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Abstract— In the framework of LMI optimization, we
present a robust MPC scheme that is guaranteed to achieve
closed-loopH∞ performance for linear systems with control
and output constraints. The main ingredient is the introduction
of a dissipation constraint combined with on-line minimizing
the H∞ performance level. Simulation results for a realistic
active vehicle suspension show that the proposed scheme has
the capability of automatically relaxing the performance level
in order to obey hard time-domain constraints, while enhanc-
ing it when sufficient ’reserves’ in the dissipation constraint
have been accumulated so as to improve performance.

Index Terms— Model predictive control, H∞ performance,
hard constraints, dissipation theory, LMI optimization

I. I NTRODUCTION

With the rapid development of computing, model predic-
tive control, also refer to as moving (or receding) horizon
control, has become an attractive feedback strategy for
controlling constrained systems, not only in traditional fields
such as refining and petrochemicals where slow dynamics
are dominant [1], but also in aerospace and defense (see [2],
[3], [4] for some new reports). Over the last few years,
also academic research of MPC has achieved significant
progress. By introducing the so-called stability constraints
(equality and inequality terminal constraints or contrac-
tive constraints) and appropriately computing the terminal
penalty, the nominal stability issue of MPC is in general
well addressed; for a complete survey on this issue we refer
for example to [5], [6], [7].

For robust MPC, a general concept is to replace the
minimization problem by a constrained minimax problem,
where the maximization is performed over a set of uncer-
tainties and/or disturbances. The first minimax formulation
of MPC can be traced back to [8], where coefficients of an
SISO FIR model were assumed to be uncertain and to vary
within given bounds. A crucial issue of minimax MPC for-
mulations is the difficulty concerning their implementation.
In order to render them tractable, the original formulation
used the l∞-norm of the error signal as an objective,
whereas subsequent approaches provide generalizations to
the l1-norm [9]. More recently, minimax formulations with
quadratic criteria are addressed in the powerful framework
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of LMI (linear matrix inequality) optimization at the price
of involving conservatism (e.g. [10], [11], [12], [13]) or
by restricting uncertainties that only appear in the system’s
static gain (or the input matrix) (e.g. [14], [15]). Another
important issue of minimax MPC formulations is to guaran-
tee stability. It is shown in [16] that no stability guarantee
can be given in the original minimax MPC formulation,
and a remedy is suggested as well. For stable systems with
uncertain input matrix, the use of an infinite prediction
horizon guarantees robust stability [17], while the predicted
control is set to zero for all times beyond the (finite)
control horizon. For integral control, additional constraints
are required to force the integrating modes to be zero at
the end of the finite control horizon [17]. LMI based robust
MPC formulations guarantee robust stability for both stable
and unstable systems by relying on an infinite (prediction
and control) horizon. As in the nominal case, the use of
an infinite horizon plays a crucial role to achieve robust
stability. The crucial difference of various robust MPC
formulations lies in the way how to construct the predicted
control such that the resulting optimization problem is
tractable; either the use of a constant feedback law over the
full horizon [18] or a 1-step (N -steps) prediction control
concatenated by a constant feedback law [11], [19] have
been proposed. A further difference is found in whether
one uses open-loop or closed-loop prediction. Classical
MPC schemes rely on open-loop prediction. However, open-
loop prediction implies that the uncertain system is pre-
dictively controlled without feedback information. Through
maximization, the effect of uncertainties and disturbances
are overestimated which might easily result in infeasibility
of the corresponding minimax optimization problems. The
need for a feedback prediction paradigm in robust MPC
schemes is clarified in [20], [21], [22]. In the context of
receding horizonH∞ control, robust MPC is investigated
for two different purposes. One aims at a solution of time-
varying or nonlinearH∞ control problems (e.g. [23], [24],
[25], [26], [27]), whereas the other is related to incor-
porating well-known robustness guarantees throughH∞

constraints into MPC schemes (e.g. [28]). For more detailed
survey and discussion on robust MPC we refer e.g. to [7],
[29].

Still, it is rarely addressed how to guarantee perfor-
mance and robust performance in MPC, although some
minimax formulations include additive bounded distur-
bances (e.g. [22], [30]). Most receding horizonH∞ control
schemes concentrate on possible solutions to nonlinearH∞

control in which no hard time-domain constraints are taken



into account [23], [24], [25], [26].
Preliminary attempts to overcome these deficiencies are

presented in [31], in which we discuss anl2-gain atten-
uation scheme for linear systems with actuator saturation
that involves less conservatism than previous suggestions.
Building on the work of [32], we include an additional
dissipation constraint into the on-line optimization problem
to guarantee closed-loop system dissipativity. This paper
provides a continuation with the purpose of arriving at a
robust MPC scheme that is tractable and guarantees nominal
and robustH∞ performance.

The remaining paper is structured as follows: Section II
gives the setup of the proposed robust MPC scheme in
the framework of LMI optimization. GuaranteedH∞ per-
formance for the closed-loop system and the dissipation
constraint are discussed in Section III. Based on a 2 DOF
quarter-car model, we apply the proposed MPC scheme to
provide a solution of an active suspension control problem.
Simulation and comparison results are given in Section IV.
In conclusive remarks, we highlight the potentials for guar-
anteeing robustH∞ performance.

II. A N LMI BASED MPC SCHEME

Consider systems to be controlled that are described as

x(k + 1) = Ax(k) + B1w(k) + Buu(k) (1a)

z1(k) = C1x(k) + D1w(k) + D1uu(k) (1b)

z2(k) = C2x(k) + D2uu(k) (1c)

subject to the following time-domain constraints:

|z2i(k)| ≤ z2i,max ∀k ≥ 0, i = 1, 2, . . . , p2. (2)

Here x ∈ R
n denotes the vector of states,w ∈ R

m1 the
vector of external inputs,u ∈ R

m2 the vector of control
inputs,z1 ∈ R

p1 the vector of performance outputs andz2 ∈
R

p2 the vector of constrained outputs. Note that control
constraints can be described in (1c) and (2) withC2 = 0
and C2u = I. We assume that(A,Bu) is stabilizable and
(C1, A) is detectable.

The basis of model predictive control is the on-line
solution of an optimization problem with control and output
constraints, updated by the actual measurement at each
sampling time [6], [7]. The obtained control action is
injected into the system until the next sampling time.

In this paper, we suggest to repeatedly solve a constrained
H∞ control problem on-line. At timek ≥ 0 with the
actual statex(k), the optimization problem is formulated
as follows:

min
γ,Q=QT ,Y,Z=ZT

γ (3)

subject to the following matrix inequalities








Q ∗ ∗ ∗
0 γI ∗ ∗

AQ + BuY B1 Q ∗
C1Q + D1uY D1 0 γI









> 0, (4a)

(

r x(k)T

x(k) Q

)

≥ 0, (4b)
( 1

r
Z C2Q + D2uY

(C2Q + D2uY )
T

Q

)

≥ 0, (4c)

Zjj ≤ z2
2j,max,

(

p0 − pk−1 + x(k)T Pk−1x(k) x(k)T

x(k) Q

)

≥ 0, (4d)

wherep0 = x(0)T P0x(0) andpk is recursively updated to

pk := pk−1 −
[

x(k)T Pk−1x(k) − x(k)T Pkx(k)
]

. (5)

Assume that the above optimization problem admits a (close
to optimal) solution denoted as(γk, Qk, Yk, Zk). Then, the
feedback control is defined as follows:

u(i) = Kkx(i) ∀i ≥ k (6)

with Kk = YkPk andPk = Q−1
k . According to the principle

of MPC, only the first control action (i.e., for i = k)
is injected into the system until the next sampling time.
Updated by the actual closed-loop state, the above opti-
mization problem is solved again. We stress that the actual
statex(k) does indeed appear in the matrix inequalities (4b)
and (4d). Hence, any solution of the optimization problem
and, in turn, the actual applied feedback gainKk depend
on the actual statex(k). Throughout this paper we drop this
dependence for notational simplicity.

The implementation of this MPC scheme is possible since
Pk−1 andpk−1 have been determined at the previous time
instantk − 1 and are held fixed, which implies that (4d) is
affine inQ. Moreover, (4a) also defines an LMI constraint in
γ, Q andY . Finally, for some fixedr, (4c) is an LMI inQ,
Y andZ. Hence, for a fixedr, (3) is an LMI optimization
problem that can numerically solved on-line. Note that (4d)
can be dropped for timek = 0 as it will become clear in
the following discussion.

It is easy to show that (4a) arises from a standard LMI
based solution of the unconstrainedH∞ control problem.
With a Lyapunov-type functionV (x) := xT Px, P = Q−1,
the feasibility of (4a) leads to the dissipation inequality

V (x(i + 1)) + ‖z1(i)‖
2 − γ2‖w(i)‖2 ≤ V (x(i)) (7)

for any i ≥ k. By taking the Schur complement, (4b) is
equivalent tor−x(k)T Px(k) ≥ 0. Hence, LMI (4b) forces
the actual statex(k) to be contained in the ellipsoid

E(P, r) := {x ∈ R
n : V (x) ≤ r}. (8)

Remark 1: If x(0) ∈ E(P, r) and if the system were
controlled with the feedback law (6) for all future times,
then one can easily show with (7) that the energy of the



performance outputs would be bounded as
∑∞

i=0 ‖z(i)‖2 ≤
r + γ2α, if the disturbance energy were bounded as
∑∞

i=0 ‖w(i)‖2 ≤ α. This can serve as an indication for
choosing the tuning parameterr. However,r should not be
chosen too small in order to avoid that the LMI (4b) is
infeasible.

The dissipation constraint (4d), firstly appearing in [32],
is introduced in order to guaranteeH∞ performance for
the closed-loop moving horizon system, as discussed in
Section III. By minimizing theH∞ performance indexγ,
the presented scheme is able to shape solutions in terms
of the actual state so as to manage automatically the trade-
off between requiring high performance and respecting hard
constraints.

The properties of the suggested MPC scheme are as
follows:

• a constrainedH∞ control problem is solved on-line,
updated with the actual state, unlike standard MPC
schemes where an open-loop optimal control problem
is involved, and unlike [10] that solves a constrained
(robust) LQR problem;

• similarly to [10], a state feedback gain (and not an
open-loop control sequence) is computed by solving
the optimization problem;

• the objective functional to be minimized is theH∞

norm from the external inputw to the performance
output z1, with the purpose to manage automatically
the trade-off between requiring high performance and
respecting hard constraints;

• an additional dissipation constraint is introduced to
guarantee dissipativity and henceH∞ performance for
the closed-loop moving horizon system.

III. C LOSED-LOOPH∞ PERFORMANCE

In this section, we show that with the help of the ad-
ditional dissipation constraint (4d) the closed-loop moving
horizon system is dissipative, along the line of [32]. Taking
the Schur complements in (4d) implies

p0 − pk−1 + x(k)T Pk−1x(k) − x(k)T Pkx(k) ≥ 0 . (9)

This inequality can be combined with the recursion (5) in
order to conclude that the dissipation constraint enforces

k
∑

i=1

[x(i)T Pi−1x(i) − x(i)T Pix(i)] ≥ 0. (10)

Assume that at each timek ≥ 0, the LMI optimiza-
tion problem (3) admits an (almost) optimal solution
(γk, Qk, Yk, Zk) and defineKk = YkQ−1

k as well as
Pk = Q−1

k . Then the feasibility of (4a) implies that the
dissipation inequality (7) is satisfied withγ = γk and
V (x) = xT Pkx for each k ≥ 0. We stress that this
does not imply dissipativity of the closed-loop moving
horizon system. Indeed, assume that, up to timel > 0, the
feedback control sequence computed byu(k) = Kkx(k)

for k = 0, 1, . . . , l has been used to control the system.
Exploiting (7) for k = 0, 1, . . . , l leads to

‖z1(0)‖2 − γ2
0‖w(0)‖2 ≤ x(0)T P0x(0) − x(1)T P0x(1)

‖z1(1)‖2 − γ2
1‖w(1)‖2 ≤ x(1)T P1x(1) − x(2)T P1x(2)

...

‖z1(l)‖
2 − γ2

l ‖w(l)‖2 ≤ x(l)T Plx(l) − x(l+1)T Plx(l+1)

and hence

l
∑

k=0

‖z1(k)‖2 − γ2
k‖w(k)‖2 ≤ x(0)T P0x(0)−

−

l
∑

k=1

[

x(k)T Pk−1x(k) − x(k)T Pkx(k))
]

−

− x(l + 1)T Plx(l + 1). (11)

By (10), we infer

l
∑

k=0

‖z1(k)‖2 − max{γ0, γ1, . . . , γl}
2‖w(k)‖2 ≤

≤ x(0)T P0x(0) − x(l + 1)T Plx(l + 1), (12)

which implies dissipation with levelmax{γ0, γ1, . . . , γl}.
We are now in the position to state the following result.

Theorem 1:Suppose that

• (A,Bu) is stabilizable and(C1, A) is detectable;
• at each timek, there exists anr such that the op-

timization problem (3) with the actual statex(k) as
initial condition admits an (almost) optimal solution
(γk, Qk, Yk, Zk).

If controlling the system withu(k) = Kkx(k) with the
feedback gainKk = YkQ−1

k , the closed-loop moving
horizon system has the following properties:

(i) for vanishing disturbances it is asymptotically stable;
(ii) the hard constraints (2) are respected;
(iii) the dissipation inequality

k
∑

i=0

‖z1(i)‖
2 − γ2‖w(i)‖2 ≤ x(0)T P0x(0) (13)

is guaranteed fork ≥ 0, with γ := max{γ0, . . . , γk}
(which is finite due to feasibility);

(iv) the discrete-timel2-gain from w to z1 is guaranteed
to be not larger thanγ.

Proof: Define γ := max{γ0, γ1, . . . , γk} which is finite
due to the assumption of feasibility. Then (12) implies
property (iii) due toP > 0 and hence property (iv) for
x(0) = 0. Moreover, the stability property (i) is proved
by showing that

∑∞

i=0 ‖z1(i)‖
2 is bounded and exploiting

detectability of (C1, A). At each timek, the feasibility
of (4b) forces the actual statex(k) to be contained in the
ellipsoid E(Pk, r). Hence, the time-domain constraints (2)



are respected since

|z2i(k)|
2
≤ max

x∈E(Pk,r)

∣

∣

(

C2 + D2uY Q−1
)

i
x
∣

∣

2
≤

≤ r
∥

∥

∥

(

(C2Q + D2uY )Q− 1

2

)

i

∥

∥

∥

2

2
≤ z2

2i,max, (14)

follows from (4c). �

Remark 2: In the above, we prove the property (ii) with-
out restricting the disturbance energy. On the other hand, if
the disturbances satisfy‖w(k)‖2 ≤ rk−x(k)T Pkx(k)

γk
, it can

be shown that the feasibility of the optimization problem (3)
at timek = 0 implies its feasibility at anyk > 0.

Discussion of dissipation constraint

Let us now highlight the dissipation constraint (4d). It
follows from (10) that fork = 1, the dissipation constraint
enforcesx(1)T P0x(1)−x(1)T P1x(1) ≥ 0. Hence, switch-
ing the control from the feedback gainK0 with P0 to a
new K1 with P1 is only allowed ifx(1)T P1x(1) does not
exceedx(1)T P0x(1) (which is implied byP ≤ P0).

For k = 2, however, the dissipation constraint requires

[

x(1)T P0x(1) − x(1)T P1x(1)
]

+

+
[

x(2)T P1x(2) − x(2)T P2x(2)
]

≥ 0. (15)

If
[

x(1)T P0x(1) − x(1)T P1x(1)
]

> 0, our scheme permits
that

[

x(2)T P1x(2) − x(2)T P2x(2)
]

becomes negative. In
general,

[

x(k)T Pk−1x(k) − x(k)T Pkx(k)
]

< 0 is allowed
for k ≥ 2 if sufficient ’reserves’ have been accumulated in
the value of

k−1
∑

i=1

[

x(i)T Pi−1x(i) − x(i)T Pix(i)
]

(which is nonnegative by (10)). This contrasts with the
much stronger constraintP ≤ Pk−1 as imposed in [24],
thus leaving more freedom in the optimization to achieve
smaller values ofγ and hence better performance. In other
words, with the dissipation constraint we capture how to
save ‘energy’ from the actual decrease of the dissipation
level, in order to render the requirement of non-increase
less stringent for the subsequent time-instant, while even
allowing for accumulating such ‘reserves’ so as to enhance
performance. From this point of view, the introduced dis-
sipation constraint is less conservative than requiring the
value function to be non-increasing, as in [33], in order to
achieve robust stability.

IV. A PPLICATION TO ACTIVE SUSPENSION

In this section, we apply the proposed robust MPC
scheme to provide a solution of the active suspension
control problem. As an example, we consider a 2 DOF
quarter-car model shown in Fig. 1, where(ks, cs) consist
of the so-called passive suspension;ku stands for the
tire stiffness;ms and mu represent sprung and unsprung
masses, respectively. Moreover,xs − xu is the suspension
stroke,xu−xo the tire deflection andxo the vertical ground

Fig. 1. 2 DOF quarter-car model with an active suspension

displacement caused by road unevenness;uf is the scalar
active force generated by a hydraulic actuator and can be
considered as control input.

Performance requirements for advanced vehicle suspen-
sions include isolating passengers from vibration and shock
arising from road roughness (ride comfort), suppressing the
hop of the wheels so as to maintain firm, uninterrupted
contact of wheels to road (good handling or good road hold-
ing) and keeping suspension strokes within an allowable
maximum (e.g. [34]). In fact, the active suspension control
problem can be formulated as a constrained disturbance
attenuation problem. To quantify ride comfort, the body
acceleration is chosen as controlled performance output, i.e.,
z1 = ẍs. In order to ensure a firm uninterrupted contact of
wheels to road, the dynamic tire load cannot exceed the
static ones [35], i.e.,

ku (xu(t) − xo(t)) < (ms + mu)g ∀t ≥ 0. (16)

Moreover, the suspension stroke limitation in the form of

|xs(t) − xu(t)| ≤ xmax ∀t ≥ 0 (17)

has to be taken into account to prevent excessive suspension
bottoming, which can lead to rapid deterioration of ride
comfort and possible structural damage. Due to actuator
saturation, it is in addition assumed that the active force is
bounded as

|uf (t)| ≤ umax ∀t ≥ 0. (18)

Clearly, (16) – (18) are hard time-domain constraints.
Hence, we choose the normalized active force, the normal-
ized suspension stroke and the relative dynamic tire load as

constrained outputs, i.e.,z2 =
(

uf

umax
, xs−xu

xmax
,

ku(xu−xo)
(ms+mu)g

)T

with z2i,max = 1, i = 1, 2, 3.
Define x = (xs − xu, ẋs, xu − xo, ẋu)

T as state vari-
ables and consider the ground velocity as disturbance input.
Then, by discretizing the ideal dynamics equations of the
quarter-car model with a sampling time ofδ = 0.02s, we
obtain a system in the form of (1). For the simulation we
have chosen the following nominal values for the physical
parameters (cf [35]):

ms = 320kg, mu = 40kg, ks = 18
kN

m
, cs = 1

kNs

m



ku = 200
kN

m
, xmax = 0.08m, umax = 1.5kN.

In the context of vehicle ride and handling, road dis-
turbances can in general be classified as vibration and
shock [34]. Vibrations are consistent and typically specified
as random process. Shocks are discrete events of relatively
short duration and high intensity, caused for example by a
pronounced bump or pothole on an otherwise “smooth” road
and can be viewed as energy-bounded signals. An excessive
suspension bottoming or wheel-hop may happen in this
case. Hence, we consider the case of an isolated bump
in an otherwise smooth road surface. The corresponding
disturbance (ground velocity) is given by

w(t) =

{

πV A
L

sin 2πV
L

t 0 ≤ t ≤ L
V

,

0 t > L
V

,

whereV is the vehicle forward velocity,A and L are the
height and the length of the bump, respectively. Fig. 2 shows
bump responses, whereA = 0.1m, L = 5m and V =
60km

h
. For the model predictive controller with guaranteed

H∞ performance, we chooser = 5.0. The optimization
problem is feasible at each time, hence, it is guaranteed
to respect control and output constraints. For reasons of
comparison, we designed two constrainedH∞ controllers
by minimizing (3) subject to (4a) and (4c), forr = 5.0
and r = 15.0 respectively, and fix the obtained feedback
gains. According to [31], the fixed controllers are guar-
anteed to respect the constraints if the disturbance energy
is less than0.09m2

s2 and 0.11m2

s2 , respectively. Moreover,
the disturbance attenuation levelγ takes the values7.5 and
11.7, respectively. Note that the energy of the disturbance in
Fig. 2 takes the value of8.2m2

s2 , which is much larger than
the allowable value for the two fixed controllers such that
there is no guarantee that they respect the constraints. The
results are plotted in Fig. 2 as dashed (r = 5.0) and dash-
dotted (r = 15.0) lines, respectively. It can be clearly seen
that the MPC withH∞ performance respects constraints
by relaxing on-line the performance level (see the bottom
picture in Fig. 2) and achieves much better performance
(ride comfort) than the fixed controller withr = 15.0
which in turn violates the control constraint slightly. The
fixed controller withr = 5.0 achieves the best performance
among all designs, but it strongly violates both the control
and the output constraints.

V. CONCLUSIVE REMARKS ON ROBUSTH∞

PERFORMANCE

For linear systems with control and output constraints
we have proposed a robust MPC scheme in which a con-
strainedH∞ control problem is solved on-line within the
framework of LMI optimization. A dissipation constraint
that is less conservative than requiring monotonicity of the
value function is introduced to guarantee closed-loop system
dissipativity and, hence,H∞ performance. Moreover, the
proposed MPC scheme is able to automatically relax the
performance level in order to obey hard constraints and
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Fig. 2. Bump responses: MPC withH∞ performance ( ), fixedH∞

controllers forr = 5.0 (−−) andr = 15.0 (− · −)

enhance it when sufficient ’reserves’ have been accumulated
in the system, measured by the dissipation constraint.

It is interesting to observe that the suggested dissipation
constraint is quite general. For example, the setup of the
optimization problem (3) can also be adapted for uncertain
systems described by (1) with





A B Bu

C1 D D1u

C2 0 D2u



 ∈ Ω, (19)

whereΩ ⊆ R
(n+p1+p2)×(n+m1+m2) denotes the uncertainty

set. Similarly as discussed for nominal performance, we can
guarantee robustH∞ performance for a receding horizon
implementation based on the following result.

Theorem 2:Suppose that the assumptions in Theorem 1
are satisfied for all system matrices satisfying (19). Then,by
defining the feedback gainKk = YkQ−1

k at each sampling
time k, and by controlling the system withu(k) = Kkx(k),



the closed-loop moving horizon system achieves the prop-
erties (i) – (iv) in Theorem 1 robustly for all uncertain
systems.
For rather general uncertainty setsΩ, the corresponding
family of LMI problems might not be easily (or efficiently)
solvable. For polytopic system uncertainty

Ω = Co











Ai B1,i Bu,i

C1,i D1,i D1u,i

C2,i 0 D2u,i



 , i = 1, 2, . . . , l







(20)

with a moderate numberl of generators we can proceed
in a standard fashion, which just requires to replace (4a)
and (4c) with









Q ∗ ∗ ∗
0 γI ∗ ∗

AiQ + Bu,iY B1,i Q ∗
CiQ + Du,iY D1,i 0 γI









> 0, (21a)

( 1
r
Z C2,iQ + D2u,iY

(C2,iQ + D2u,iY )
T

Q

)

≥ 0, (21b)

Zjj ≤ z2
2j,max, i = 1, 2, . . . , l.

Hence our scheme is applicable to polytopic uncertain
systems without any complication.
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C. Garćıa, and B. Carnahan, Eds. AIChE, CACHE, 1997, pp. 232–
256.

[2] R. Bhattacharya, G. J. Balas, M. A. Kaya, and A. Packard, “Nonlinear
receding horizon control of an F-16 aircraft,”J. Guidance, Control,
and Dynamics, vol. 25, no. 5, pp. 924–931, 2002.

[3] W. B. Dunbar, M. B. Milam, R. Franz, and R. M. Murray, “Model
predictive control of a thurst-vectored flight control experiment,” in
Proc. IFAC World Congress, 2002.

[4] A. Jadbabaie and J. Hauser, “Control of a thrust-vectored flying wing:
a receding horizon–LPV approach,”Int. J. Robust Nonlinear Control,
vol. 12, pp. 869–896, 2002.

[5] H. Chen and F. Allg̈ower, “Nonlinear model predictive control
schemes with guaranteed stability,” inNonlinear Model Based Pro-
cess Control, R. Berber and C. Kravaris, Eds. Dordrecht, The
Netherlands: Kluwer Academic Publishers, 1998, pp. 465–494.
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