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Abstract—Solving a tracking task as a Maneuvering Prob-
lem for dynamical systems has shown to be a flexible design
methodology, having many advantages over pure trajectory
tracking and path following designs. In this paper we give
a constructive design for solving the Maneuvering Problem
by sliding-mode control. A motivational example with a
simulation is used to illustrate the achieved performance.

I. INTRODUCTION
Recent developments in path following for dynamical

systems have lead to a powerful framework for control
objectives that incorporate tracing geometric curves. For
instance, in [1] the authors used a Serret-Frenet kinematic
representation for the purpose of path following control
design for mobile robots. This method was extended for
control of marine craft in presence of unknown constant
currents in [2]. Another approach for path following was
introduced in [3] and [4] where a desired trajecory for the
plant was converted into a path parametrized by a variable θ,
and an already available tracking controller in unison with a
numerical projection algorithm ensured smooth convergence
to and following of the path. The method of [3] and [4] ap-
plied to feedback linearizable systems whereas [5] showed
an extension by using backstepping and [6] extended it to
nonminimum phase systems.
Loosely speaking, the path following concepts in [3], [4],

[5], and [6] are called Maneuvering, and the problem state-
ment denoted The Maneuvering Problem was accordingly
defined in [7]. This problem statement is the composition
of multiple tasks where the main task is path following. In
[8] these tasks were conveniently divided into the Geometric
Task (path following) and the Dynamic Task where the latter
was further specified via a speed assignment along the path.
Motivated by real world applications, and especially

automatic navigation of marine craft, there is an interest
to explore other robust control design methods to solve the
Maneuvering Problem. The focus in this paper is therefore
on sliding-mode techniques. Such designs are discussed
in detail in [9], [10], and [11]. For marine applications,
unknown hydrodynamic effects are an undesired source
of uncertainty. Sliding-mode control thus quickly became
popular for such applications; see for example [12], [13],
[14], and [15].
The solution to the Maneuvering Problem in [8] included

the design of a dynamic gradient algorithm. As analyzed in
[16] and [17], this gradient algorithm ensures instantaneous
minimization of a quadratic cost function in the error states

and therefore gives improved performance. In this paper,
the goal is to recover this behavior for the nominal part of
the plant. A sliding-mode control law is then proposed to
ensure rapid convergence of all states in finite time to the
subset of the state space where the maneuvering objective
is solved for the nominal part of the closed-loop system.
Notation: In GS, LAS, LES, UGAS, UGES, etc., stands

G for Global, L for Local, S for Stable, U for Uniform,
A for Asymptotic, and E for Exponential. Total time
derivatives of x(t) are denoted ẋ, ẍ, x(3), . . . , x(n), while
a superscript denotes partial differentiation: αt(x, θ, t) :=
∂α
∂t ,α

x2(x, θ, t) := ∂2α
∂x2 , and αθ

n

(x, θ, t) := ∂nα
∂θn ,

etc. The Euclidean vector norm is |x| := (x>x)1/2,
a general p-norm is |·|p , the distance to a set M is
|x|M := inf {|x− y| : y ∈M}, the supremum signal
norm is ||x|| := ess sup{|x(t)| : t ≥ 0}, and the induced
norm of a matrix A is denoted ||A||. A diagonal matrix
is denoted diag{a1, . . . , an} ∈ Rn×n. Stacking several
vectors into one is denoted col(x, y, z) := [x>, y>, z>]>,
and whenever convenient, |(x, y, z)| = | col(x, y, z)|.
A. Motivating Example: Stabilizing the Unit Circle with
uncertain actuator dynamics
In [16] and [17] the problem of stabilizing the unit circle

for the double integrator was investigated. We revisit this
problem for the same system, but with uncertain actuator
dynamics. In particular we consider the plant

ẋ1 = x2 (1a)
ẋ2 = v (1b)
v̇ = bu+ δ(x, v, t) (1c)

where x = col(x1, x2) ∈ R2 is the positional state, v is
the actuator dynamics, u ∈ R is the commanded control
input, b ∈ [b0, b1], b0 > 0, is an uncertain constant, and
δ(x, v, t) contains uncertain dynamics. We let b̂ ∈ [b0, b1] be
a nominal value for b and assume that δ(x, v, t) is bounded
uniformly in t by the continuous non-negative function
ρ(x, v).
For the nominal states (x1, x2) with v as an unconstrained

control input, the task in [16] and [17] was stabilization of
the unit circle P := ©x : x>x = 1

ª
(2)

without creating any equilibria in P. As argued in [16],
there does not exist any continuous or discontinuous time-



invariant state feedback control that renders P GAS. There-
fore, dynamic feedback was proposed together with the
alternative problem of stabilizing the setA ⊂ P×R defined
as
A :=

½
(x, θ) : x = ξ(θ) =

·
ξ1(θ)
ξ2(θ)

¸
:=

·
cos θ
− sin θ

¸¾
for (1a), (1b), and the dynamic control state

θ̇ = ω(x, θ).

To design the functions ω(x, θ) and v = α(x, θ) to render
A UGES, the Hurwitz matrix

A =

·
0 1
−k1 −k2

¸
was selected together with P = P> > 0 such that A>P +
PA = −I. Using the control Lyapunov function (CLF)

V (x, θ) := (x− ξ(θ))> P (x− ξ(θ)) (3)

and K := [k1, k2], the functions ω and α were assigned as

ω(x, θ) = 1− µV θ(x, θ) (4)
α(x, θ) = −K(x− ξ(θ)) + ξθ2(θ) (5)

where V θ(x, θ) = −2(x− ξ(θ))Pξθ(θ). This results in the
closed-loop system

ẋ = A (x− ξ(θ)) + ξθ(θ)

θ̇ = 1− µV θ(x, θ)
(6)

with the following properties:

P1: The set A is UGES and P × R is uniformly
globally attractive.

To verify this, we differentiate (3) along the solutions of
(6) and get

V̇ = − (x1 − ξ(θ))> (x1 − ξ(θ))− µV θ(x, θ)2

≤ − |x− ξ(θ)|2 ≤ − 1

pM
V (x, θ), (7)

which implies that V (x(t), θ(t)) ≤ V (x(0), θ(0))e
− 1
pM

t
.

This means that |x−ξ(θ)| is bounded on the maximal inter-
val of existence, and by boundedness of ξθ(θ) we have that
V θ(x, θ) is bounded. Forward completeness then follows
from boundedness of the right-hand side of (6). Moreover,
because ξ(θ) is continuously differentiable and ξθ(θ) is
uniformly bounded by unity, ξ(θ) is absolutely continuous
and thus globally Lipschitz with Lipschitz constant Lθ = 1.
It can then be shown that

|(x, θ)|A ≤ |x− ξ(θ)| ≤
√
3 |(x, θ)|A . (8)

This gives

|(x(t), θ(t))|A ≤ |x(t)− ξ(θ(t))| ≤
r
1

pm
V (x(t), θ(t))

≤
r
1

pm
V (x(0), θ(0))e

− 1
2pM

t

≤
r

pM
pm

|x(0)− ξ(θ(0))| e− 1
2pM

t

≤
r
3
pM
pm

|(x(0), θ(0))|A e
− 1
2pM

t
, (9)

showing that A is UGES. Furthermore, since |x|P ≤
|x− ξ(θ)| ≤ |x|P + 2 we readily get that

|x(t)|P ≤
r

pM
pm

[|x(0)|P + 2] e−
1

2pM
t
, (10)

showing that P ×R is uniformly globally attractive.

P2: Suppose there exists c > 0 such that |x|P ≤ c
implies θ 7→ V (x, θ) has a global minimizer which
is a LAS equilibrium for

θ̇ = −V θ(x, θ)

with basin of attraction Hθ(x). Let r ≤ c and

H(r) := {(x, θ) : |x|P ≤ r, θ ∈ Hθ(x)}.
Then for each ε > 0 and each compact set K ⊂
H( pmpM c) there exists µ∗ such that µ ≥ µ∗ and
(x(0), θ(0)) ∈ K imply that

|x(t)|P ≤
r

pM
pm
|x(0)|Pe−

1
2pM

t
+ ε (11)

holds for (6) for all t ≥ 0.
This bound was referred to as ‘near stability’ in [16] and

quantifies the important property that if x(t) starts close
to the unit circle P, it stays close for all future time and
eventually converges by (10).

P3: Let v = α(x, θ) + w where w is a bounded
perturbation. Then the closed-loop system

ẋ = A (x− ξ(θ)) + ξθ(θ) + gw

θ̇ = 1− µV θ(x, θ)
(12)

with g = [0, 1]> is globally input-to-state stable
(ISS) with respect to the closed 0-invariant set A,
see [8], [18], and the solution (x(t), θ(t)) of (12)
converges to the set

Ω (||w||) :=
½
(x, θ) : |(x, θ)|A ≤ 6

r
pM
pm

pM
1− κ

||w||
¾
.

To verify this, we check that (3) is an ISS-Lyapunov
function for (12). Using (8), we get

pm |(x, θ)|2A ≤ V (x, θ) ≤ 3pM |(x, θ)|2A (13)

and
V̇ ≤ − |(x, θ)|2A + 2

√
3pM |(x, θ)|A |w|

≤ −κ |(x, θ)|2A , ∀ |(x, θ)|A ≥
2
√
3pM

1− κ
|w| (14)

where κ ∈ (0, 1). Forward completeness is guaranteed by
observing that the closed-loop vector field (12) is bounded
using (13) and (14) and boundedness of ξθ(θ) and w.
Hence, (3) is an ISS-Lyapunov function for (12) with
respect to A. By the above bounds it also follows that the
trajectory (x(t), θ(t)) must converge to the set(x, θ) : V (x, θ) ≤ 3pM

Ã
2
√
3pM

1− κ
||w||

!2
which is contained in Ω(||w||).



We are now ready to include the actuator dynamics
v̇ in the design. The aim is to recover the qualitative
properties of the subsystem (x, θ) as listed above. The ISS
property guarantees that if the error v − α(x, θ) = w stays
bounded, then the total system will be forward complete.
Furthermore, in the set

B := {(v, x, θ) : v = α(x, θ)} (15)

the properties P1 and P2 are recovered. Hence, the aim is
to render B forward invariant and to force the trajectories
of the total system to (rapidly) converge to B in finite time
while keeping w = v − α(x, θ) bounded.
To this end we define s := v − α(x, θ) and the global

diffeomorphism (v, x, θ) 7→ (s, x, θ). Differentiating s gives

ṡ = bu+ δ(x, v, t) + ϕ(v, x, θ) (16)

where
ϕ(v, x, θ) := −αx1(x, θ)x2 − αx2(x, θ)v

−αθ(x, θ) ¡1− µV θ(x, θ)
¢
.

We propose the control

u = −L
b̂
s−

µ
ks

b̂
+ σ(v, x, θ)

¶
sgn(s)− 1

b̂
ϕ(v, x, θ) (17)

where
σ(v, x, θ) :=

ρ(v, x)

b0
+

b1 − b0

b̂b0
|ϕ(v, x, θ)|

≥
¯̄̄̄
¯δ(x, v, t)b

+

Ã
b̂− b

b̂b

!
ϕ(v, x, θ)

¯̄̄̄
¯

and the signum operator sgn(·) is the traditional sign
function. Differentiating the Lyapunov-like function

U(s) =
1

2
s2 (18)

along the solutions of

ṡ = −
³
b/b̂
´
Ls− b

³
ks/b̂+ σ(v, x, θ)

´
sgn(s)

+δ(x, v, t) +
³
1− b/b̂

´
ϕ(v, x, θ)

gives
U̇ ≤ −b0

b̂
ks |s| = −

√
2
b0

b̂
ks
√
U. (19)

The last inequality implies that for each initial condition
s0 = |s(0)| the solution1 satisfies

|s(t)| ≤ max
½
0, s0 − b0

b̂
kst

¾
, ∀t ≥ 0. (20)

This shows that s(t) is bounded, and there exists t0 ∈
[0, b̂s0

b0ks
] such that s(t0) = 0, and convergence to B in finite

time is achieved. Larger gain ks implies faster convergence.
Equation (20) further implies that for all s(0) ∈ B⇒ s(t) ∈
B for all t ≥ 0.
The discontinuous switching introduced by the function

sgn(·) in the control law raises some practical issues.
Such switching will produce chattering due to limitations

1In fact, all solutions in the sense of Filippov. This is a solution concept
that captures behavior in the presence of small measurement and actuator
errors, see [19].

in the control devices and the digital implementation. To
alleviate both of these problems, an approximate continuous
implementation of the sgn(·) function by either a continuous
saturation function or a smooth hyperbolic function is often
used [11].
Let the signum function in the control law (17) be

replaced by the hyperbolic function

ψ(s) := (1 + ε1) tanh

µ
s

ε2

¶
, (21)

and define ε := ε2 atanh(
1

1+ε1
) where ε1 and ε2 are small

positive numbers chosen by design. For |s| ≥ ε we have
|ψ(s)| ≥ |sgn(s)| . This gives U̇ ≤ − b0

b̂
ks |s| for all |s| ≥ ε

which implies convergence in finite time to the noncompact
set

Bε := {(s, x, θ) : |s| ≤ ε} . (22)

From Property P3 and the relationship v = α(x, θ) + s
where s is bounded and converges to Bε, we get for each
r > ε that the set

{(s, x, θ) : |s| ≤ r, (x, θ) ∈ Ω(r)}
is forward invariant. Define the set

Aε :=

½
(s, x, θ) : |(x, θ)|A ≤ 6

r
pM
pm

pM
1− κ

ε

¾
.

In the state space of (s, x, θ) it follows since r is arbitrary
that the trajectories will converge to the set Aε ∩ Bε.
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Fig. 1. State responses projected into the (x1, x2) plane for two
simulation runs (Run 1: dotted, Run 2: dashed) from two different initial
conditions for θ(0). The solid dot indicates x(0) in both runs. The small
circles indicate ξ(θ(0)) for θ(0) = 90◦ in Run 1 and θ(0) = 100◦ in
Run 2.

A simulation has been performed using
Matlab/SimulinkTM for the plant (1) with b = 1.5
and δ(x, v, t) = sin(t)

1+x22+v
2 . The bounding function was

taken as ρ(x, v) = 1 while b0 = 1, b1 = 3, and b̂ = 2.
Figures 1, 2, and 3 show the responses for two runs using
ks = 5, L = 1, ε1 = 0.1, ε2 = 0.01, k1 = 1.0, k2 = 0.5,
p11 = 26.775, p12 = 10.750, p22 = 22.100, and µ = 1.0.
Initial position was x(0) = 0.9[−

√
2
2

√
2
2 ]

> (just inside the
circle at the angle 225 ◦). This means that V (x(0), ·) had
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Fig. 2. Responses for s(t) in the two runs, zoomed in on the boundary
layer. The responses were nearly identical for both runs, and they clearly
indicate the rapid convergence to Bε.

a global minimum at θV (x(0)) = 225 ◦, a local minimum
at θ (x(0)) = 73 ◦, and a maximum between them at
θ (x(0)) = 97 ◦. The simulation and parameters for the
nominal part of the plant are identical to those for the
simulation example in [17]. The objective is to verify that
by forcing the error state s(t) through the system state
v(t) to converge fast enough to the set given by Bε, then
the qualitative behavior seen in the simulation in [17] is
recovered. Indeed, Figure 1 shows an almost identical
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Fig. 3. Plot showing the convergence of v(t)→ α(x(t), θ(t)) for Run
1 only. The figure has zoomed in on the first 0.5 s.

response as Figure 2 in [17], with only a small discrepancy
near the starting time. The scenario is this: in Run 1, we
let θ(0) = 90 ◦ which is in the basin of attraction of the
local minimum. θ(t) therefore moves towards this local
minimum and causes the bad transient of x(t) as shown. If
the initial condition is changed to θ(0) = 100 ◦ we instead
get the response shown in Run 2. Since θ(0) in this case
is in the basin of attraction of the global minimum to
which θ(t) rapidly converges, see Figure 1, the distance
to the circle P , after a small transient, is exponentially
decreasing and thus indicating ‘near stability.’ Figure 2

shows the responses of s(t) for the two runs. The lower
plot has zoomed in on the boundary layer. The last plot,
Figure 3, shows the first 0.5 s of the rapid convergence of
v(t)→ α(x(t), θ(t)) for Run 1 only.

II. MAIN RESULT
Consider the nonlinear plant

ẋ1 = f1(x1, x2, t) (23a)
ẋ2 = f2(x, t) +G(x)u+ δ(x, u, t) (23b)

where x = col(x1, x2) ∈ Rm+n is the state vector, u ∈ Rp,
p ≥ n, is the control input, f1, f2, G, and δ are sufficiently
smooth functions where f1 and f2 are known, while G ∈
Rn×p and δ are uncertain.
Given a desired path ξ : R → Rm, continuously para-

metrized by a variable θ, and a desired speed assignment
υs(θ, t) along the path, let the control objective be to solve
the Maneuvering Problem:

lim
t→∞ |x1(t)− ξ(θ(t))| = 0 (24a)

lim
t→∞

¯̄̄
θ̇(t)− υs(θ(t), t)

¯̄̄
= 0. (24b)

In addition, we want to assure ‘near stability’ of the path

P := {x1 ∈ Rm : ∃θ such that x1 = ξ(θ)} (25)

so that starting close to P implies staying close (this is a
measure of performance in path following).
It is assumed that ξ(θ) and the partial derivatives ξθ(θ)

and ξθ
2

(θ) are uniformly bounded in Rm, and that υs(θ, t),
υθs(θ, t), and υts(θ, t) are uniformly bounded in θ and t.
To this end, suppose there exist a global diffeomorphism

(x1, θ, t) 7→ (z(x1, θ), θ, t) such that z(ξ(θ), θ) = 0 and a
smooth function V (x1, θ, t) satisfying

γ1 (|z|) ≤ V (x1, θ, t) ≤ γ2 (|z|) (26)

where γ1, γ2 ∈ K∞, see [11]. Suppose further there exists
a smooth function α1(x1, θ, t) such that for a bounded
perturbation w the system

ẋ1 = f1 (x1, α1(x1, θ, t) +w, t)

θ̇ = υs(θ, t)− µV θ(x1, θ, t)
(27)

is forward complete, and V satisfies

V x1(x1, θ, t)f1(x1, α1(x1, θ, t) +w, t)

+ V θ(x1, θ, t)υs(θ, t) + V t(x1, θ, t)

≤ −γ3(|z|), ∀ |z| ≥ γ4 (|w|) (28)

where γ3 ∈ K and γ4 ∈ K∞. The bounds (26) and (28)
imply the existence of β ∈ KL and χ ∈ K such that
|z(t)| ≤ β (|z(t0)| , t) + χ (kwk) , ∀t ≥ t0 ≥ 0, (29)
which shows that the system (27) is ISS (see [18] and [20])
with respect to the closed 0-invariant set

A := {(x1, θ, t) : z(x1, θ) = 0} . (30)

Many designs methods producing the functions α1 and
V can be applied depending on the nature of the plant. The
motivational example illustrated one such design, whereas
the backstepping designs in [7] and [8] showed a more



general method to satisfy the above conditions. To pro-
ceed, we merely assume the existence of z, α1, and V.
The objective is to design a control law that will drive
x2(t) rapidly to the manifold in the state space where the
function α1(x1, θ, t) solves the Maneuvering Problem for
the subsystem (x1, θ, t).

A. The general case

Assume there exist a known matrix H(x) ∈ Rp×n, a
constant c > 0, and a continuous nonnegative function ρ(x)
such that
G(x)H(x) +H(x)>G(x)> ≥ cI, ∀x, (31)

|δ(x, u, t)| ≤ ρ(x), ∀(x, u, t). (32)
We then have the theorem:
Theorem 1: Suppose the smooth functions α1(x1, θ, t)

and V (x1, θ, t) solves the Maneuvering Problem (24a) and
(24b) for ẋ1 = f1(x1, α1(x1, θ, t), t) according to the
conditions in (26) and (28). Let

ϕ(x, θ, t) := f2(x, t)− αt1(x1, θ, t)−αx11 (x1, θ, t)f1(x1, x2, t)
−αθ1(x1, θ, t)

¡
υs(θ, t)− µV θ(x1, θ, t)

¢
α2(x, θ, t) := −L(x)s− σ(x)H(x)Ψ1(s)

and
Ψ1(s) :=

s

max {|s| , ε} (33)

where ε is a small positive number chosen by design, L(x)
and H(x) both satisfy (31) with cL > 0 and cH > 0,
respectively, and

s := x2 − α1(x1, θ, t),
σ(x) := 1

cH
(ks + 2 |ϕ(x, θ, t)|+ 2ρ(x)) , ks > 0.

Using the control law
u = α2(x, θ, t) (34)
θ̇ = υs(θ, t)− µV θ(x1, θ, t), (35)

then, for all initial conditions (s(t0), z(t0), θ(t0), t0) ∈
Rm+n × R × R≥0, the corresponding trajectories
(s(t), z(t), θ(t), t) will exist on [t0,∞) and reach the for-
ward invariant set

Bε := {(s, z, θ, t) : |s| ≤ ε}
within the time interval [t0, 2 |s(t0)|−εks

]. This implies con-
vergence to the forward invariant set Aε ∩ Bε where

Aε :=
©
(s, z, θ, t) : |z| ≤ γ−11 (γ2 (γ4(ε)))

ª
.

Proof: To save space, we leave out the argument lists
where convenient. Differentiating s with u = α2(x, θ, t)
gives

ṡ = −GLs− σGH
s

max {|s| , ε} + ϕ+ δ. (36)

Define the Lyapunov-like function U := s>s. Its derivative
along the solutions of (36) becomes

U̇ = −s> £GL+ L>G>
¤
s− σ

|s|s
> £GH +H>G>

¤
s

+2s> (ϕ+ δ) , ∀ |s| ≥ ε

≤ −cL |s|2 − cHσ(x) |s|+ 2 |s| (|ϕ(x, θ, t)|+ ρ(x))
< −ks |s| , ∀ |s| ≥ ε.

This implies that

|s(t)| ≤ max
½
ε, |s(t0)|− ks

2
t

¾
, ∀t ≥ t0 (37)

so that Bε is forward invariant and there exists t0 ∈
[t0, 2

|s(t0)|−ε
ks

] for which s(t0) ≤ ε and convergence in
finite time to Bε is achieved. Moreover, because |s(t)| ≤
max {ε, |s(t0)|} , ∀t ≥ t0, we get by construction of
α1(x1, θ, t),

ẋ1 = f1 (x1, α1(x1, θ, t) + s, t) , (38)

and (29) that the solution z(t) is bounded for all t ≥ t0. It
follows by the assumptions and the above Lyapunov argu-
ments that the trajectory (s(t), z(t), θ(t), t) exist on [t0,∞)
so that the closed-loop system is forward complete. Since
Bε is forward invariant it follows from ISS of (27) with
respect to A, see [20], that if there exists t1 ≥ t0 such that
(s(t1), z(t1), θ(t1), t1) ∈ Aε∩Bε then (s(t), z(t), θ(t), t) ∈
Aε ∩ Bε for all t ≥ t1. Convergence to Aε ∩ Bε for any
initial condition is a consequence of convergence in finite
time to Bε and subsequent convergence to Aε.

Remark 1: If G(x) is known and satisfies¯̄
w>G(x)G(x)>w

¯̄ ≥ c0, ∀x, |w| = 1 (39)

for some c0 > 0, then two choices for H(x) are imminent:

1. H(x) =WG(x)> (40)

2. H(x) =W−1G(x)>
¡
G(x)W−1G(x)>

¢−1
. (41)

The matrix W =W> > 0 is a gain matrix in the first case.
In the second case, W = W> > 0 is a control allocation
weight matrix, and H(x) is recognized as the generalized
pseudo-inverse.
Remark 2: The function (33) is a vector version of

the continuous ‘saturation-type’ approximation to the sign
function as described by [11]. The advantage with this
function is that it maintains the direction of s, thus making
it possible to apply (31). Another alternative is to use the
smooth approximation

Ψ2(s) := col (ψ(s1), ψ(s2), . . . , ψ(sn)) (42)

where ψ(si) is defined in (21). However, (42) is not directly
applicable to the general case since it does not maintain the
direction of s. In the special case when G(x) is known,
(42) can be utilized because H(x) can then be taken as the
generalized pseudo-inverse (41) so that G(x)H(x) = I.

B. A special case
Suppose instead of (31) there exist a known matrix

H(x) ∈ Rp×n and a constant c > 0 such that the uncertain
matrix G(x) satisfies:

s>1 G(x)H(x)s2 ≥ c |s1| |s2| > 0 (43)

for all s1, s2 whose components have the same sign. A
sufficient condition for (43) is that G(x)H(x) is diagonal,
positive definite.
In this case we can apply the control law (35) and

u = −L(x)s− σ(x)H(x)Ψ2(s) (44)



where L(x) and H(x) both satisfy (43) with cL > 0 and
cH > 0, respectively,

σ(x) :=

√
n

cH
(ks + |ϕ(x, θ, t)|+ ρ(x)) , ks > 0, (45)

and Ψ2(·) is the smooth function (42) with

ψ(si) := (1 + ε1) tanh

µ
si
ε2

¶
(46)

where ε1 and ε2 are small positive numbers chosen by
design. With ε = ε2 atanh(

1
1+ε1

) we have the following
lemma:
Lemma 2: For each s ∈ Rn such that |s| ≥ √nε it holds

for (42) that 1√
n
|s| ≤ s>Ψ2(s) ≤ |s| |Ψ2(s)| .

Proof: From the equivalence between the 2-norm and
the ∞-norm we get |s| ≥ √nε ⇒ |s|∞ ≥ ε. Let si
correspond to the “largest” element in s such that |s|∞ =
|si| . Then s>Ψ2(s) = s1ψ(s1) + . . . + siψ(si) + . . . +
snψ(sn) ≥ |si| = |s|∞ ≥ 1√

n
|s| .

Differentiating U = 1
2s
>s along the solutions of

ṡ = −G(x)L(x)s− σ(x)G(x)H(x)Ψ2(s) + ϕ+ δ

gives

U̇ = −s>GLs− σs>GHΨ2(s) + s> (ϕ+ δ)

≤ −cL |s|2 − cHσ |s| |Ψ2(s)|+ |s| |ϕ+ δ|
≤ −cL |s|2 − |s|

µ
cH√
n
σ − |ϕ|− ρ

¶
, ∀ |s| ≥ √nε,

< −ks |s| , ∀ |s| ≥ √nε,
where (32), (43), and Lemma 2 were applied. The above
bound implies that

|s(t)| ≤ max©√nε, |s(t0)|− kst
ª
, ∀t ≥ t0.

In conclusion we then have that for all initial conditions
(s(t0), z(t0), θ(t0), t0) ∈ Rm+n×R×R≥0, the correspond-
ing trajectories (s(t), z(t), θ(t), t) will exist on [t0,∞) and
converge to the forward invariant set A0ε ∩ B0ε where

A0ε :=
©
(s, z, θ, t) : |z| ≤ γ−11

¡
γ2
¡
γ4(
√
nε)
¢¢ª

,

B0ε :=
©
(s, z, θ, t) : |s| ≤ √nεª .

III. CONCLUSION
The paper has extended the maneuvering theory in [8]

with a constructive result using sliding-mode control to
achieve maneuvering with gradient optimization of uncer-
tain dynamical systems. It was shown that if the maneu-
vering problem can be solved for the nominal part of the
plant, then using sliding-mode techniques the maneuvering
problem can be solved for the overall plant. This was
obtained by forcing the states of the closed-loop system to
rapidly converge to the manifold of the state space where the
maneuvering objective was solved for the nominal states, in
spite of modeling uncertainties. Indeed, the closed-loop ma-
neuvering system for the nominal part of the plant contains
all ingredients necessary to achieve this result. In particular
the ISS property with respect to the desired noncompact set
played a major role in the stability analysis. A large portion
of the paper was devoted to the problem of stabilizing the

unit circle for a double integrator with uncertain actuator
dynamics. By applying sliding-mode theory, the qualitative
behavior termed ‘near stability’ of the path, as addressed
in [16] and [17], was recovered. The simulation indicated
good performance of the overall closed-loop system, with
almost no deviation in the responses compared to those in
[16]. The design was generalized in the main theorem for
MIMO nonlinear plants.
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