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Abstract

Many academic researchers have been working on the
problem of how to improve industrial logic design. The
problem that many are trying to solve is the perceived
inefficiency of the current methods, which use primi-
tive, low-level design languages, practically no logic
reuse, and are very time consuming. To solve these
problems researchers have focused on methods which
can be verified against a known specification language,
or which can be automatically generated from a spec-
ification. This work has generally been done with a
minimal understanding of what the current logic design
methods actually are.

In this work, we present the results of an observational
study of the current methods of creating control logic.
We find that the current specifications are generally in-
formal and loosely defined, and that the typical logic
designer is responsible for determining the details of
system behavior, anticipating potential problems, and
coordinating with other designers. This is a larger range
of activities than generally addressed by logic design
schemes focused on verification or automatic logic gen-
eration.

1 Introduction

Control logic is a critical part of a modern machining
system. The control logic is responsible for insuring
the machine operates in a safe and productive manner,
coordinating tens of thousands of I/O points.

In the US, the most popular method of creating control
logic is ladder diagrams (see example in fig. 1). This
is one of the five languages specified in the IEC 61131-
3 standard of control languages for machining systems
[5]. Ladder logic began as a systematic method of lay-
ing out physical relays to control machines before mi-
croprocessors were common. Modern implementations
of ladder diagrams use a PC to write the logic, and the
“relays” are simulated in a special purpose computer
called a Programmable Logic Controller (PLC). This
has saved a great deal of time compared to physically

1This research was supported in part by the NSF under grant
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Figure 1: A trivial program written in ladder diagrams.
The Operate On Part output will be set when a
Part Arrives, and remain set until either Done
Operating or Alarm. The Alarm will be set
when Error Sensed and remain on until Error
repaired.

wiring thousands of relays.

However, the system still needs to be improved. Cur-
rently there is a demand for machines to be produced
faster and for the control features on these machines to
be more sophisticated. However, logic designers are not
given enough tools to effectively satisfy this demand,
and are often not thoroughly trained to use the features
that they do have.

With this in mind we have performed an observational
study of current current logic design practices at Lamb
Technicon. From September to December of 2001,
logic designers were observed for about 110 hours
while working on three separate projects.

The rest of the paper is organized as follows: section 2
reviews literature in this field; section 3 reviews the
methods used in this study; section 4 presents the main
results; and section 5 discusses many of the more intan-
gible observations made.

2 Relevant Literature

The industrial specification IEC 61131-3 [5] contains
five programming languages which may be supported
by any compliant vendor. These are: instruction list
(similar to assembly), structured text (similar to For-
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Figure 2: A simple ladder program using “token-passing logic”.
The symbols -(L)- and -(U)- represent latch and un-
latch coils, which only alter the state of a bit if the rung
evaluates as true. Compare to the example in figure 1.

tran), function block diagrams (an example of data flow
graphs), sequential function charts (a simplified version
of Petri nets), and ladder diagrams (similar to electrical
relay diagrams). Most industrial logic design solutions
rely on one of these languages with minimal support for
other languages. In the United States ladder diagrams
are the most common method of creating control logic
for industrial problems.

To address the problems of ladder logic without aban-
doning the ladder framework, Ponizil [13] suggested
applying structured programming techniques, including
modularity and top-down design, to ladder diagrams.
A similar method was proposed by Morihara [11], al-
though we have not seen any evidence of these tech-
niques being used in practice. Other researchers have
generated ladder diagrams from Petri nets in order
to utilize formal design methods with existing, lad-
der based, industrial hardware (see [15]). This line of
research generally uses a variation of “token-passing
logic” which creates one rung for each transition in
the Petri net and used latched coils to maintain state
(see example in fig. 2). This is in contrast to ladder
diagrams written by logic designers which generally
do not use latched coils, and use one rung per output.
Token-passing logic would defeat the primary debug-
ging methods used in industry today.

Petri nets are often used as an alternative logic control
design methodology. Park et al. [12] have developed
methods of directly converting timing bar charts into
logic written in Petri nets (see fig. 3 for a sample timing
bar chart). Frey et al. [10] describe “signal interpreted
Petri nets” (SIPNs). They perform an experiment deter-
mining that SIPNs are easier to generate than function
block diagrams, and that the computerized aids which
are possible in SIPNs prevent many errors. Petri nets
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Figure 3: A portion of a timing bar chart, which is used to specify
desired automatic mode behavior for a machine.

are also assumed to be the solution in other papers.
These include Uzam et al. [15] who create a controller
for a small demo system, Holloway et al. [2] who cre-
ated software to allow Petri nets control systems using
a PC, and Lee and Hsu [4] who use Petri nets to design
logic, and then convert to ladder diagrams for use with
industrial PLCs.

In addition to the work in Petri nets, some work has
been done using finite state machines as programming
tools. Endsley et al. [1, 6] use “Modular Finite State
Machines” to create a modular structure for designing
controllers, and an example of the system in use is pre-
sented in [14].

None of these alternative methodologies have been im-
plemented in industrial scale logic programming.

One thing that is missing from the literature to date is
a complete understanding of the problems associated
with logic control for machining systems. For exam-
ple, typical Petri nets used in academic papers have
contained 63 places [7, 9], and 21 places [15]. Projects
observed during this study contained tens of thousands
of rungs, and it is not clear that measurements and in-
tuitions developed using small systems will work for
large systems.

It is difficult to imagine a cost-effective and expedient
method of determining the cost of using a particular
logic control design methodology. A first step is to per-
form a task analysis [3] to determine what is done using
the current system.

3 Study Methods

From September to December of 2001, observations
were made at Lamb for approximately 110 hours on
28 different days. During this time, portions of three
projects in three different stages of development were
observed.

The primary project observed was in the middle of the



development cycle. Most of the team leader’s time was
spent coordinating the project among the team mem-
bers, as well as entering logic from the previous project,
and managing the memory map (see table 2).

The the two additional projects are covered in more
depth in [8].

During this time approximately 130 pages of notes were
taken by hand. The notes included a summary of the
activities performed broken down into ten minute in-
tervals, as well as descriptions of subtasks used to com-
plete a single task when possible, and any other relevant
observations. Data taken during the cycle and debug
stage was taken in 20 minute intervals, due to the less
structured nature of the task.

After the observations were complete, each description
of subtasks was separated from the notes and typed up.
Similar tasks were grouped into categories. Using this
method the following activity categories were devel-
oped: Project coordination and planning, File creation
and maintenance, Memory management, Copy/Modify
logic entry, Cognitive logic development, and Debug-
ging (see table 1 for details).

Once the activity categories were developed, the time-
based data was examined. Each 10 minute portion
of time was categorized into either one of the six
project related activities, or an additional non-project
related task. If multiple activities were recorded in the
ten minute section of time, the primary activity was
recorded.

4 Study Results

4.1 Overview of Logic Development Process
A simple description of the approach used to create con-
trol logic is shown in figure 4. The logic designers
are given project specific specifications and schematics.
Using an additional set of standard specifications, usu-
ally in the form of a previous project, they create the
logic needed to control the machine. Project specific
requirements include details about the actions the ma-
chine must perform to create parts, diagrams of physical
and electrical components, and a description of the di-
agnostics desired. The standard specifications include
the details of implementing the system and also include
the needed safety and reliability requirements.

The amount of time and number of people required can
vary greatly from project to project. However, a typical
project may require 6 months and 4-6 people. A sample
timeline is shown in figure 5.

A project is usually to write the logic for one machine.
A machine usually consists of one transfer bar and
about five or more stations on both sides of the transfer
bar (see fig. 6). During a typical cycle, the transfer bar
picks up all the parts in the machine, moves them to the
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schematics to describe the logic needed. These are com-
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Figure 5: Logic Development Timeline: Example timeline of the
development of a control logic project, including both
time and manpower required.
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next station, sets all the parts down, and then retracts.
While the transfer bar retracts each part is clamped, and
then operated on by the appropriate station. Cycle times
are generally less than a minute; the number of parts
produced is often greater than 200,000/year.

The resulting logic is required to perform many tasks.
It must move the machine according to its specifica-
tions to create parts. It must also provide any num-
ber of safety interlocks, which ensure that the machine
will not hurt any operators or itself, even in the pres-
ence of operator errors or machine malfunction (see
section 5.1). Data used for the human-machine inter-
face (HMI) is maintained; manual and hand (or semi-
automatic) modes are created, and are subjected to the
same safety interlocks as auto mode. Special purpose
modes, such as unusual features required for spindle di-
agnostics, are added. Finally any data required for diag-
nostic messages must be created and maintained. The
logic to create the automatic mode is generally reported
to be about 10% of the total.

4.2 Activities observed
There are several separate activities that are needed to
successfully generate industrial logic. While observ-
ing the logic designers, most of their activities could be
divided into six basic categories: project coordination
and documentation, creating and managing files, mem-
ory management, copy/modify, cognitive development,
and debugging (see table 1). There is no separate cat-
egory for top-level design, as would be expected in a
software development team. Since most of the logic is
taken from a previous project, much of the top level de-
sign is implied from the start. The rest occurs within
the context of either project coordination (e.g. super-
visors telling engineers how the project should look in
the end), or memory management (e.g. allocating cer-
tain blocks of memory to certain people and functions,
thereby implying a certain data structure).

A tabulation of time spent in the various activities can
be found in table 2. The data only reflects the time spent
by lead designers. Additional data from team members
and debuggers is in [8].

It is interesting to note how much time the team lead-
ers spend coordinating with their team members. This
coordination is mostly discussing and confirming the
communication protocols between the various proces-
sors needed to make the machine run. For example, in
the primary project observed, the main PLC logic inter-
faced with separate CNC processors which controlled
the machine. A lot of time was spent ensuring that the
communication between the different processors was
consistent.

4.3 Objects used when Developing Logic
In addition to the types of activities, it is important to
understand the tools and documents used through the
development process. The primary objects used are de-
scribed below. Their relationship to the activities de-

Table 2: Tabulation of data from control team leaders. Time spent
in planned meetings was not considered.

Minutes Percent of
Activity Observed project time
Project Coordination 920 44 %
Cognitive Development 130 6 %
Copy/Modify 450 22 %
Memory Management 310 15 %
File Maintenance 70 3 %
Debugging 200 10 %
GUI Development 0 0 %
Talking to data taker 320 N/A
Break (lunch etc) 370 N/A
Other 320 N/A

Cognitive

Development

Debugging

Rote Logic

Entry

File

Maintainance

Memory

Management

Planning/

Coordination

A

CC

ZB

A

CC

ZB

A

CC

ZB

A

C

ZBA
B
C
Z

%I36
%I37
%I38
%O59

A
B
C
Z

%I36
%I37
%I38
%O59

A
B
C
Z

%I36
%I37
%I38
%O59

A

C

ZZB

A ZZB

A
B
C
Z

%I36
%I37
%I38
%O59

A
B
C
Z

%I36
%I37
%I38
%O59

A
B
C
Z

%I36
%I37
%I38
%O59

A
B
C
Z

%I36
%I37
%I36
%O59

Specs

Specs

LogicLogic

Mem.

MapSpecs.

Schem-

atics

Mem.

Map

Prev.

Proj.

Figure 7: Relationship between design activities and the objects
used showing inputs and outputs of each activity.

scribed in section 4.2 is shown in figure 7.

Project Specifications Formal specifications are pro-
vided during the “controls lineup” near the be-
ginning of the project.

Mechanical Drawings Mechanical drawings were
used to verify the presence or absence of
components, or to verify sensor and actuator
locations.

Electrical Drawings Electrical drawings were used
during the design phase, to ensure that electrical
components were properly interfaced, and during
the debugging stage, since it is often difficult to
tell a logic error from a wiring error.

Printout of previous project A similar project is usu-
ally found to be used as a template for the current
project.

The Memory Map This is a map of all the memory,
inputs and outputs in the system. It always in-



Table 1: Categorization of activities performed
Project Coordination and
Planning

Coordinating between the various people working on a project, planning for a
project, or creating documentation for the project. Most coordination is to ensure
consistent communications between various processors in the system.

File Creation and Mainte-
nance

Creating new files, performing version control and similar activities.

Memory Management Creating or modifying the manually allocated memory space of the project.
Copy/Modify Entering logic by copying from another source. This can be either from a previous

project, or from other portions of the current project. This usually includes making
minor modifications, such as changing the names on the rungs.

Cognitive Development Creating new logic. This is usually done for features which were not present on
the previous machine.

Debugging Testing existing logic and making any changes necessary.

cludes the physical address, a descriptive com-
ment. Often included are a retentive check box
(i.e. whether it will be stored during power
down), and a short name.

The Logic Files These are the primary files which
control the machine, akin to the source code in
software development.

4.4 Summary of Results
A summary of the logic development process used by
the logic design team leader is shown in figure 8. Dur-
ing this time approximately one quarter of his time is
spent actually generating logic for the controller. Ap-
proximate times for each sub-step of this process are
listed in the figure. For a project requiring 3000 rungs
from the team leader, this process will take approxi-
mately five months, close to the observed time of four
months shown in figure 5.

5 Discussion of Observations

5.1 Logic Designers
One of the most striking observations is the expertise
of the logic designers, especially the team leaders. The
designers are capable of understanding and debugging
wiring diagrams; they understand both the machine and
the machine users, and often imagine many possible
safety issues which would otherwise go unchecked.

The logic designers attempt to consider every possible
condition that could occur as they create the control
logic. Among the errors and special conditions that they
actively considered were:

• Intentional circumvention of the built in safety
devices

• System wide power loss at any time

• Processor failure and replacement (the new pro-
cessor should correctly handle all parts in pro-
cess, with minimal part loss)
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• Users manually altering the contents of the mem-
ory

• Relay failures

• Sensor failures

• Tool breakage

The goal of the logic was to operate the machine as
safely and productively as possible under any conceiv-
able condition.

5.2 Ladders and their development environments
The choice of control hardware, development language
and development environment are extremely coupled.
For example, if an end-user requests that Allen-Bradley
control hardware be used, that implies that the project
will be developed in ladder logic using Allen-Bradley’s
RSLogix software. Control vendors are experts in cre-
ating a unified control package, they are not experts in
creating a usable development environment. This likely
adds to the difficulty of using the various development
environments.

New logic is typically developed from timing bar
charts, which describe the time dependent (sequential)
behavior of either the physical machine or the commu-
nication signals needed. This is translated in an ad-hoc
manner into time-independent (declarative) logic. This
mapping is neither consistent from one timing bar chart
to another nor easy to determine for a given timing bar
chart.

Despite some of the apparent disadvantages described
in this paper and others from academia, ladder diagrams
have some advantages. For example, it is nearly im-
possible to create an infinite recursive/iterative loop us-
ing ladder diagrams, especially using the methods de-
scribed here. This means that even if a portion of the
logic is poorly written, most of the machine will con-
tinue to operate as designed, including safety interlocks.
In addition, the primary users of the control logic began
their careers as electricians, and the framework of lad-
der diagrams provides a clear and consistent model of
the operations of a complicated computer, without re-
quiring programming. A final point, PLCs don’t crash.
Designers routinely talk about machines running for
years without problems. It is likely that a machine will
need to be stopped due to an error in the logic, or an
error in the machine, but they almost never stop due to
an error in the underlying operating system of the PLC.
Any proposal to replace ladder diagrams must preserve
as many of these advantages as possible.
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