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Abstract— In this paper we characterize the linear RLC
networks for which passivity is preserved even if we take
as port variables (vs,

d

dt
is) and/or ( d

dt
vs, is) instead of the

classical variables (vs, is) representing the external port
voltage and current, respectively. This characterization is
given in terms of an order relationship between the average
electric and magnetic energies stored in the circuit. We apply
this result to the problem of power shaping stabilization, a
methodology recently proposed as an alternative to the more
standard energy–shaping technique.

Keywords: RLC circuits, passivity, stabilization, passivity–
based control.

I. INTRODUCTION

Using energy shaping principles to design controllers for
physical systems leads to powerful techniques that have
their roots in the early work of [1]. The basic idea of these
methodologies is to shape the energy of the system in order
to satisfy a specific control goal. For instance, as extensively
studied in [2] and references therein, assigning a minimum
to the closed–loop energy function we can stabilize an
equilibrium point. For physical systems a natural assignable
candidate energy function is the difference between the en-
ergy of the plant and the energy supplied by the controller—
leading to the so-called energy-balancing control, whose un-
derlying stabilization mechanism is particularly appealing.
Unfortunately, as shown in [3] energy–balancing stabiliza-
tion is stymied by the existence of pervasive dissipation
that appears in many engineering, particularly electrical,
applications.

To overcome this obstacle for nonlinear RLC circuits,
an alternative method was recently introduced in [4]. In
this new method called Power–Shaping the storage function
used to identify the passive maps is not the total energy but
a function directly related with the power in the circuit.
Furthermore, in contrast with the well known passivity
property of the (conjugated variables) voltage and current,
passivity is established now with respect to voltage and
derivative of the current (or current and derivative of the
voltage).

Instrumental for the application of this method is the
identification of the RLC circuits that enjoy this new passiv-
ity properties. A class of nonlinear RLC circuits with convex
energy functions and weak electromagnetic coupling, for
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which it is possible to “add differentiation” to the port
terminals preserving passivity was identified in [4]. In this
paper we focus our attention on linear RLC circuits. In this
case, there is a clear interpretation in terms of the phase
of the driving point impedance of the class of circuits for
which adding differentiation at the port terminals preserves
passivity. A complete characterization of this class is given
here in terms of an order relationship between the average
electric and magnetic energies stored in the circuit.

II. STEADY STATE ANALYSIS OF RLC CIRCUITS

In this section we study linear RLC circuits, using
steady-state analysis and the conservation of complex power
principle, to derive important properties of the driving point
impedance. For the sake of simplicity, we are considering
one–port networks (Fig. 1), that is, circuits containing
either an independent voltage source or an independent
current source. Also we assume Lk, Ck, Rk > 0 the
inductance, capacitance and/or resistance of the k–th branch
respectively. For further details the reader is referred to
standard circuit theory textbooks, e.g., [6].
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Fig. 1. RLC one–port network

A. Complex power

Tellegen’s theorem asserts that the set of branch volt-
ages that satisfy Kirchhoff’s voltage law and the set of
branch currents that satisfy Kirchhoff’s current law, live
in orthogonal linear spaces, consequently,

∑b
k=1 vkik = 0,

with b the number of branches. Suppose that the network
is in sinusoidal steady state, then we can represent the
branch voltage vk by the complex number Vk(jω) and
the branch current ik by Ik(jω). Clearly, Vk and Ik also
satisfy Tellegen’s theorem and so does the conjugate I∗k =
Ik(−jω) [6]. Therefore,

b
∑

k=1

1

2
VkI

∗
k = 0, (1)



where each term 1
2VkI

∗
k represents the complex power

absorbed by the k–th branch. Equation (1) is the mathemat-
ical statement of the principle of conservation of complex
power. This principle can be used to derive many important
properties of driving–point impedance functions.

Proposition 1 [6] Consider the RLC circuit of Fig. 1. If the
network is in sinusoidal steady state, the complex power S
delivered to the one–port by the source is given by

S(jω) = Sav(ω) + 2jω[ELav
(ω)− ECav

(ω)] (2)

where Sav(ω) is the average power dissipated by the
network and is defined as

Sav(ω) =

b
∑

k=2

1

2
Rk|Ik(jω)|

2, (3)

with Rk > 0 the resistance in the k–th branch, and for the
average magnetic and electric energies stored in the circuit
ELav

and ECav
, we have respectively

ELav
(ω) =

b
∑

k=2

1

4
Lk|Ik(jω)|

2, (4)

ECav
(ω) =

b
∑

k=2

1

4

1

ω2Ck

|Ik(jω)|
2 (5)

with Lk, Ck > 0 the inductance and capacitance of the
k–th branch.

Proof: Using equation (1), it is straightforward to show
that the complex power can be written as

S(jω) =

b
∑

k=2

1

2
Zk(jω)|Ik(jω)|

2 (6)

where Zk is the impedance of the k–th branch. In RLC
networks with either resistances, inductances and/or capac-
itances Zk is given by

Zk(jω) = Rk + jωLk +
1

jωCk

then the complex power S(jω) can be expressed as

S(jω) =

b
∑

k=2

1

2
Rk|Ik(jω)|

2 +

b
∑

k=2

1

2
jωLk|Ik(jω)|

2 +

+

b
∑

k=2

1

2

1

jωCk

|Ik(jω)|
2 (7)

Integrating each term of (7) over a period T = 2π/ω to
obtain the average, we get that the average power dissipated
in the resistors is given by (3), and the average energies
stored in the inductors and capacitors are given by (4) and
(5), respectively. Thus, (7) can be rewritten as (2).

Remark 1 The imaginary part of S(jω), given by
Im{S(jω)} = 2ω[ELav

(ω) − ECav
(ω)], is referred in the

literature as the reactive power absorbed by the one–port
network, and usually denoted by Q.

B. Driving point impedance

The driving–point impedance Z(jω) of a one–port net-
work with linear time invariant elements is the ratio of the
current source input to the voltage response. The following
proposition shows that Z(jω) can be expressed in terms of
the average power and the energy stored by the network.

Proposition 2 [6] Consider the linear time–invariant RLC
one–port network driven by a sinusoidal current source
(Fig. 1), and operating in steady state. The driving point
impedance seen by the source can be expressed as

Z(jω) =
1

|Is|2
{2Sav(ω) + 4jω [ELav

(ω)− ECav
(ω)]}

(8)

Proof: It follows immediately from the complex power
equation (2) and (6).

Remark 2 It can be easily verified that Z(jω) (8) is a
positive real function. That is, Z(jω) satisfies

Re{Z(jω)} =
2

|Is|2
Sav(ω) ≥ 0

where we have used (3).

III. PROBLEM FORMULATION AND NEW
PASSIVITY PROPERTIES OF LINEAR RLC

CIRCUITS

Our objective is to characterize the linear RLC circuits
for which it is possible to add differentiation to the port
terminals preserving passivity. More precisely, we consider
two scenarios, in the first case we add a derivative action
to the current source variable, and in the second case we
take the derivative of the voltage source variable.

In the first scenario the port variables of interest are
( d

dt
is, vs). (Fig. 2)
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- 1
s

-
is Z(s) - vs

Fig. 2. Transfer function of interest for the port variables ( d

dt
is, vs)

From Kalman–Yakubovich–Popov Lemma we know that
passivity of linear systems is equivalent to positive realness
of the transfer function. Then, according to Fig. 2 our
objective is to find the driving point impedance functions
Z(s) such that the transfer function

H(s) =
Z(s)

s

is positive real. From a graphical point of view, this means
that the Nyquist plot of H(jω) must remain in the fourth
quadrant of the complex plane for all ω > 0 (Fig. 3).
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Fig. 3. Nyquist locus of H(s) =
Z(s)

s
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Proposition 3 Consider a linear time–invariant RLC one–
port network. If the average magnetic energy stored in
the inductors is greater or equal than the average electric
energy stored in the capacitors, i.e., if ELav

(ω)−ECav
(ω) ≥

0 ∀ω ∈ R then, the circuit defines a passive system with
port variables ( diS

dt
, vS)—see Fig. 2.

Proof: If the network is passive with respect to
(diS

dt
, vS), the transfer function H(s) = 1

s
Z(s) (Fig. 2) must

be a positive real function. That is, it must be stable and
H(jω) must satisfy Re{H(jω)} ≥ 0,∀ω. Using equation
(8), the transfer function H(jw) is given by

H(jw) =
2Sav(ω)

jω|Is|2
+

4(ELav
(ω)− ECav

(ω))

|Is|2
(9)

After some calculations, we have that H(jω) is positive
real if ELav

(ω)− ECav
(ω) ≥ 0, ∀ω ∈ R.

In the second scenario we are interested in the port
variables is, (

d
dt
vs) (Fig. 4) .
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Fig. 4. Transfer function of interest for the port variables(iS , d

dt
vS)

In this case, our goal is to look for driving point
impedances Z(s) such that the transfer function

G(s) = sZ(s)

is positive real. In other words, we want the Nyquist plot
of G(jω) remain in the first quadrant of the complex plane
for all ω > 0 (Fig. 5).

Proposition 4 Consider a linear time–invariant RLC one–
port network. If ECav

(ω) − ELav
(ω) ≥ 0, ∀ω ∈ R then,

G j!( )= Z j!( )j!

Fig. 5. Nyquist locus of G(s) = sZ(s).

the circuit defines a passive systems with port variables
(dvS

dt
, iS)—see Fig. 4.

Proof: Following similar arguments to those of propo-
sition 3, we need the transfer function G(s) = sZ(s) (Fig.
4) to be positive real. From (8) we obtain that the transfer
function G(jω) is given by

G(jω) =
2jωSav(ω)− 4ω2(ELav

(ω)− ECav
(ω))

|Is|2
, (10)

which is positive real if ECav
(ω)− ELav

(ω) ≥ 0, ∀ω ∈ R.

Remark 3 A one–port RLC network can satisfy either
one of the properties or neither of them, the later happens
when the difference between the average magnetic energy
and the average electric energy is not sign definite.

Networks that satisfy Proposition 3 are those whose
reactive power is non–negative, i.e., Q = 2ω(ELav

(ω) −
ECav

(ω)) ≥ 0, ∀ω ≥ 0. Note that, since the average
energy is always positive, all the RL networks satisfy this
property because ECav

(ω) = 0 in this case. On the other
hand, networks that satisfy Proposition 4 are those whose
reactive power is non–positive and we clearly have that all
RC networks satisfy this property. These properties, which
hold also in the nonlinear case, were first reported in [7].

Remark 4 We point out that the constraints in the
propositions depend not only on the network topology
but also on the numerical values of the R,L,C elements
of the circuit—that obviously appear in the definitions of
ELav

(ω) and ECav
(ω)—see examples below.

IV. EXAMPLES

Let us illustrate with simple examples, the results raised
above. To this end, consider the RLC circuit depicted in



Fig. 6. The driving-point impedance of the circuit is given
by

Z(s) =
RL +RC + (RLRCC + L)s+RCLCs2

1 +RCCs

Making the analysis of this circuit in steady state, yields
the following expression for the average magnetic energy
stored in the inductor

ELav
(ω) =

LC2ω2(1 +R2
CC2)

4D(ω)
(11)

with

D(ω) = R2
CL2C4ω6 + (L2C2 +R2

LR
2
CC4)ω4 +

+(R2
LC

2 + 2LC + 2RLRCC2)ω2 + 1

and for the average electric energy stored in the capacitor

ECav
(ω) =

R2
CC3ω2

4D(ω)
(12)

Evaluating the difference we get

ELav
(ω)−ECav

(ω) =
(R2

CC2ω2 + L−R2
CC)C2ω2

4D(ω)
(13)

From the expression above we can deduce that the condition
of Proposition 3 is fulfilled ∀ω only if

L > R2
CC.

In this case, the circuit defines a passive port with re-
spect to the source variables ( diS

dt
, vS). If the inequality is

not satisfied nothing can be concluded regarding the new
passivity property, and we should verify the condition of
Proposition 4. If neither of propositions are satisfied, then
we can conclude that the circuit does not preserve passivity
if we add differentiation to the port variables.

In figure 7 is depicted the Nyquist locus of the circuit
shown in Fig. 6 for different values of the elements. Notice
that for R1 = 1, R2 = 1, L = 1, C = 1.5, the condition of
proposition 3 is not satisfied, and then, the transfer function
H(s) = Z(s)

s
is not positive real. Thus, its Nyquist diagram

does not remain in the right–half plane, as it is shown by
the dotted line.

Another interesting example is the series RLC circuit—
see Fig. 8, whose transfer function is

Z(s) =
1 +RCs+ LCs2

Cs

Fig. 6. Example of one–port RLC network.
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Fig. 7. Nyquist diagram of the RLC circuit of Fig. 6 for different values
of the network elements: a) continuous line: R1 = 1, R2 = 1, L = 1,
C = 0.5. b) dashed line: R1 = 1, R2 = 1, L = 1, C = 1. c) dotted
line: R1 = 1, R2 = 1, L = 1, C = 1.5.

Using steady state analysis we get that the average magnetic
energy stored in the inductor is given by

ELav
(ω) =

LC2ω2

4(1− 2LCω2 + L2C2ω4 +R2C2ω2)
(14)

and for the average electric energy stored in the capacitor
we obtain

ECav
(ω) =

C

4(1− 2LCω2 + L2C2ω4 +R2C2ω2)
(15)

Evaluating the difference we get

ELav
(ω)−ECav

(ω)=
C(LCω2 − 1)

4(1− 2LCω2 + L2C2ω4 +R2C2ω2)
(16)

From expression above, the condition to satisfy Proposi-
tion 3 is given by

LCω2 > 1

which is not fulfilled ∀ω. Testing the condition of Propo-
sition 4 yields LCω2 < 1 which it is neither fulfilled ∀ω.
Thus, we cannot add differentiation to the port terminals
of a series RLC preserving passivity. A similar result is
obtained for the parallel RLC circuit.

Is

Vs

R

L

C

Fig. 8. Series RLC network.



Remark 5 If the network is purely resistive, then we have
ELav

(ω) = ECav
(ω) = 0. From Propositions 3 and 4 we

can infer that the circuit defines a passive systems either
with respect to (iS ,

dvS

dt
) or with respect to ( diS

dt
, vS),

because both transfer functions H(jω) = 2Sav(ω)
jω|Is|2

and

G(jω) = 2jωSav(ω)
|Is|2

are real positive functions . In other
words, a purely resistive circuit satisfies both passivity
properties established above.

V. APPLICATION FOR STABILIZATION

Let us illustrate with an (elementary) example how
the limitations of energy balancing can be overcome via
power balancing and motivate the interest for the new
passivity property. Consider a voltage controlled linear one–
dimensional series RL circuit. The dynamics of the circuit
is obtained from Kirchhoff’s voltage law as

L
diL
dt

= −RiL + vS , (17)

where iL is the inductor current, L > 0, R > 0 are
the inductance and resistance, respectively, and vS is the
voltage at the port terminal, which is our control action. The
energy stored in the inductor is EL = 1

2Li2L. Of course, as
the resistor and the inductor are passive, the circuit defines
a passive system with port variables (vS , iS) and storage
function EL, where iS = iL is the source current.

The control objective is the stabilization of an equilibrium
i?L of (17), whose corresponding equilibrium supply voltage
is given by v?

S = Ri?L. It is clear that, at any equilibrium
i?L 6= 0, the extracted power R(i?L)

2 is nonzero, hence the
circuit is not energy–balancing stabilizable1.

To overcome this problem we have proposed in [4] to
consider the function

G(iR) =

∫ iR

0

v̂R(i
′
R)di

′
R, (18)

where iR is the resistor current and v̂R(iR) the resistor
characteristic. This function is well known in the circuits
literature [5] as the resistors content, which has units of
power—in particular, for linear resistors it is half the dissi-
pated power, and in our case takes the form G(iL) =

1
2Ri2L.

With some simple calculations we can establish the power
balance inequality

G[iL(t)]−G[iL(0)] ≤

∫ t

0

vT
S (τ)

diS
dt

(τ)dτ, (19)

which proves that the circuit is passive with port variables
(vS ,

diS

dt
) and storage function the resistor content. This

property differs from the classical passivity property in
two important respects: the presence of the derivative of
iS and the use of a new storage function. The dissipation

1As discussed in [3], energy–balancing stabilization is possible only for
systems for which a finite amount of energy can be extracted from the
source. This in particular implies that the supplied power evaluated at the
equilibrium point should be equal to zero

inequality (19) suggests (similarly to energy–balancing) to
shape the resistors content. That is, to look for functions
v̂S(iL), Ga(iL) such that

Ġa ≡ −v̂S(iL)
diL
dt

(20)

Applying then the control vS = v̂S(iL) + wS leads to the
new dissipation inequality

Gd[iL(t)]−Gd[iL(0)] ≤

∫ t

0

wT
S (τ)

diS
dt

(τ)dτ

where we defined Gd(iL) = G(iL) +Ga(iL). Moreover, if
we ensure that i?L=arg min{Gd(iL)}, then (setting wS =
0) i?L will be a stable equilibrium with Lyapunov function
Gd(iL) and we say that the system is stabilized via power
shaping.

Clearly, for any choice of Ga(iL), equation (20) is
trivially solved with the control vS = v̂S(iL) = −

∂Ga

∂iL
. For

instance, if the resistance characteristic is exactly known we
can take Ga(iL) = −G(iL) +

Ra
2 (iL − i?L)

2, with Ra > 0
some tuning parameter.

As seen from this elementary example, instrumental
for the application of the power shaping method is the
identification of a new passivity property of the circuit.
More specifically, the technique is applicable to circuits
for which it is possible to “add differentiation” to the port
terminals preserving passivity.

A. Stabilization via power shaping

In this subsection we use the circuit of Fig. 6 to illustrate
the applications of the results given above for stabilize the
circuit via power shaping. The Brayton–Moser model of the
circuit is given by2

A





diL

dt

v̇C



 =





∂P
∂iL

(iL, vC)

∂P
∂vC

(iL, vC)



−





vS

0



 (21)

with A = diag{−L,C} and the mixed potential function
P given by

P =
RC

2
(
vC

RC

− iL)
2 −

1

2
(RL +RC)i

2
L.

The equilibrium points (̄iL, v̄C) of (21) are given by

v̄C = RC īL, īL =
v̄S

RC +RL

(22)

from which it is easy to see that for all (non–zero) equi-
librium states, the power extracted from the controller is
nonzero. Consequently, it is not possible to stabilize the
circuit via energy–balancing.

We follow now the power–shaping procedure proposed
in [4] to derive an alternative representation of the circuit
that reveals the new passivity property. This is given by

Ã





diL

dt

vC



 =





∂P̃
∂iL

(iL, vC)

∂P̃
∂vC

(iL, vC)



−





vS

0



 (23)

2See [4], [8] for details on this model and the power–shaping procedure.



with the new admissible pair

Ã =

[

−L 2RCC
0 −C

]

, (24)

P̃ =
RC

2

(

vC

RC

− iL

)2

+
1

2
(RL +RC)i

2
L (25)

Notice the positive sign in the second right hand term of
P̃ and that the symmetric part of the matrix Ã is negative
definite precisely under the condition L > R2

CC identified
in Section IV. We thus obtain the desired dissipation in-
equality

˙̃P = [
diL
dt

v̇C ]Ã





diL

dt

v̇C



+
diS
dt

vS ≤
diS
dt

vS

Denoting with (i?L, v
?
C) the desired equilibrium to be sta-

bilized, we will shape the function P̃ to assign a minimum
at this point. To this end, we propose to find functions
P̃a(iL), v̂S(iL) such that

˙̃P a(iL) = −
diS
dt

v̂S(iL), (26)

yielding a new dissipation inequality for the desired poten-
tial function P̃d = P̃+P̃a. Since iL = iS , it is clear that, for
any arbitrary (differentiable) function P̃a(iL), the function
v̂s(iL) = −

∂P̃a

∂iL
(iL) solves (26). We propose for simplicity

to complete the squares and add a quadratic term in the
current errors with

P̃a = −(RL +RC)i
?
LiL +

1

2
K(iL − i?L)

2 (27)

with K ≥ 0 a tuning parameter. This results in the
controlled voltage

vS = −K(iL − i?L) + (RL +RC)i
?
L (28)

which globally stabilizes the system with Lyapunov func-
tion

P̃d =
RC

2

(

vC

RC

− iL

)2

+
1

2
(RL +RC +K)(iL − i?L)

2

VI. CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is the identification
of the linear RLC networks that preserve passivity when a
derivative action is added to the voltage or current source
variables. In the case of n–ports networks, there exist a
relation between these new passivity properties and the
conditions that make the matrix Ã in the Brayton–Moser

model be negative definite. We have also discussed the
application of the power shaping methodology of [4] for
the case of linear RLC circuits.

Some issues that remain open, and are currently being
explored, are the following:

• Establish the connection between the characterizations
of RLC circuits given here for the linear case and in [4]
for general nonlinear circuits. Although the construc-
tion of the matrix Ã proposed in [4] is only a suficient
condition, in the linear case, some calculations using
Hamiltonian matrices and the LMI version of the
positive real lemma [9] reveal that this construction
fully characterizes the linear RLC circuits that satisfy
the new passivity properties. Current research is under
this way.

• Give a systematic procedure to complete the power
shaping synthesis for general linear RLC circuits that
satisfy these passivity properties.

• Applications of power shaping in power electronics:
as we showed in Section III there is a clear relation
between the expression v

T
S

diS
dt

or v̇
T
S iS and the notion

of reactive power, henceforth power shaping ideas
could be useful in the synthesis of reactive power
compensators.

• Find mechanical and electromechanical analogs of
these new properties.
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