can be easily extended to compute the reach set for a time
interval.

We analyze the computation time for algorithm in Fig. 4
by counting the number of flops (floating point operations).
Each iteration consists of four steps: linear transform, axis
determination and computing ORH. The required flops of
all the operations are [4]

O(22nrn2
r) + O(n2

r2
nr ) + O(n3

r) ≈ O(n2
r2

2nr ) (9)

The operations outside the for-loop consist of a linear
transform, an error estimation and one ORH. Suppose the
dimension of the output isk. The linear transform requires
O(nrk2nr ) operations. The error estimation consists of two
simulations, which requireO(ifn2

r) flops. The computation



given : Original system as[A, B, C], Reduced system
[Ar, Br, Cr], X0, Xr0, admissible control setU
and a hybrid ControllerHC

output : Conservative reach setY of the original
system.

Algorithm :
i=0;
X = Xr0;
WHILE( i<t f);

V tx = vertices(X);
V tx = Ar * V + B * control set(HC, X);
Vx = determine axis(Vtx);
X = ORHVx (V tx);

END
ε = estimate error(A, B, C, Ar, Br, Cr, X0, Xr0, U)
V tx = vertices(X)
V tx = Cr ∗ V tx;
Vy = determine axis(V tx);
Y = ORHVy (V tx);
Y = bloat r(Y, ε)
END

Fig. 4. Conservative Reachability Algorithm for Discrete-Time Systems

outside the for-loop can be estimated as

O(nrk2nr ) + 2×O(if (n + nr)2) + O(2nrk2)
≈ O(knr2nr + if (nr + n)2) (10)

From (9) and (10), the total flops can be estimated as

ifO(n2
r2

2nr ) + O(knr2nr + if (nr + n)2)

The number of flops is super exponential in the dimension
nr. Therefore, using reduced-order models can decrease the
computation effort exponentially. A comparison of com-
putation times for the models of different orders for the
example in section V is shown in Fig. 5.

4 5 6 7 8 9
0

5

10

15

20

Order of the model

C
om

pu
ta

tio
n 

tim
e 

(s
ec

on
ds

)

Fig. 5. Computation times for the discrete-time reachability procedure.

B. Algorithm for Continuous-Time Systems

To compute the reach set for a time interval[0, tf ],
existing tools like CheckMate [2] andd/dt [3] partition
time into small intervals and compute polyhedral over-
approximations of reach sets for each interval. Following
the discussion in [2], [15], we implement the reachability
algorithm for continuous-time systems shown in Fig. 6. We
give the algorithm for a flow-pipe segment[t, t + δ]. The
algorithms to compute reach set for[0, tf ] can be easily
constructed by successively computing each segment over
the range.

The algorithm in Fig. 6 has two parts. The first part is
to compute the reach set of[t, t + δ]. The algorithm was

Given : Original system as[A, B, C], reduced system
as [Ar, Br, Cr], X0, Xr0, t, δ, admissible control

U and a hybrid controllerHC
Output : Reachable set Y for[t, t + δ]
Algorithm :
//Step 1. Compute the reduced flow-pipe segment.
V = vertices(Xr0)
V txt = evolve vertices(Ar, Br, t, Xr0, HC)
V txt+δ = evolve vertices(Ar, Br, t + δ, Xr0, HC)
U = determine axis(V txt

⋃
V txt+δ)

X = ORHU (Vt
⋃

Vt+δ)
X = bloat hull(X, Ar, Br, Xr0, t, δ, HC)
//Step 2. Compute output reach set.
ε = estimate error(A, B, C, Ar, Br, Cr, X0, Xr0, U)
V tx = vertices(X)
V txy = Cr*V tx
Vy = determin axis(V txy)
Y = ORHVy (V txy);
Y = bloat r(Y, ε)
END

Fig. 6. Reachability Algorithm for Continuous-Time Systems

first proposed in [2] and later adapted in [15] to use ORH
representation. The second part of the algorithm is the error
estimation and the transformation of the reach set in state
space to the output space.

There are two types of computations in the procedure:
the computation of polytopes and the bloating of polytopes.
From the discussion of the discrete-time algorithm, the
time for polytope computation grows exponentially with
the order. The bloating procedure involves solving the
optimization problem [15]

max|minxr0∈Xr0,τ∈[t,t+δ],u(·)∈UU
T
i xr(τ)i = 1, · · ·n

s.t. xr(t) = xr0 +

∫ τ

0
Ax(s) + Bu(s)ds

in order to guarantee the conservativeness of the computed
ORH set. Experiments show that the time of solving the
optimization problem does not vary much with the order.
However the number of optimization problems increases
linearly as the order grows. A comparison of the computa-
tion time is shown in Fig. 7 for the example in section V,
wheret1 denotes the time of polytope computation andt2
denotes the time of bloating routines.
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Fig. 7. Computation time for continuous-time reachbility.

V. CASE STUDY: ELECTRICAL THROTTLE CONTROL

SYSTEM

In this section we demonstrate the reachability procedure
for a model of the electrical throttle control (ETC) system



from the DARPA MoBIES Open Experimental Platform.1

The plant is a continuous time LTI system with seven state
variables.

The block diagram of the model is shown in Fig. 8(a).
The subsystem inside dashed box of Fig. 8(a) is modelled as

Controller
Software

Actuator
and 
Plant

Input
Throttle angleFilter

PD
Controller

Linear Time Invariant (LTI) 
system

(a) System diagram

y1> 0

y1< 0

u1 = 1

u2 = αdes

u1 = -1

u2 = αdes

(b) Switch Controller

Fig. 8. Hybrid model of the sliding mode controller for the ETC system.

the plant. The output of the plant are the throttle angleα and
angular velocityω. The control inputs areu1(y) = sgn(y2)
and angle commandαdes. The sliding mode controller is a
discrete-time controller with sampling period of 20ms.

A series of reduced-order models were created using bal-
anced truncation [10]. We performed reachability analysis
to verify the rise-time requirement. The initial set is chosen
to be{x|−0.005 ≤ xi ≤ 0.005, i = 1 · · · 7}∩{x|−0.001 ≤
yi ≤ 0.001, i = 1, 2}. The combined errorε(t) bound
will be used for reachability analysis. Since the absolute
value of y1 and y2 differ in magnitude, we estimate the
reduction error for them separately to get more reasonable
error bounds. As the order of the model decreases, the error
bounds of the zero-state response become dominant in the
total error. The error bounds of model reduction increase in
magnitude as the order decreases. Thea priori error bounds
of balanced truncation for the model are shown in table I.
For the model and the time horizon thea posteriori error
bounds are much smaller than thea priori error bounds.

Order of the model 6 5 4
a priori error bound 0.0069 0.1116 0.7478
a posteriori error
bounds fory1, y2

4.339e-07,
4.49e-07

0.00318,
0.000302

0.0478,
0.00534

TABLE I

ERROR BOUNDS OF THE REDUCED-ORDER MODELS

To use a reduced-order hybrid model to perform reacha-
bility analysis, we need to first verify that the reduced-order
model is a good approximation. For this model, our criteria
for a good approximation is that reduced order model have
the same discrete transition sequence as the the original
system for the given initial set. This property is verified

1A description of the DARPA MoBIES Automotive Open Experimental
Platforms can be found at http://vehicle.me.berkeley.edu/mobies/
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(a) Error bounds for the fourth-
order reduced model.
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(b) Error bounds for the sixth-
order reduced model.

Fig. 9. Error bounds for different reduced-order models.

using discrete-time reachability analysis: for the given initial
set, the conservative result of the reduced-order model does
not have more discrete transitions than the full-order model.
This is verified by computing the reach set for both models
at the sampling time.

Part of the reach set for the full-order model and the
fifth-order reduced model are shown in Fig. 10. The sliding
mode controller satisfiesu1(i + 1) = sgn(y1(i)). It can
be verified that the sign ofy1 of the reach set computed
from the reduced order model is consistent with the full-
order model. Thus, the fifth-order model is a reasonable
approximation of the original one.
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Fig. 10. Reach sets using the reduced-order models.

The reach set of the 4th-order model is shown in Fig. 11.
The value ofy2 in setY (4) has both positive and negative
values. Thus in the next step, the next location of the system
should be positive or negative depending on the value of
y2(4). The reduced-order model could make a transition,
while the original model does not. We say that this reduced
order model is not a good approximation of the original
one.

The purpose of reachability analysis for the continuous
time ETC system is to verify the rise-time and overshoot
requirements. The rise-time requirement says all the trajec-
tories enter the region0.95 ≤ y2 ≤ 1.05 within 0.2 seconds.
The overshoot requirement says that no trajectories enter
the regiony2 ≥ 1.05 during the time period. To verify this
requirment, the reach set over[0, 0.2] is computed using
the algorithm in Fig. 6 with time stepδ = 0.004s. The
reach set computed using the full-order model and fifth-
order reduced model are shown in Fig. V. The reachability
analysis verifies the rise-time and overshoot requirements.
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Fig. 11. Reach set of the 4th-order reduced model
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model.

0 0.2 0.4 0.6 0.8 1
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

y
1

y
2

(b) Reach set for the 5th-order re-
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Fig. 12. Reach sets computed by the continuous-time algorithm.

VI. D ISCUSSION

This paper considers the use of reduced-order models in
reachability analysis for a class of hybrid control systems.
We present algorithms to estimate the error bounds of
model reduction. Combining these bounds with reachabil-
ity algorithms, we demonstrate that the algorithm using
reduced-order models is efficient in time compared with the
algorithms using full-order models. To use reduced-order
models in verification, the appropriate reduced-order should
be chosen to achieve a trade-off between the approximation
error and dimension of the model. This problem is demon-
strated with the ETC example. The experiment data show
that the less the order of the model, the less the computation
time. However, as the dimension of the model decreases,
the additive error introduced by model reduction is larger.
Future work will focus on methods for verifying properties
of more general classes of hybrid systems using reduced-
order models.
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