
Active steering control with front wheel steering 
 

Bing Zheng, Pahngroc Oh, and Barry Lenart 
Chassis Advanced Technology 

Visteon Corporation 
6100 Mercury Dr., Dearborn, MI 48126 

 
 
Abstract - The decoupling of the lateral and yaw motions of a 
car and car's yaw damping are achieved simultaneously by 
feedback of both yaw rate and front steering angle. A trade-off 
is made between the robust decoupling and yaw rate damping 
through the adjustment of the feedback gains with respect to 
vehicle speed. With this trade-off, the gain scheduled steering 
controller provides the desired yaw rate damping while keeping 
the yaw-lateral motion decoupled. The robustness of the 
decoupling can be achieved when arbitrary yaw damping is not 
desired. The developed control system is implemented in a steer-
by-wire vehicle, and the test results are provided which 
illustrate the benefits of the control system. 
 
 

1.  INTRODUCTION 
 
Presently it is considered a task of the driver to learn the 
different steering responses of the car under different 
operating conditions. The driver is responsible for the 
judgment of physical limits. However, long before such limits 
are reached, there are significant differences between skilled 
and unskilled drivers and between different cars.  
 
Paper [1], [2] introduced the integrating unit feedback of yaw 
rate error by the front wheels that makes the yaw mode 
unobservable from the front axle lateral acceleration and 
thereby takes uncertainty out of the steering transfer function. 
At the same time, the integrating unit feedback of yaw rate 
transforms the response of the front axle lateral motion to a 
steering input from a second order transfer function into a 
first order transfer function. The integrated yaw feedback 
considerably simplifies the driver's task. He or she plans the 
path and controls the lateral deviation of the front axle and is 
not concerned with the stabilization of the yaw motion, which 
is automatically compensated by integrating unit feedback. 
 
The problem remains that with the integrated unit yaw 
feedback, yaw damping decreases with the increase of the 
vehicle speed. The papers [1], [2] meanwhile suggest using 
rear wheel steering to achieve the desired yaw damping. 
Though the rear wheel steering provides the capability of 
arbitrary pole placement for yaw control subsystem, it adds 
additional cost.  
 
This paper revisits the results from [1], [2]. An extended 
control law is derived for linear tire characteristics and an 
ideal longitudinal mass distribution. By investigating the 
more general controller formation, a gain scheduled steering 

control system is provided. The control law is a compromise 
among the robust decoupling between the yaw rate and lateral 
acceleration and the yaw damping. It provides good yaw 
damping across the vehicle speed while maintaining the yaw-
lateral decoupling with respect to the nominal model. 
 
This paper is organized as follows. Section 2 discusses the 
steering dynamic model and assumptions. Section 3 describes 
the proposed steering control system. Section 4 discusses the 
selection of the control system parameters. Section 5 illustrates 
the implementation of the control law in an Audi A6 steer-by-
wire vehicle as well as the test results. The summary of the 
paper is contained in section 6. 
 

2.  STEERING DYNAMICS 
 
The dynamics of vehicle steering is described by the bicycle 
model as in paper [3]. It is obtained by lumping the right and 
left wheels together in the center of the front and rear axle as 
shown in the following figure. The model describes the yaw and 
lateral motions and neglects the roll motion. 
 
 
 
 
 
 
 
 

Figure 1. Bicycle model for steering dynamics 
 
The corresponding linearized dynamic equation is 
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Where the parameters are: 
 
β : side slip angle between the vehicle center and the velocity at 

the center of CG 
r : yaw rate with respect to an inertial coordinate system 
δf : front steering angle 
cr (cf) : cornering stiffness for the rear (front) wheel 
lr(lf) : distance from the center of gravity to the rear (front) 

axis's, lr+lf= wheel base 

lr lf 
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mg : vehicle mass 
Ig : moment of inertia with respect to vertical axis 
v : vehicle longitudinal velocity which we assume always 

greater than zero 
  
Rewriting the above equation into state space format, we 
have 
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Consider the following assumptions given in paper [2]: 
The cornering stiffness has a common factor that describes 
the road surface condition or we can say 

rrff cCcC µµ == ,   (4) 
The longitudinal mass distribution is equivalent to two 
masses concentrated at the front and rear axles. Then, 
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That is to say that the center of gravity is not shifted by 
changing the mass mg, or we can say that lf and lr are 
constant. 
 
Then, the coefficients of the state space mode become: 
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3.  STEERING CONTROL SYSTEM ANALYSIS 

  
In this section we consider the steering control system design. 
We will first consider the controller having the following 
state space form: 
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with  
xkrkru ref 21 −−=       (8) 

 

The corresponding closed loop system can be represented by 
the following state space equations: 
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with 
xkrkru ref 21 −−=    (10) 

 
By selecting the new state vector as introduced in [1] 
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where af is the front axle lateral acceleration, and  
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then we have  
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with 
xkrkru ref 21 −−=    (14) 

where 
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Substitute (13) into (12), we have: 
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Let k1, k2, a, and d̂  have the following relations:  
0ˆ,0ˆ1 21 =+=− kdakd    (17) 

or  
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Then state space equation (15) becomes: 
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State space equation (19) is in the canonical form [4], [5], 
and it shows that r and x are not observable from af. Thus the 
closed-loop control system (14) decouples af from r and x. Or 
we can say that the steering dynamics is split into the two 
subsystems by the closed-loop control. One subsystem is the 
lateral motion of the front axle represented by: 
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The other is the yaw motion represented by: 
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As stated in the paper [1], the driver has only to control 
lateral motion subsystem, keeping the car, as a mass point at 
the front axle, on top of the planned path by generating a 
lateral acceleration via the transfer function: 
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The decoupled yaw motion will be compensated 
automatically by the control system which has the following 
characteristic polynomial:  
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Here we are using the relations established from (9), (14) and 
(17) that: 
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4.  CONTROL SYSTEM PARAMETER SELECTION 

 
For the controller in the forms of (7) and (8) there are two free 
parameters, two out of a, d, k1, and k2, that can be adjusted to 
meet the control system performance requirement. Without loss 
of generality, we will consider a, and k1. 
 
Recall from (22) that the lateral motion transfer function is: 
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To make vehicle lateral motion controllable, we shall have: 
0ˆ >dc      (29) 

from (18), this means that  
01 >k        (30) 

 
For the yaw damping, we have: 
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It can be easily seen that by selecting a properly, and k1 > 1, ξc 
increases when v increases.  Hence, by scheduling a and k1 with 
respect to vehicle speed, we can adjust the yaw damping 
without satisfying the decoupling while having freedom to 
adjust the lateral motion transfer function. 
 
For the case when a = 0, we have: 
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Again the damping ratio can be adjusted by gain-scheduling 
k1 with respect to vehicle speed. But the transfer function for 
the lateral motion will be influenced by adjusting the yaw 
damping.  
 
For the case when k1 is selected as 1, we have d = 0, and 
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This is the exact same as that in [1]. It can be easily verify 
that  this  is the exact same  robust decoupling case as that in 
[1]. In this case, the damping ratio is fixed with given vehicle 
parameters.  
 
More parameter adjust freedom can be obtained by increasing 
the order of the controller. Here we will consider only the 
second order case. Assume that controller has the following 
form: 
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Then, corresponding augmented the state space model is 
following:= 
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Introducing the new state vector: 
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Then the state space equation takes the form: 
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Substituting 221 xkrkru ref −−=  into (38), we have: 
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For  

0ˆ1,0ˆ1 21 =−=− kdkd   (40) 
We have  
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The lateral motion is decoupled from the yaw motion with the 
second order controller. The transfer function for the lateral 
motion is the same as that with first order controller, while there 
is one more parameter here that can be used to adjust the yaw 
damping ratio. 
 

5.  VEHICLE IMPLEMENTATION AND TEST RESULTS 
 
The steering control system developed was implemented in an 
Audi A6, modified with a Visteon steer-by-wire system. For the 
vehicle, a brushless electrical motor is used to drive the road 
wheel. The compensated motor servo control system has a time 
constant of 25 ms, which is negligible when compared with the 
vehicle yaw and lateral dynamics. Hence, we assume that motor 
control system has proportional input / output relation with a 
unit gain. 
 
A pre-filter is designed for converting the driver input to the uref 
.This pre-filter has the following form: 

swa
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Where L is the wheelbase, kf, kus are constant determined by the 
vehicle, and θswa is the steering wheel angle. 
 
The designed controller has the second order as in (35). The 
only control parameter d is scheduled with respect to the 
vehicle speed with the following relations: 

vkd c=         (43) 
Where kc is a positive constant. Values of k1 and k2 vary with 
respect to d as specified by (40). a1 and a2 are selected to assure 
the overall system stable. 
 
Both objective and subjective single lane change evaluations 
were conducted on the vehicle with speeds of 40 mph, 50 mph, 
and 60 mph. The test was conducted at the Smithers Winter 
Test Facility in the Upper Peninsula of Michigan during winter. 



The objective procedures were performed according to the 
Visteon Vehicle Dynamics Test Procedures [6].  The test data 
are shown in Figure 1-4. 
 
The Single Lane Change test showed the benefits of the 
proposed control system. The first vehicle speed tested was 
40 mph.  Steering wheel input was less for this event with 
control system "on" as shown in Figure 2.  Figure 3 displays 
the reduced yaw rate and yaw overshoot. Yaw rate overshoot 
at 40 mph was 7 degree per second with the control system 
off and 1.5 degrees per second with the system on.   
 
At 50 mph, the vehicle behavior was very similar. The 
vehicle was stable with the control system on and off. 
However, yaw overshoot was reduced with the control system 
on.  At 60 mph, the vehicle became unstable with the control 
system off.  Figure 4 shows the steering wheel angle input 
required to complete the event.  Figure 5 illustrates that the 
vehicle became unstable. The body slide slip angle increased 
to 90 degrees and vehicle recovery was not possible until 
speed was greatly reduced.  
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Figure 2:  SWA Comparison – Single Lane Change on Snow 

(40mph) 
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Figure 3:  Yaw Rate Comparison – Single Lane Change on 

Snow (40mph) 
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Figure 4:  SWA Comparison – Single Lane Change on Snow 

(60mph) 
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Figure 5:  Yaw Rate Comparison – Single Lane Change on 

Snow (60mph) 
 

6.  SUMMARY 
 
The decoupling of the lateral and yaw motions of a car and car's 
yaw damping are achieved simultaneously by feedback of both 
yaw rate and front steering angle with the scheduled gains. The 
test of the implemented control system on the real vehicle 
indicates the significant safety advantages in critical situations 
where the driver of the conventional car has to control an 
unexpected yaw motion.  
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