
Utilizing the Structure of Safety Properties to Aid in the
Verification of Hybrid Controllers

Natasha Neogi
University of Illinois, Urbana-Champaign

Rm 317, Talbot Laboratory
104 South Wright Street

1-217-333-4741

Neogi@uiuc.edu

ABSTRACT

Identifying hazardous states in a system and ensuring they are not
reachable is an ongoing problem in any large system safety
analysis. An exhaustive search of most complex process-control
systems will encounter the problem of state explosion. The use
of predicate abstraction has been studied and employed to great
effect. However, in this paper, we outline a novel approach
which utilizes the structure of the safety property to be verified to
mitigate state explosion. The state explosion problem is
minimized by creating an abstraction that partitions the state
space into equivalence classes based on the predicates of the
safety property. An ordering on these predicates, based on the
number of continuous variables inherent to each term, is used to
develop the set of equivalence classes that minimizes the number
of continuous variables that must be computed in order to
determine if a transition between classes occurs. This acts to
minimize the computational complexity of calculating
reachability sets by limiting the number of continuous variables
that need to be explicitly calculated. The work is then put in the
context of an Air Traffic Conflict Detection example problem,
and conclusions regarding scalability are drawn.

Categories and Subject Descriptors
Abstraction, Verification, Algorithms and Analysis Techniques,
Reachability Computation

Keywords
Abstraction, Reachability, Software Safety, Formal Methods,

1. INTRODUCTION
In today’s modern world, complex systems dominate the

landscape. These systems, such as the flight management system
(FMS) of an airplane, possess enormous state spaces, which are
nearly impossible to test and explore in search of unsafe or
hazardous states. A hazardous state is a state of a system that,
together with other environmental conditions, leads to an
accident. The identification of these hazardous states in software
design, and their eventual elimination from the design by
ensuring they are not reachable from the initial states, is a
recurring problem in the design of safe software systems [14].

Hazard analysis is at the heart of any effective safety
program. Simply knowing that a hazard exists may provide
sufficient information to eliminate or control it, even without in-

depth analyses of its causes. For many hazards and systems,
analysis may consist of comparing the design with various
standards and codes that have been developed over time to deal
with known hazards. However, as new technology is developed
and system size increases dramatically, such as in aerospace
systems that may have millions of states, new hazards arise and
the possibility of introducing hazards increases. The ability to
trace a hazard back to its initiating state in order to provide
options for elimination or control becomes extremely
computationally intensive, if not infeasible.

A reasonable method to evaluate whether a hazard could be
eliminated might entail starting with the hazardous state and
working backward in a model of the system to see if the initial
state is reached. If the initial state is reached, then the hazardous
state is reachable and must be eliminated or controlled in order
for the system to operate safely. However, the number of
backwards paths is enormous for most real systems, even if those
ending in only hazardous states is considered. A method to
circumvent the effects of the state explosion problem becomes
essential in order to pursue any form of effective hazard analysis
in any complex, real system.

One approach to mitigate the state explosion problem is the
method of predicate abstraction. An infinite state space can be
partitioned based on Boolean predicates, resulting in a finite
representation of an infinite space. The state-space is partitioned
into finitely many equivalence classes so that states in the
equivalence classes exhibit similar behavior with respect to the
predicate used to create the abstraction. Reachability analysis
can then be applied to the equivalence class itself, rather than
upon each individual state in the class [1]. However, the choice
of the Boolean predicates used to create the abstraction greatly
influences the efficiency of the verification technique. The
calculation of the minimal set of continuous variables necessary
in order to determine the satisfaction of the predicates is
essential in order to enable a speedup of the verification process.

In the next section, a brief overview of the different
techniques used to mitigate the state explosion problem is
presented, and the reasoning behind utilizing abstraction is
highlighted. In Section 3, the theoretical basis for creating a
finite abstraction of an infinite state space is outlined, and an
approach for developing the most advantageous abstraction, in
order to minimize computational complexity is proposed. In
Section 4, a resume of different techniques for performing

reachability analysis in hybrid systems is presented.
Refinements are made to the equational logic of the abstraction
that illustrate how the inherent structure of the problem and
constraints can be used to help simplify the computation of the
reachability set of the system. Section 5 explains the Aircraft
conflict detection example, and how the particular abstraction
chosen enables the elimination of a specific hazard. Conclusions
are drawn in the final section as to the scalability and practicality
of this approach.

2. STATE EXPLOSION AND
REACHABILITY
The problem of verification reduces to that of reachability.
Determining whether or not a system is verifiably safe with
respect to a given safety constraint becomes the task of proving
that, for all states of the system, the safety constraint holds. This
task amounts to proving that, from all initial states of the system,
all hazards corresponding to the violation of the safety constraint
are absent from the reachability graph of the system. The
verification of systems that possess a large number of
components that interact in a complex fashion with one another
is problematic. The asynchronous interaction of components and
the use of data structures that can assume many different values
leads to an enormous global state space. If the system being
modeled contains both discrete and continuous components, the
state space is infinite. It then becomes impossible to check
whether the system possesses any hazardous states by simple
enumeration alone. Several techniques, such as partial order
reduction, compositional reasoning, symmetry, induction and
abstraction can be used to mitigate the state explosion problem,
and help to efficiently generate the reachable space of the system
to be verified.

One of the most successful techniques for dealing with the state
explosion problem is based on partial order reduction [10,23].
This technique exploits the independence of concurrently
executed events. Two events are independent of each other when
executing them in either order results in the same global state.
The most common model for representing concurrent software is
the interleaving model, in which all of the events in a single
execution are arranged in a linear order called an interleaving
sequence [22]. However, the initial model only considered a
restricted model of concurrency that did not include looping and
nondeterministic choice. The proof system of Katz and Peled [12]
suggests using an equivalence relation between interleaving
sequences that correspond to the same partially ordered
execution. Their system included proof rules for reasoning about
a selection of interleaved sequences rather than all of them.
When a specification cannot distinguish between two
interleaving sequences that differ only by the order in which
concurrently executed events are taken, it is sufficient to analyze
only one of them. As a result, the number of states that are
needed for model checking is reduced [27].

Compositional reasoning exploits the modular structure of
complex protocols [5]. Many finite state systems are composed of
multiple processes running in parallel. The specifications for
such systems can be decomposed into properties that describe the
behaviour of small parts of the system. An obvious strategy is to
check each of the local properties, using only the part of the

system that the property describes. If it is possible to show that
the system satisfies each local property, and if the conjunction of
the local properties implies the overall specification, then the
complete system must satisfy this specification as well. If there
are interdependencies in the components, a form of assume-
guarantee reasoning can be employed. When proving a property
about one component, assumptions are made about the behaviour
of all the other components. The assumptions must then be
proved when the correctness of the other components is
established [11].

Symmetry can also be used to reduce the state explosion problem
[4]. Finite state concurrent systems frequently contain replicated
components or structures. Having symmetry in a system implies
the existence of a non-trivial permutation group that preserves
the state transition graph. Such a group can be used to define an
equivalence relation on the state space of the system and to
reduce the state space. The reduced model can be used to
simplify the verification of the properties of the original model
express by a temporal logic formula.

Induction involves reasoning automatically about entire families
of finite-state systems [6]. Such families can arise in the design
of reactive systems in software, as well as hardware. A process
control system can be parameterized, defining an infinite family
of systems. The goal is to prove that every system in a given
family satisfies some temporal logic property. In general the
problem is undecidable, but it is possible to provide a form of
invariant process that represents the behavior of an arbitrary
member of the family. Using the invariant, the property can be
checked for all members of the family at once. An inductive
argument is then used to verify that the invariant is an
appropriate representative.

Finally, the technique employed to the greatest advantage is
called abstraction [5]. This technique appears to be essential for
reasoning about reactive systems that involve data paths. The use
of abstraction is based on the observation that the specifications
of systems that include data paths usually involve fairly simple
relationships among the data values in the system. The
abstraction is usually specified by giving a mapping between the
actual data values in a system and a small set of abstract data
values. By extending the mapping to states and transitions, it is
possible to produce an abstract version of the system under
consideration. The abstract system is often much smaller than the
actual system, and as a result it is usually much simpler to verify
properties at the abstract level. Extending this method to
systems which possess continuous dynamics, and thus infinite
state spaces, allows for a finite abstraction of the infinite state
space, and thus reduces the number of reachable states which
need to be generated, thereby rendering the verification problem
more tractable.

Thus, it seems plausible, that by a combination of clever
modeling techniques, and assiduously chosen abstracted state
variables, it is possible to generate an algorithm that would be
able to check a given design, be it software or hardware, for the
presence of identifiable hazards.

3. FINITE ABSTRACTIONS OF INFINITE
STATE SYSTEMS
Discrete and hybrid systems, which possess a large (possibly
infinite) number of states are difficult to verify. Consider a
system that may possess infinitely many states (such as a hybrid
automaton), and a set of k safety constraints (which may be
temporal in nature) whose verity must be ascertained for each
state of the labeled transition system. Obviously, employing the
technique of enumerating each state of the system, then
evaluating each of the constraints for that state will not enable
you to successfully verify that the system is safe with respect to
the constraints. However, if the system can be expressed as a
labeled transition system, and the safety constraints can be
expressed as a finite number of logical predicates (or temporal
logic formulae) then a finite abstraction of the infinite state space
can be derived [1].

More formally, given the labeled transition system T, where:

),,,(→= AIQT (1)

 and Q is the set of states (possibly infinite) of the system, I is
the set of initial states of the system, A is the set of actions which
label transitions between states, and → is the set of labeled
transitions of the form:

AaQqqqq a ∈∈′′→ ,, , (2)

we consider an equivalence relation ≅ on Q, which results in a
finite partitioning of Q. The quotient (T/≅) is a labeled transition
system whereby:

() ()→′=≅ ,,, AHPT (3)

and states p∈P are equivalence classes of T, a state p is initial so
that p∈H if p contains a state in I, the set of actions A which
label transitions between states in P, and →′ is the set of labeled
transitions of the form:

pqpq

qqpp aa

′∈′∈
′→⇔′→

, somefor

 (4)

It is immediately obvious from this definition that if a property is
true for all states P in the labeled transition system (T/≅), then
the property is true for all states Q in the labeled transition
system T [1].

It only remains to define the nature of the equivalence relation
(≅). While any relation that preserves the above properties will
reduce the size of the (possibly infinite) state space, certain
equivalence relations shall prove more advantageous than others.

3.1 Defining the Equivalence Relation
The equivalence relation is a method by which the state space Q
of the labeled transition system T is partitioned into finitely many
equivalence classes [1]. More formally, consider the state space
Q of the labeled transition system T being partitioned into
finitely many equivalence classes using k Boolean predicates

kϕϕϕ K,, 21 . If the labeled transition system T possesses a

state space Q of dimension
nRL × , then the quotient labeled

transition system (T/≅) will possess a state space of dimension

{ }kL 1,0× (see Fig. 1).

Figure 1:Transformation of State Space under Abstraction

Two fundamental questions arise concerning the nature of the
predicates chosen to create the abstraction of the original state
space:

1. How does one reduce the number of equivalence
classes necessary to represent the state space of the
system, while still keeping track of all pertinent
behaviour?

2. What is the best way of selecting the abstraction in
order to aid in computational efficiency of generating
the reachability set of the abstracted system in order to
verify the given safety constraints?

We propose that the minimum number of equivalence classes
necessary to allow for the verification of a set of safety
constraints, which can be represented by a finite number of
Boolean predicates, can be derived using some minimal
combination of those Boolean predicates (and possibly some
additional completing predicates) used to express the safety
constraint, in order to create the abstraction.

Consider the case where the Boolean predicates

mϕϕϕ K,, 21 , (each of which is a function of quantified

continuous variables) along with logical operators and inference
rules can be used to construct the safety constraints of the system
to be verified. Furthermore, we can augment these predicates in
order to form a complete and confluent set Φ (all the behaviour
is explicitly specified with no obvious contradiction arising from
the conjunction of the predicates) whereby:

},,,,,{ 121 nmm ϕϕϕϕϕ KK +=Φ (5)

Hence, if we consider the system of minimal logical predicates to
be a set wherein each predicate cannot be simplified further or
eliminated through logical deduction, inference rules or
equational rewriting, we can achieve a minimal set of predicates

minΦ such that:

minΦΦa (6)

that is, the original set can be reduced to the minimal set by zero

or more rewriting steps. The truth of each predicate minΦ∈iϕ

cannot be determined through logical operation on the set

}{ min iϕ−Φ . This set of minimal predicates, minΦ is the

set we wish to employ to create the equivalence classes of the
original transition system T.

A A b b s s t t r r a a c c t t S S p p a a c cee : : L L b b y y { { 0 0 , , 11 } } k k

C C oo n n c crr e et t e e S S p p a a c c e e : : L L b b y y ℜℜℜℜℜℜℜℜ n n
t t

x x

⇒

4. REACHABILITY ANALYSIS AND
PREDICATE ABSTRACTION
Given our set of predicates minΦ derived from the safety

properties of the system, we can begin to construct the
abstraction of the state space of the original system. However,
the overall goal is to be able to verify that all of the safety
constraints are satisfied over the entire state space of the system.
We must still generate the reachable space of the abstracted
system, in order to check that all of the constraints are satisfied.
There are many techniques for generating the reachable space of
a system. For instance, in very large discrete systems, ordered
binary decision diagrams have been employed to great effect, as
they are a compact representation of the state space which allows
for efficient search techniques to be employed [3]. For systems
with both continuous and discrete dynamics (hybrid systems)
where the state space is infinite, there are several methods used,
which are outlined below.

For time invariant, state independent dynamics specified by a
convex polytope constraining the rates, the dynamics of the
system can be abstracted by using differential inclusions that
bound the rates at which the system can evolve [1]. However,
this acts to greatly restrict the types of systems that can be
analyzed considerably.

Another method for reachability computation, called face-lifting
for differential equations has been employed with some success
[8]. Unlike other approaches that attempt to give exact answers,
this approach is based on numerical approximation and a
combination of techniques taken from discrete verification,
computational geometry and optimization. This method could
theoretically work with arbitrary continuous dynamics (dx/dt=f(x)
where f is Lipschitz) but its performance is rather limited, in that
systems of no greater than 4 dimensions can successfully be
solved. This approach can be specialized to work with systems
with linear differential equations (dx/dt=Ax) and generalized to
include the analysis of systems with uncontrolled inputs
(dx/dt=Ax+Bu) and to the problem of synthesizing switching
controllers. A tool with a reasonable performance has been
implemented and is currently under testing with examples taken
from traffic control, engine control, robotics and chemical
process control. For the purpose of representing the set of
reachable states, a new representation scheme for orthogonal
polyhedra has been invented. It should be noted that this
representation is canonical (unique) for all (convex and non-
convex) polyhedra in any dimension.

Another formulation for computing the reachability of a system
with both continuous and discrete dynamics requires the solution
of a Hamilton-Jacobi partial differential equation, and a grid-
based numerical solution approach based on level set methods
can be used for this purpose [26]. The continuous-time nonlinear
dynamics of the system need to be considered carefully in
assessing reachability. Simulation examples exploiting this
technique have been presented for three flight management
applications: two-aircraft collision avoidance, the related
problem of conflict resolution, and ensuring safety during final
landing approach. The exact reachability computation falls prey
to the curse of dimensionality: its computational complexity is
exponential with respect to the continuous dimension. Tomlin et

al. [26] also present an alternative approach, which is based on
over-approximating the reachable set of states with a polyhedron.
This is also computationally intractable since the propagation of
the system's dynamics will result in a potentially unlimited
number of constraints (faces of the polyhedron), but a novel
technique for identifying and pruning redundant and irrelevant
constraints has been developed in conjunction with this work to
mitigate the number of constraints. This technique appears to
show promise for higher dimensional problems. The basis of the
approach is the computation of the maximum volume ellipsoid
contained in a polyhedron, a computation that can be formulated
as a convex optimization problem.

The method of calculating the reachability of a system with
both continuous and discrete dynamics by using ellipsoidal over-
approximations to reach tubes, developed by Kurzhanski and
Varaiya, [13] is promising for system dynamics which have a
hard bound on controls and are essentially linearizable under
small disturbances. The approach of ellipsoidal over-
approximation uses the intersection of a given family of hyper-
ellipsiods to approximate the reachable space of the dynamic
system. The reachability set of the continuous equations can be
regarded as being the tube consisting of all possible system
trajectories. The evolution of the boundary of the reachability set
can be approximated by the solution of the “integral funnel” of a
differential inclusion [13,21], and the family of hyperplanes
tangential to the boundary can be parameterized. A series of
hyper-ellipsoids can be generated by picking two supporting
hyperplanes, and generating a hyperellipsoid which
circumscribes the reachability set and is tangential to its
boundary at the hyperplanes. The advantage in this method
comes from being able to create the parameterization of
hyperplanes in terms of a system trajectory which runs along the
boundary of the reachability set. This ensures a tight external
approximation, thereby reducing the number of hyper-ellipsoids
necessary to approximate the reachability tube. This method is
employed for the aircraft conflict detection example, as it is a
relatively simple process to get a system trajectory tangential to
the reachability tube boundary, given the hard bounds on
controls.

4.1 Using the Predicate Abstraction to Reduce
the Computational Complexity of Reachability
Calculation
Even for a system with several continuous variables, it becomes
computationally challenging to generate the reachable space of
the system. Calculating the value of all of the continuous
variables for the reachable space creates an enormous burden,
and any technique to reduce the number of variables to be
calculated comes at a great computational savings. Now, if we
consider the previous section, whereby we created the quotient
(T/≅) labeled transition system with the state space P of
equivalence classes of the system T, based on the logical
predicates arising from the safety constraints which needed to be
verified, another fundamental question arises:

1. What is the minimum number of continuous variables
which must be computed in order to ascertain whether
or not any of the safety constraints have been violated?

This question can also be answered by looking to the predicates
used to create the abstraction. If we consider all of the outgoing
transitions from a given equivalence class pi, the set of successor
equivalence classes Sp is defined as:

},, somefor ,{ PppAapppS a
p ∈′∈′→′= (7)

Recall that the equivalence classes P were formed by partitioning
the state space Q of the original system using the Boolean

predicates in minΦ . That means, for a given class pi, each

Boolean predicate in minΦ evaluates to either true or false.

Similarly, for each successor predicate p’, each Boolean
predicate assumes a truth value. We wish to consider only the
predicates ϕj that change their value as an outgoing transition is
taken. The validity of these predicates depends on the values of
some subset of the continuous variables of the system. If we take
the conjunction of all of the continuous variables employed in
determining the truth value of each ϕj, we arrive at a minimal set
of continuous variables Vmin which must be evaluated in order to
determine whether or not any outgoing transitions can be taken.
This minimal set changes based on the set Sp, and must be re-
evaluated every time a discrete action is taken. A great
computational savings can be gained if it is possible to adjust the
minimal set of predicates used to create the abstraction such that
the successor classes to a given equivalence class depends on the
change in truth value of a small number of predicates that depend
on the smallest possible number of continuous variables.

The minimal set of predicates is isomorphic under all rules of
logical implication, and can be restructured to create a basis

minimal set of predicates Φbasis. Each predicate iϕ in minΦ can

be expressed as a function of some continuous variables.
Through equational substitution and algebraic simplification, we

can find },,,{ 21 mvvvV K= , the minimum number of

continuous variables necessary to express the all of the

predicates in minΦ . Let us introduce the notation n(V) where:

n(V) = number of elements in the set V (8)

We then select a predicate minΦ∈iϕ that is the function of

continuous variables Integers, },,,{ ∈= lkvvV lki K

such that:

min),()(Φ∈<¬∃ jijj VnVn ϕϕ (9)

that is, there is no minΦ∈jϕ which depends on fewer

continuous variables. This iϕ becomes the first predicate ϕ′1 in

Φbasis, with iVV =′1 . The next predicate ϕ′2 is constructed by

selecting a predicate ϕj such that:

jikVVnVVn jkk ,),()(11min ≠′∩<′∩Φ∈∀ϕ (10)

that is, no predicate in minΦ has more continuous variables in

common with ϕ′1, and then creating:

122 ϕϕϕ ′∨=′ (11)

In a similar manner, the p+1th predicate that forms Φbasis can be
created by selecting a ϕk∈Φmin based on:

kilVVnVVn plpll .,),()(min K≠′∩<′∩Φ∈∀ϕ (12)

 and using the recursive formula:

pkp ϕϕϕ ′∨=′ +1 (13)

Thus, the satisfaction of any ϕ′I implies the validity of all
previous ϕ′j for i>j. Thereby each predicate ϕ′I possesses an
explicit portion which is independent of all other ϕ′j∈Φbasis. This
creates a partial ordering on the predicates in Φbasis such that:

121 +′<′<′ pϕϕϕ K (14)

 If the equivalence classes P of are created using the predicates in
Φbasis, then each transition between equivalence classes explicitly
states which continuous variables must change their value in
order for the predicate to change its truth value. This allows for
the explicit enumeration of the minimum number of continuous
variables that define the transitions between equivalence classes.

5. AIRCRAFT CONFLICT DETECTION
EXAMPLE
In order to demonstrate the utility of this method of abstraction, a
scaled down version of a Medium Term Conflict Detection
(MTCD) algorithm is examined, and the hazard of a missed
detection due to failure to detect a trajectory overlap as a
consequence of incomplete predicate specification is eliminated.

MTCD is a conflict detection algorithm under development to
support Air Traffic Controllers (ATCOs) in their task of
monitoring and separating aircraft. Therefore, MTCD must
provide controllers with enough time to assess, and, if necessary,
resolve the conflict by deliberate action [21].

MTCD supports conflict detection for all flights for which a
system trajectory is available. MTCD begins conflict detection
for a flight when it is a pre-defined time from entering the area of
operation, and continues conflict detection until the flight leaves
the area entirely. We shall consider a scaled down version of
MTCD that detects loss of separation between probable positions
of two aircraft, based on system trajectories and uncertainty
areas, the latter introduced to take minor deviations into account

MTCD is a planning tool with a typical detection horizon of zero
to twenty minutes for aircraft conflicts, twenty to sixty minutes
for nominal route overlaps, and zero to sixty minutes for special
use airspace penetrations and descents below lowest usable flight
level. MTCD is not a conflict alert tool. Conflict alert, with a
typical horizon of zero to two minutes, is covered a by separate
function, called Safety Nets. MTCD calculations are based on
system trajectories of flights, flight plan data and aircraft data.
This data is provided by the Real-Time Flight Data Processing
and Distribution function. Trajectories can be either system
trajectories or tentative trajectories. To be able to end existing
conflicts, Real-Time Flight Data Processing and Distribution
must tell MTCD when a flight leaves the area of operation, or
when a tentative trajectory has been deleted. In addition to

trajectory data, MTCD requires environment data. The data
required by MTCD is provided by the Environment Data
Processing and Distribution function [21].

In principle, MTCD is quite simple. The traffic and its evolution
are specified by a set of trajectories. All that needs to be done is
to examine the trajectories in pairs and report whenever
trajectories come too close to each other. Complications occur
because of model uncertainties in aircraft behavior and slow
response to trajectory updates. By postulating the existence of
elliptical uncertainty buffers between aircraft trajectories that
include the separation standard, it is merely necessary to check
for the overlap of uncertainty buffers in order to determine
whether or not a conflict is imminent. Let us consider the matter
of vertical separation. The vertical separation standard is 1000
feet below an altitude of 2900 ft, and 2000 ft above that altitude.
If we consider the differential position of two planes to be

12 zzz −=∆ , where zi is the altitude of the plane, then the

planes are in conflict if dz ≤∆ , where d is the separation
standard for the flight level. The following predicates are used
in the formal document to capture the explicit semantics of the
safety constraint [21]:

()
()290029001000:

290029002000:

212

211

<∧<∧≤∆
>∧>∧≤∆

zzz

zzz

ϕ
ϕ

 (15)

Note that these predicates form do not form a complete and
consistent set Φmin. In order for this to occur, we must add an
additional two predicates:

()
()290029002000:

290029002000:

214

213

<∧>∧≤∆
>∧<∧≤∆

zzz

zzz

ϕ
ϕ

 (16)

These predicates form a complete and consistent set. If any of
these predicates are true, then the system is in conflict. Using
equational rewriting, we can simplify these four predicates into
the minimal set Φmin (which in this case is trivially equal to the
basis set):

()290029002000:

1000:

212

1

>∨>∧≤∆′
≤∆′

zzz

z

ϕ
ϕ

 (17)

The basis set can be found according to equations (12-13), and is
equal to the minimal set in this case. Thus, when we are
calculating the reachability sets, at each enabled transition for
the equivalence classes, we must explicitly enumerate the values
of z1 and z2. Implicitly, the values of pitch, pitch-rate, horizontal
(x) velocity and acceleration, as well as vertical (z) velocity and
acceleration may need to be calculated, but no logical
comparisions need to be carried out with their values. Since any
equivalence class can only transition to three other possible
equivalence classes, the computational complexity of calculating
the reachability set for the longitudinal system becomes much
more tractable.

These boundary conditions, for a bounded control input, lends
itself to the selection of a system trajectory, which can be used to
generate the hyperplane of support in order to create the
ellipsoidal approximation to the continuous variables (such as
pitch, pitch-rate etc.) in the reachability tube. Note that these

variables do not have to be explicitly enumerated, only
approximated, as it is their influence on the altitude variable z
which is of interest. Note that the longitudinal equations of
motion for aircraft are linear under small disturbance theory,
which enables for a great deal of simplification in the method of
ellipsoidal over-approximation, thus rendering the problem of
generating the reachability set of six continuous variables (x and
z velocity, pitch, pitch rate, elevator angle and thrust) tractable,
as only the z-velocity variable must be explicitly integrated in
order to perform logical comparisons. The leapfrog integration
scheme was used to perform time integration, and a Recursive-
Subdivision method to generate a fast, adaptive mesh scheme in
order to calculate the spatial integrations [21,25]. Using this
approach, the reachable space of the simplified model was
generated, until the following violation was found in the safety
constraint.

Consider the situation where two aircraft are flying below 2900
feet (one at an altitude of 2800 ft and another at an altitude of
1300 ft) and have 1500 ft of vertical separation. These aircraft
are obviously not in conflict. Now, consider the topmost aircraft
ascends to 3000 feet. The two aircraft are now in conflict.
However, this would yield a missed detection by the algorithm
with the safety constraints as initially specified. Violation of the
constraint ϕ′2 occurs, but not of ϕ2. Therefore, the hazard of a
missed detection at ascent above 2900 ft is detected by
employing the outlined method of predicate abstraction, in
conjunction with ellipsoidal over-approximation of the
reachability sets of the equivalence classes.

6. CONCLUSIONS
Verification and validation of large complex systems is very
difficult. The state spaces of such systems may be very large
(infinite) in nature, and thus are impossible to enumerate.
Generating the entire reachable space of the system in order to
check that each state satisfies a given constraint (safety, liveness
etc.) which needs to be validated becomes intractable. Instead, a
method of predicate abstraction is proposed, in order to create a
finite abstraction of an infinite state space. If the abstraction is
created based on a minimal set of predicates which completely
and consistently quantify the constraints to be verified, then the
problem of generating approximations to the reachable space of
the continuous variables in the abstraction can be greatly
simplified. This is illustrated using a simplified example taken
from Air Traffic Conflict Detection. A simplified vertical
separation problem was addressed, and the hazard of a missed
detection due to incomplete specification was identified.
Further computational savings can possibly be achieved by
converting the minimal set of predicates into a basis set as
outlined. This method shows great promise for situations in
which the underlying dynamics of the problem, and symmetries
in the constraints can be exploited in order to create a small
number of equivalence classes, each of which have a small
number of successor classes, and depend explicitly upon only a
limited number of continuous variables.

7. ACKNOWLEDGEMENTS
This research was partially supported by the Design for Safety
program at NASA Ames.

8. REFERENCES
[1] Alur, A., Dang, T., and F. Ivanfii. Reachability analysis of

hy- brid systems via predicate abstraction. In C. Tomlin and
M.R. Greenstreet, editors, Hybrid Systems: Computation
and Control, Fifth International Workshop, LNCS 2289,
pages 35-48. Springer-Verlag, March 2002.

[2] Bensalem, S., Bouajjani, A., Loiseaux, C. and Sifakis, J.
Property Preserving Simulations. Workshop on Computer
Aided Verification. Fourth International Workshop.
CAV’92. Proceedings LNCS 663. Springer 1992. pp. 260-
273.

[3] Browne, M.C., Clarke, E.M. and Dill, D.L. Automatic
Circuit Verification using Temporal Logic: Two New
Examples. Formal Aspects of VLSI Design. Elsevier 1986.

[4] Clarke, E.M., Filkorn, T. and Jha, S. Exploiting Symmetry
in Temporal Logic Model Checking. Proceedings of the 5th
Workshop on Computer Aided Verification. June/July 1993.
pp. 450-462.

[5] Clarke, E.M., Long, D.E. and McMillan, K.L. A Language
for Compositional Specification and Verification of Finite
State Hardware Controllers. Proceedings of the 9th
International Symposium of Computer Hardware
Description Languages and Their Applications. North
Holland 1989. pp. 281-295.

[6] Clarke, E. M., Grumberg, O. and Peled, D. Model
Checking. MIT Press 2001.

[7] Clarke, E.M., Long, D.E. and McMillan, K.L. A Language
for Compositional Specification and Verification of Finite
State Hardware Controllers. Proceedings of the 9th
International Symposium of Computer Hardware
Description Languages and Their Applications. North
Holland 1989. pp. 281-295.

[8] Dang T., and Maler, O., Reachability analysis via face
lifting. In T.A. Henzinger and S. Sastry, editors, Hybrid
Systems: Computation and Control, volume 1386 of LNCS,
pages 96--109. Springer, April 1998.

[9] Dahleh, M. Introduction to Linear State Space Control
Theory. Course Notes. Massachusetts Institute of
Technolgy. Fall 1999.

[10] Goefroid, P. and Pirottin, D. Refining Dependencies
Improves Partial Order Verification Methods. In
Proceedings of the 5th Conference on Computer Aided
Verification. LNCS 531. Springer 1990. pp. 438-449.

[11] Grumberg, O. and Long, D.E., Model Checking and
Modular Verification. ACM Transactions on Programming
Languages and Systems 16:843-872.

[12] Katz, S, and Peled, D., An efficient Verification Method for
Parallel and Distributed Programs. In Workshop on Linear
Time, Branching Time and Partial Order in Logics and
Models for Concurrency, LNCS 354, pp. 489-507. Springer
1998.

[13] Kurzhanski, A.B. and Varaiya, P. Ellipsoidal techniques for
reachability analysis. In N. Lynch and B. Krogh, editors,

Hybrid Systems: Computation and Control (HSCC'00),
LNCS 1790, pages 203--213. Springer-Verlag, 2000.

[14] Leveson, N.G. Safeware: System Safety and Computers.
Addison-Wesley 1995.

[15] Leveson, N.G., Heimdahl, M.P.E. and Reese, J.D.
Designing Specifications Languages for Process Control
Systems. Foundations of Software Engineering. Toulouse.
Sept. 1999.

[16] Leveson, N.G. and Stolzy, J.L. Safety Analysis Using Petri
Nets. IEEE Transactions on Software Engineering. SE-
13(3):386-397. March 1987.

[17] Manna, Z. and Pnueli, A. Temporal Verifications of
Reactive Systems—Safety. Springer 1995.

[18] Meseguer. J., Research Directions in Rewriting Logic,
Computational Logic, NATO Advanced Study Institute
Series F, Vol. 165, pp. 345-398, Springer-Verlag, 1999.

[19] Miller, S. Modelling Software Requirements for Embedded
Systems. Altitude Switch Specification. Rockwell Collins.

[20] Modugno, F., Leveson, N. G., Reese, J. D., Partridge, K.
and Sandys, S.D. Integrated Safety Analysis of
Requirements Specifications. IEEE 1997. pp. 148-159.

[21] Neogi, N. Hazard Elimination Using Backwards
Reachability and Hybrid Modelling Techniques. Ph.D
Thesis. Massachusetts Institute of Technology. 2001.

[22] Overman, W.T., Verification of Concurrent Systems:
Function and Timing. PhD Thesis, University of California
at Los Angeles, 1981.

[23] Peled, D., Combining Partial Order Reductions with On-
the-Fly Model Checking, Proceedings of the 1994 Workshop
on Computer-Aided Verification Methods for Finite State
Systems, LNCS 818. Springer 1994, pp. 377-390.

[24] Rajan, S., Shankar, N., and Srivas, M.K. An Integration of
Model Checking with Automated Proof Checking.
Proceedings of the 1995 Workshop on Computer Aided
Verification. LNCS 939. Springer 1995. pp. 84-97.

[25] Ribbens, Calvin J., A Fast Adaptive Grid Scheme for
Elliptic Partial Differential Equations, ACM Transactions
on Mathematical Software (TOMS), Volume 15 Issue 3,
September 1989.

[26] Tomlin, C., Mitchell, I., and Ghosh. R., Safety Verification
of Conflict Resolution Maneuvers, IEEE Transactions on
Intelligent Transportation Systems, Volume 2, Number 2,
June 2001.

[27] Valmari, A, A Stubborn Attack on State Explosion. In
Proceedings of the 16th International Colloquium on
Automata, Languages and Programming, LNCS 372. pp.
761-772. Springer, 1989.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control ConferenceBoston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeM17.6
	Page0: 1214
	Page1: 1215
	Page2: 1216
	Page3: 1217
	Page4: 1218
	Page5: 1219
	Page6: 1220

