

Abstract
In this paper, we describe a recently developed DC motor

position control experimental setup that can be accessed via
the Internet. This setup consists of two primary elements
communicating with each other: i) a server consisting of a
low-cost microcontroller, Parallax’s 40-pin Basic Stamp 2,
interfaced with an embedded ethernet IC, Cirrus Logic’s
Crystal CS8900A, and ii) a client computer. The client
computer sends/receives data to/from the microcontroller
using the User Datagram Protocol packets. The client
computer connects to the server using Java applets that
allow the user to command the position of the motor via a
graphical user interface. The interface includes a slider for
commanding the motor position from 0º—360º and text
input boxes for tuning the parameters of a position control
algorithm “on-the-fly.” A plot provides a visual display of
the current position of the motor using real-time sensor data
sent by the microcontroller. Our microcontroller-based
remote control methodology can be readily applied to
monitor and control other experimental hardware over the
Internet.

1. Introduction
Microcontrollers are low-cost embedded systems that

control and monitor consumer appliances, mobile robots,
machinery, etc. Microcontrollers are widely used in
applications that necessitate computing power delivered
within a small form factor, e.g., cellular phones, calculators,
digital wristwatches, etc. Because of space limitations,
microcontrollers have limited connectivity options. For
example, the type of connectivity provided for data
communication to a personal computer (PC) user for data
visualization and parameter adjustment “on-the-fly” is
usually limited to a serial port interface. This interface is
limited in that it allows only one user to control the

This work was supported in part by the National Science Foundation

under grants 0227479 and 0337668 and the NASA/NY Space Grant
Consortium under Grant 39555-6519.

microcontroller and restricts that user to be in close
proximity of the microcontroller. Enabling a
microcontroller to communicate to a ubiquitous data
communication network, e.g., the ethernet network, will
allow developers and end-users to monitor and control
microcontroller operated devices with greater flexibility.

In recent years, the ethernet network protocol has been
widely adopted as the choice method of data
communication for personal computers and other digital
devices. Its popularity is primarily due to the immense use
of the Internet, an information exchange infrastructure that
communicates data via the ethernet network, by the general
public. Furthermore, ethernet communication is readily
available on most of the currently deployed PCs. As a data
communication protocol, the ethernet is efficient. In all
ethernet networks, devices can easily communicate at
speeds of about 10 megabits-per-second, with some of the
most recent ethernet networks communicating even at data
speeds of 1 gigabit-per-second.

In this paper, we address the issues of i) imparting
ethernet capabilities to a Basic Stamp 2 (BS2)
microcontroller by interfacing it with an embedded ethernet
board (EEB) and ii) providing a Java-based graphical user
interface (GUI) to control and monitor the BS2.
Capabilities of this integrated BS2 and EEB hardware are
illustrated by using it to command and monitor a direct
current (DC) motor test-bed remotely [1]. Although in this
paper we focus on a 40-pin BS2 microcontroller, namely,
BS2P40, our approach is applicable to any microcontroller
possessing 16 or more digital input/output (I/O) pins. See
Figure 1 for a picture of this experimental setup.

This paper is organized as follows. First, in Sections 2
and 3, we describe the hardware environment and the
software environment, respectively, used in this paper.
Next, in Section 4, we present an illustrative example of the
ethernet-enabled BS2P40 controlling a DC motor. In
Section 5, we propose future enhancements to be made to
our hardware and software environment. Finally, some

1Department of Electrical and Computer Engineering
Imran Ahmed,1 Hong Wong,2 and Vikram Kapila2

Polytechnic University, Brooklyn, NY 11201

Internet-Based Remote Control using a
Microcontroller and an Embedded Ethernet

2Department of Mechanical, Aerospace, and Manufacturing Engineering

concluding remarks are given in Section 6.

2. Hardware Environment

In this paper, a microcontroller interfaced with an EEB is
used to control a DC motor. The microcontroller interfaces
with the DC motor sensors using an analog to digital
converter (ADC) and with the DC motor using a digital to
analog converter (DAC). Ethernet data communication
between the microcontroller and a remote web-client is
performed using the EEB. Specifically, the EEB receives
reference commands from the remote web-client and
communicates the same to the microcontroller. In addition,
the EEB receives sensory data from the microcontroller and
communicates the same to the remote web-client. See
Figure 2 for a schematic of the hardware environment.

2.1. Microcontroller

In this paper, we focus on the BS2P40 microcontroller
installed on a BS2P40 Demo Board development platform.
These devices are manufactured by Parallax, Inc. [2]. The
BS2P40 is a 40-pin Dual Inline Package (DIP) integrated
circuit (IC) [3]. It is based on Ubicom Inc.’s SX48AC
microcontroller. The BS2P40 is powered by a 6-14V direct
current (VDC) power supply. A voltage regulator on the
BS2P40 provides a steady 5VDC supply. The BS2P40
comes with ROM, 16KB Electronically Erasable

Programmable ROM (EEPROM), and a small amount of
RAM. The BS2P40 is programmed in the PBasic language;
the instruction set that is permanently stored on the BS2P40
ROM. The user-defined program is downloaded into the
EEPROM from a PC through a DB-9 serial cable
connection between the PC and the demo board. The excess
EEPROM can be used for long-term data storage. The
BS2P40 has 32 general-purpose digital I/O pins that are
user-defined. The high position on a digital I/O pin refers to
a 5VDC and a low position on a digital I/O pin refers to a
0VDC (ground potential). Each pin can source (supply) or
sink (draw) a maximum current of 30mA. The 32 I/O pins
on the BS2P40 at any given time can source/sink a
maximum of 60mA. See [2] for more details on the BS2P40
hardware features.

2.2. Direct Current Motor Test-bed
The DC motor test-bed consists of an armature controlled

DC motor, a continuous rotation potentiometer, a rotary
optical encoder, a tachometer, and a power amplifier. This
test-bed, shown in Figure 1, is manufactured by Quanser
Consulting Inc. [4].

Both the potentiometer and the encoder sensors measure
angular position of the DC motor. In this paper, only
potentiometer and tachometer signals are used in the
feedback control algorithm. The potentiometer outputs a +/-
5VDC signal corresponding to the absolute angular position
of the motor. The tachometer outputs a +/-5VDC signal
corresponding to the angular velocity of the motor. The
BS2P40 controls the DC motor angular position by
applying a controlled voltage signal.

2.3. Miscellaneous Electronics
The DC motor test-bed sends and receives analog signals

from the microcontroller using an LTC1296 12-bit ADC IC
and a MAX537 12-bit DAC IC, respectively. The two ICs
are controlled by the BS2P40 via serial communication.
The LTC1296, manufactured by Linear Technology Inc.
[5], is a 12-bit ADC (11-bit plus an additional sign bit) that
has 8 single input channels, which can be used as 4
differential inputs, and requires a +/-5VDC power supply.
The LTC1296 serves as a signal interface between the DC
motor sensors and the BS2P40, converting voltage signals
from the sensors to 12-bit data representations. The
MAX537 IC, manufactured by Dallas Semiconductor Inc.
[6], is a 12-bit DAC (11-bit plus an additional sign bit) that
has 4 single output channels, which can be used as 2
differential outputs, and requires a +/-5VDC power supply.
The MAX537 serves as a signal interface between the
BS2P40 and the DC motor, converting a 12-bit data
representation of the control voltage to a continuous voltage
to the DC motor. A MAX764 DC-DC inverter,

Solid-State Relay

Power Amplifier

DC Motor Test-bed

BS2P40 and EEB

A
D

C
,
D

A
C

,
In

v
er

te
r

P
o
te

n
ti

o
m

et
er

,
E

n
co

d
er

,
T

ac
h
o
m

et
er

DC Motor

Figure 1: Picture of the DC motor test-bed controlled using
an ethernet-enabled microcontroller

Internet
ADC

DAC

Solid State Relay

Web Client

DC Motor Test-Bed Potentiometer Tachometer Signalsand

BS2P40 and EEB

Figure 2: Hardware environment schematic

manufactured by Dallas Semiconductor Inc. [7], powered
by the BS2P40 demo board’s +5VDC power supply, is used
to obtain a +/-5VDC power supply for the LTC1296 and
MAX537. In addition, a DMP6402A solid-state relay,
manufactured by Crydom Inc. [8], is used to turn on/off the
voltage supplied to the DC motor test-bed power amplifier
using a single digital I/O on the BS2P40.

2.4. Embedded Ethernet Board
A 10Base-T EEB, manufactured by Embedded

Ethernet.com [9], provides bi-directional ethernet
communication capability to the BS2P40. The EEB is an 18
pin DIP IC that can be interfaced with the BS2P40 using 15
of its 32 I/O pins. It is powered by 5VDC from the BS2P40
demo board and has an RJ-45 port for connection to an
ethernet cable. At the core of the EEB is the Crystal
CS8900A IC, manufactured by Cirrus Logic. The CS8900A
on the EEB provides interfaces for the 8-bit data bus (D0—
D7), 4-bit address bus (A0—A3), and 4 control signals
(AEN, WR, RD, IRQ). See Table 1 for the EEB pin
assignments.

The EEB data bus allows for binary data communication

to and from the microcontroller, where these basic send and
receive functionalities are controlled by sending commands
to the EEB read and write pins. In addition, the EEB
address bus allows the microcontroller to control the
memory of the CS8900A. Figure 3 shows a picture of the
EEB. Figure 4 shows the pin connections between the EEB,
the BS2P40 demo board, and the BS2P40.

3. Software Environment
The software environment of this paper consists of

primarily PBasic and Java. Ethernet communication
between the BS2P40 and PC is accomplished by
implementing a User Datagram Protocol (UDP) in PBasic.
The PBasic program initiates and performs all data
exchange to and from a PC via the EEB including encoding
of sensory data, which is to be sent to a remote client, in the

UDP format and decoding of the UDP format position
command and control gain parameters, which are received
from the remote client. See [10] for more details on network
communication using the UDP. A proportional plus
derivative (PD) control algorithm for DC motor control is
also implemented in PBasic. A Java applet, executing on a
remote client, serves as a gateway to the BS2P40.
Specifically, the Java applet presents a GUI to the remote
client through which the user can give DC motor angular
position commands and PD control gains to the BS2P40
and visualize sensory data received from the BS2P40. Next,
we describe various elements of the software environment
used in this paper.

3.1. Ethernet Data Communication

The BS2P40 microcontroller communicates with the
remote client by creating, interpreting, sending, and
receiving UDP datagram packets. A UDP datagram packet
is a sequence of binary bits sent via the ethernet
transmission wire. In the initial phase of the datagram
packet, an IP and UDP header bit sequence is sent that
contains information about the destination address, the

CS8900A IC

RJ45

PIN 1 PIN 18

Figure 3: The embedded ethernet board

SOUT

SIN

ATN

VSS

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

BS2P40-IC
Module

1

2

3

4

5

6

7

8

9

10

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

VIN

VSS

RES

VDD

X15

X14

X13

X12

X11

X10

X9

X8

X7

X6

X5

X4

X3

X2

X1

X0

Embedded Ethernet
Board

5VDC Ground

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

11

Not Used

Not Used

BS2P40 Demo
Board Pinout

Figure 4: Pin connections between the EEB to BS2P40

Table 1: Pin assignments for the embedded ethernet board
Pin(s) # Label Signal Type Functionality

1 Vcc Input 5VDC
2 GND Input Ground

3—10 D7—D0 Input/Output CS8900A Data Bus
11 /AEN Input CS8900A Address

Enable (Active low)
12 /WR Input CS8900A Write control

(Active low)
13 /RD Input CS8900A Read control

(Active low)
14 IRQ Output Interrupt signaled by this

pin going high
15—18 A3—A0 Input CS8900A Address Bus

packet origin address, and the data checksum. The final
phase of the datagram packet contains the data bit sequence.
Figure 5 shows a generic UDP packet. The UDP is a choice
method of ethernet communication because of the datagram
packet’s compact size compared to other transmission
protocols, e.g., Transmission Control Protocol (TCP).

3.2. PBasic Program

The BS2P40 is programmed using the PBasic
programming language. It is a Basic-like language
developed by Parallax, Inc. for the BS2 series
microcontrollers. In addition to simple arithmetic, the
BS2P40 executes certain task specific commands. See [11]
for more details on PBasic programming language. We now
provide a summary of our PBasic program.

In the first step, the PBasic code declares various
variables used in the program in addition to the locations of
various registers of the Crystal CS8900A. These registers
are used to read and write ethernet packets. In the second
step, the PBasic code initializes the EEB so that the EEB is
ready to send or receive UDP datagram packets. In order to
send data of arbitrary size via the ethernet, UDP datagram
packets are sent 8-bits at a time until all the data is
transmitted. Our data to be transmitted by the BS2P40 is 6-
bytes long and contains two sequential measurements of the
DC motor position (4-bytes) and the corresponding sample
number (2-bytes) of the first measurement in the sequence.
In addition, the data to be received by the BS2P40 is 6-
bytes long and contains the commanded position of the DC
motor, a proportional control gain, and a derivative control
gain. In the third step, the microcontroller waits for an
incoming packet. The fourth step of the PBasic code begins
when the microcontroller receives a datagram packet. In
this step, the microcontroller decodes the contents of the
datagram packet information. The decoded information
contains a user-defined 2-bytes long flag, an angular
position command, a proportional control gain, and a
derivative control gain. The user-defined flag is used to
ascertain the source of the datagram packet. If the datagram
packet does not have a valid user-defined flag, implying
that this packet does not come from a valid user, then the
PBasic code turns off the power amplifier using the solid-
state relay and returns to the third step. However, if the

datagram packet has a valid user-defined flag, then the
program goes to the fifth step, where the PBasic code saves
the received DC motor angular position command,
proportional control gain, and derivative control gain. In the
sixth step, the power amplifier is turned on via the solid-
state relay. The current DC motor position and velocity are
then measured. Next, a PD control algorithm is used to
compute the control voltage that needs to be applied on the
DC motor. In the seventh step, the PBasic code transmits
the control voltage to the DC motor via the DAC and power
amplifier. At this stage, the PBasic code loops back to the
sixth step once, and after the completion of the second
cycle, saves the measured DC motor angular position
during these two iterations. In the eighth step, the PBasic
code encodes and transmits a datagram packet containing
the previously obtained DC motor position data sequence.
Finally, the PBasic code loops back to the third step. See
Figure 6 for a flow diagram of the PBasic code.

2. Initialize the Embedded Ethernet IC

Continuously check for incoming
datagram packet

3.

1. Declare program variables and CS8900A registers

4b .1 Datagram packet is from
client computer

4b .2 Datagram packet is not
from client computer

4a. Receive and decode incoming datagram packet and
check its origin

5a. Save user-specified command
angle from datagram packet to
BS2P40

8. Encode and send datagram packet containing 2
samples of the DC motor angular position data

7. Send control signal to DAC

6c. Compute control signal using current motor position and
user-specified command angle using control algorithm

6b. Read ADC to obtain current position and velocity
of motor

Loop 1 time
Returns samples
of DC motor angular position data

sample number and 2

6a. Turn on power amplifier using solid-state relay

5b. Turn off power amplifier
using solid-state relay

Figure 6: Flow of events in the PBasic program

IP
Header

UDP
Header

UDP Data

20 bytes 8 bytes

IP Datagram

UDP Datagram

Figure 5: UDP encapsulation

3.3. Java Interface
A GUI, which runs on a remote client computer, has been

created using the Java applet technology [12]. This GUI
allows remote clients using any Java compatible operating
system to interact with our experimental test-bed. The GUI
consists of three Java applet libraries and one main Java
program.

The first Java applet library includes functionality for a
horizontal slider bar. This object is dragged left or right to
specify a 0º—360º command for DC motor angular
position. The user-selected angle on the slider bar is written
to a text file. The second applet library provides
functionality for two text boxes to receive user inputs. The
first text box allows the user to enter a proportional control
gain parameter between 0—1.00 (Volts/rad). The user
clicks the “Update” button on the GUI to submit this input.
The second text box allows the user to enter a derivative
control gain parameter between -0.6—0.0 (Volts⋅sec/rad).
This is also submitted by clicking the “Update” button.
Similar to the slider bar object, the user-selected gains from
the text box object are written to a text file. The third Java
applet library is the PlotLive component [13]. This object
reads the current position of DC motor obtained from the
BS2P40 and plots it against the corresponding sample
number.

The main Java program integrates the aforementioned
three Java applet libraries for data manipulation and
display. In addition, using Java’s network data
communication library, the main program transmits and
receives the user inputs (i.e., the commanded DC motor
position and the control gains data) and current position of
DC motor, respectively, to/from the BS2P40. See Figure 7
for a flow diagram of the main Java program.

Remark 3.1. To aid in the design of the PD control gain
parameters, a Matlab Web Server [14] based control design
panel is also provided on [1]. This control panel is a web
page that takes in user parameters (e.g., desired set-point,
settling time, percent overshoot) using standard html forms
and outputs to the web page, control gain parameters, a
simulated DC motor response, and a Matlab script
displaying step-by-step instruction for computing these
control gain parameters.

4. Illustrative Example
In this example, a step command, provided by a remote

web-client running a Java applet GUI, changes the
command angle of the DC motor arm. First, the user
commands the DC motor to maneuver from 50º to 100º
using the horizontal slider on the GUI. Next, the user
commands the DC motor to maneuver from 100º to 250º. In
this example, the controller gains have been set as Kp=0.8

(Volts/rad) and Kd=-0.4 (Volts⋅sec/rad). Figure 8 shows the
results of the GUI interface after performing the specified
command angle changes. The reader can remotely access
and evaluate the current version of our experimental setup
by accessing and following the instructions on [1].

5. Future Enhancements

The following hardware and software enhancements are
planned to extend the capabilities of our ethernet-enabled
microcontroller environment.
• Enhance the Java GUI to host additional user-interface

and data visualization tools e.g., 3-D plots,
miscellaneous controls (e.g., switches, knobs, etc.), and
Virtual Reality Modeling Language (VRML) based 3-
D animations.

Datagram Packet
Transmitter/Receiver

Program

BS2P40

Plot.txt

Send.txt

Figure 7: Java program interaction

Figure 8: Java applet GUI screen capture

• Implement a scheme for user prioritization/queue.
• Enable software-based switching of control

architectures (PD, Proportional plus Integral plus
Derivative (PID) control, Linear Quadratic Regulator
(LQR), etc.).

• Integrate a low-cost embedded web server with our
current hardware to provide web-hosting capabilities.

6. Conclusion
In this paper, we exploited an EEB for ethernet data

communication between a BS2P40 and a remote web-client
PC. Utilizing UDP datagram packets, DC motor position
sensor measurements were transmitted from the BS2P40 to
the remote web-client PC while command angles and
control gain parameters were transmitted from the remote
web-client PC to the BS2P40. In addition, a PD controller
was implemented on the BS2P40 to control the DC motor
arm. On the remote web-client PC, a Java applet GUI was
provided for data visualization and parameter adjustment
“on-the-fly.” Specifically, a generic Java plotting library
was used to plot the DC motor position history, a generic
Java horizontal slider was used to send command angles to
the BS2P40, and a text box library was used to update the
control gain parameters of the PD controller on the
BS2P40. This paper illustrates the Internet capabilities
imparted to a microcontroller by the use of embedded
ethernet for data communication and Java for GUI
functionality.

References

[1] http://mechatronics.poly.edu/EEBPaper/, website of
Internet-based remote control using a microcontroller and
an embedded ethernet board.

[2] http://www.parallax.com/, website of Parallax, Inc.
[3] http://www.parallax.com/detail.asp?product_id=BS2P40-

IC, website of Parallax, Inc. developer and distributor of 40
pin Basic Stamp 2 (BS2P40) microcontroller.

[4] http://www.quanser.com/english/html/products/fs_product_
challenge.asp?lang_code=english&pcat_code=exp-
rot&prod_code=R1-posserv, website of Quanser Consulting
Inc. developer and distributor of the DC motor test-bed.

[5] http://www.linear.com/prod/datasheet.html?datasheet=324,
website of Linear Technology Inc. developer and distributor
of the LTC1296 ADC.

[6] http://www.maxim-ic.com/quick_view2.cfm?qv_pk=1125,
website of Dallas Semiconductor Inc. developer and
distributor of the MAX537 DAC.

[7] http://www.maxim-
ic.com/quick_view2.cfm/qv_pk/1171/ln/en, website of

Dallas Semiconductor Inc. developer and distributor of the
MAX764 DC-DC inverter.

[8] http://dkc3.digikey.com/PDF/T041/1028.pdf, website of a
Digikey catalog page containing specifications for Crydom
DMP6402A solid-state relays.

[9] http://www.embeddedethernet.com, website of Embedded
Ethernet.com developer and distributor of the Embedded
Ethernet Board.

[10] W. R. Stevens, TCP/IP Illustrated Volume 1, Addison-
Wesley, Boston, MA (1994).

[11] Basic Stamp Programming Manual, v2.0c, Parallax,
http://www.parallax.com/dl/docs/prod/stamps/basic%20sta
mp%20manual.pdf.

[12] J. Zukowski, Mastering Java 2, J2SE 1.4, Sybex, Alameda,
CA, 2002.

[13] http://ptolemy.eecs.berkeley.edu/ptolemyII/, website of
Ptolemy II a Java package containing plotting libraries.

[14] http://www.mathworks.com/products/webserver/, website of
the Matlab Web Server.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control ConferenceBoston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeMI.9
	Page0: 1329
	Page1: 1330
	Page2: 1331
	Page3: 1332
	Page4: 1333
	Page5: 1334

