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Abstract— In this paper we describe two Bayesian ap-
proaches for tracking through turbulence. The problem con-
sidered involves an extended target actively illuminated with
several lasers. The returned imagery is used to infer atmo-
spheric tilt. The main application of this technology is the
control of a steering mirror which is used to point a laser
weapon at the target. Several model-based approaches are
examined, including an optical transfer function model and a
tilted reference image model.

I. INTRODUCTION

Proliferation of offensive missile weaponry has become
a major concern in today’s world. The situation requires
the development of efficient and reliable ballistic missile
defense systems. More and more countries have ballistic
missile capability in the form of systems such as Scud
missiles, which can deliver biological, chemical, or even
nuclear warheads. Defensive systems against these threats
are needed now more than ever. A defensive system of great
potential is the Airborne Laser (ABL), which is an aircraft
mounted, high-energy laser (HEL) designed to defeat of-
fensive missiles in the boost phase. In order for such a
system to be effective, one must be able to maintain a highly
accurate track to point the weapon at the missile. The long
paths of propagation, as well as the atmospheric fluctuations
induced by turbulence, provide major challenges to control
systems design.

Compensation for turbulence in laser system design is a
fundamentally different kind of “noisy environment” from
traditional tracking and control problems, primarily due to
the fact that the path the laser follows is distorted by the
atmosphere. This distortion, caused by turbulence-induced
variation in the index of refraction of the atmosphere,
accumulates over the entire travel path of the light, and one
would have to know (or estimate) the index of refraction
to be able to remove its effect exactly. Like a putt on an
uneven green, the steering problem requires pointing in a
direction that will eventually bring the light to the right
spot on the target after traversing the atmosphere. Unlike the
putt, however, we are not allowed to examine the entire path,
but only a reduced picture that has essentially compressed
the information into a temporal sequence of images at our
platform.

In this paper, we explore some model-based tracking
algorithms. Our approach relies on Bayesian statistical

techniques to extract the underlying atmospheric tilt infor-
mation from the imagery. The basic relationships center on
Kolmogorov’s statistical theory of turbulence, the optical
transfer function model of imaging, and Bayesian statistical
methods of parameter estimation.

II. MODEL BACKGROUND

In this section, we recall the basic ideas of imaging
through turbulence. The book by Roggemann and Welsh [1]
provides a detailed description of what we briefly outline
here.

A. Turbulence Modeling

Propagation of light waves through turbulence produces
distortions in both the phase and the amplitude. The prob-
lem of tracking is to determine the “linear” component of
the phase, referred to as the “tilt.” The tilt corresponds to the
angle at which we should point so that the outgoing light
ends up in the right place. The fundamental relationship
for light propagation gives phase shift as a function of the
index of refraction perturbations

ψ(x, y, t) =
2π
λ

∫
P

n(x, y, z, t) ds

in which λ is the wavelength of the light, ψ denotes the
phase at the (two dimensional) receiving aperture, n denotes
the three dimensional index of refraction of the atmosphere,
and P denotes the path the light travels. The integral is a
line integral computed along the path traversed by the light.
We allow time dependence here, which we will discuss
in more detail below. Kolmogorov’s theory of turbulence
poses a power law structure function model for the index
of refraction, given by

Γn(h) = C2
n|h|

2
3 = E|n(r + h) − n(r)|2,

in which r denotes the three dimensional position, h denotes
the spatial separation in three dimensions, and C2

n is a
proportionality constant that measures the strength of the
turbulence. Using the phase relationship with refractive
index and Kolmogorov’s model, it is possible to determine
the structure function for the phase:

Γψ(h) = C2
ψ|h|

5
3 ,

in which the proportionality constant and the power law
exponent are different from that for the index of refraction.



The interested reader should consult [1] for a detailed
derivation. It is also typically assumed that the phase
statistics are Gaussian.

B. Imaging through Turbulence

The process of imaging is generally modeled through
a point spread function (PSF) applied to an underlying
object. We begin with this standard approach, in which the
data zt at time t arises from a linear operator applied to
the reference object: zt = At(u). The operator At is a
convolution operator, whose kernel is the PSF ht:

zt(r) =
∫
ht(r − s)u(s) ds. (1)

The turbulence model typically enters the imaging model
through the PSF. The specific formulation (as is seen, e.g.,
in [1]) is often given in terms of the optical transfer function
(OTF), which is the Fourier transform of the PSF. The most
commonly used form of the OTF is

H(f) =
∫
W (r)W (r − λdf)

∗ exp{iψ(r) − iψ(r − λdf)} dr, (2)

in which W is the optical system’s pupil weighting function,
d is the distance from the pupil to the imaging plane.
Thus, the image depends on the phase perturbation in a
highly nonlinear way. Even with its apparent complexity,
this model is a major simplification of the scenario of
interest in the tracking problem, in the following ways.
The target is an extended source, not a point source, so
that the operator At should be modeled by a more general
kernel integration and not a convolution. Also, one expects
scintillation, or amplitude fluctuations in the light wave,
which is not modeled here. Amplitude fluctuations are
modeled by an additional factor in the OTF, which is of
the form

H(f) =
∫
W (r)W (r − λdf) exp{ξ(r) + ξ(r − λdf)}

exp{iψ(r) − iψ(r − λdf)} dr, (3)

in which ξ denotes the amplitude perturbation at the pupil.
We will return to these more accurate but challenging
problems, but for the moment we will continue with the
simplified model equations (1) and (2) above.

In the tracking problem, the goal is to estimate the line-
of-sight (LOS) angle to the target. If the LOS error is 0,
then the target is “in the middle” of the image plane. Phase
fluctuations, however, can make the target appear to be off-
center; in turn, the LOS is apparently in error. To see how
this problem occurs, we consider the following very simple
case.

III. CORRELATION TRACKING

Suppose that the optical system is of infinite aperture size,
with W = 1. Suppose further that the phase shift satisfies

ψ(x, y) = ψ0 + (x, y) · θ,

in which ψ0 is the constant (piston) term, and θ represents
the atmospheric tilt. The OTF then becomes

H(f) = exp{f · θλd},
leading to a delta function PSF: h(x) = δθλd(x). The
essential effect of this simple phase function is a translation
in the image plane of the target image. It is this shift,
X = θλd, that one seeks to “track” with conventional
tracking algorithms. Indeed, this idealization suggests the
approach taken in the correlation algorithm.

The most commonly used techniques for estimating tilts
are those based on the centroid and the correlation tracker.
The centroid tracker, true to its name, computes X by
finding the centroid of the observed image z. The feature
tracked is in this case the centroid of the true image u.
Adjustments must be made due to the fact that the target,
in most scenarios of interest, extends outside the image
plane. The correlation tracker is developed by posing the
estimation problem as a least squares minimization. One
estimates by minimizing

J(X) =
∫

|zt(x) − u(x−X)|2 dx.

The reason this technique goes by the name “correlation
tracker” is that the minimizer can be obtained directly
from the peak of the cross-correlation between z and u.
Fitts, however, in [2], derived an efficient computational
algorithm that does not require explicit maximization of
the cross-correlation. Instead, by linearizing the correlation
computation, the shifts are determined from a pair of cou-
pled linear equations involving various image integrations.

Again, we emphasize that this algorithm is based on a
fairly simple model of the observation process:

zt(x) = u(x−Xt) + εt(x),

in which ε is white noise (in t and x). These assumptions are
mathematically equivalent to assuming the incoming phase
comprises a piston mode (the ψ0 term, which drops out in
the differencing) and tilt modes (the θ vector), plus small
fluctuations which are independent of these “main modes.”
We also remark that the correlation method assumes the
reference image function u is known or can be estimated
reliably.

IV. A FIRST APPROACH TO BAYESIAN
TRACKING

While the correlation algorithm admits fast, efficient real-
time implementation, there are several major drawbacks.
One, as noted above, is the simplistic modeling of the
phase perturbations. Another is the lack of use of previous
frame/estimator information. It is our goal here to propose
and develop some Bayesian statistical methods in order to
use more information, concerning both the nature of the
phase and the previous frame data.



A. Bayesian Statistical Inference

The basic idea of Bayesian analysis is to perform in-
ference by determining the conditional distribution of the
quantity of interest, given the observations and data at hand.
This statement is made quantitative in the following way.

One begins with prior distribution π(φ) on the parameter
φ of interest. The measurement is modeled with a probabil-
ity distribution, p(z|φ), which is the conditional distribution
of the data, given the parameter. Bayes theorem is then
applied to compute the posterior distribution, which is the
conditional distribution of the parameter given the data.
One typically estimates parameter values in this paradigm
by computing the parameter value which maximizes the
posterior density function. Often called MAP (for maximum
a posteriori) estimation, this technique is one way of inter-
preting the statistical framework of Kalman filtering. The
basic formula for the posterior distribution of the parameter
given the data is

π(φ|z) =
p(z|φ)π(φ)∫

Φ
p(z|φ′)π(φ′) dφ′

,

It should be noted here that the demoninator is a normal-
izing constant (which is independent of the parameter), so
that MAP estimation merely maximizes the numerator.

A common connection between estimation methods in-
volves the case in which the observation density is Gaus-
sian. For example, suppose the data is modeled by

z = Aφ+ ε,

where ε ∼ N(0, σ2I). Suppose also that we use a prior
from the exponential family: π(φ) ∝ exp{−N(φ)}.

In this case, MAP estimation is equivalent to minimizing
the penalized least squares cost

J(θ) = |z −Aθ|2 +N(θ).

In the case of a uniform prior, N is constant, and MAP,
maximum likelihood, and least squares all produce the same
result. In the case of a nonlinear model such as the OTF,
we have a nonlinear problem to solve. Below we describe
the structure of the phase estimation problem.

B. Bayesian Phase Estimation

In order to incorporate a slightly better turbulence model
into the correlation tracking scheme, we pose the following
nonlinear least squares problem. We seek to minimize, at
each time step,

J(φ) =
∫

|zt(x) − h(x, ψ) ∗ u(x)|2 dx,

in which
ψ(x) =

∑
k

φkBk(x)

is an expansion of the phase in terms of modes Bk. The
most common approximation scheme is the Zernike poly-
nomial expansion. The details of the Zernike ploynomials

can be found in [1]. The coefficients φ form the parameter
vector to be estimated. Note that, by the Plancheral identity,
one can equally well formulate this cost functional in the
frequency domain:

J(φ) =
∫

|Zt(f) −H(f, ψ)U(f)|2 df,
One can implement any number of iterative methods from

stochastic approximation to estimate the phase coefficients
φ. Of course, this standard least squares approach does
not take advantage of the statistical information we have
concerning the phase.

The Bayesian form would include the Kolmogorov tur-
bulence model into the observation process, leading to a
penalized cost functional of the form

J(φ) =
∫

|Zt(f) −H(f, ψ)U(f)|2 df + φTC−1φ

in which C is the covariance matrix derived from the
structure function for the phase given above.

C. Temporal Filtering

The motion of the target means that the image sequence
is temporally correlated. An algorithm for estimating the
phase for each frame should integrate this additional in-
formation. The type of temporal correlation we expect uses
Taylor’s frozen flow hypothesis. That model treats the phase
sequence as

ψt(x) = ψ(x− νt),

in which ν denotes the translational velocity of the target.
Then the covariance of (ψt, ψt+h, · · · , ψt+kh) can be de-
termined directly from the covariance of the process ψ: the
temporal phases ψt are just spatial samples of ψ in terms of
translations in space. Likewise, projecting the phase onto the
basis functions Bk, we obtain a covariance matrix for the
coefficients φkt . Performing a regression analysis to obtain
the conditional distribution of φt+1 given a past history
φt, φt−1, · · · , φt−p, we develop the phase dynamics with
a linear statistical model of the form

φt+1 =
p∑
�=0

A�φt−� + ηt,

in which the A� matrices are determined through the
covariance (see, e.g., [3]). For example, with only one step
of history, we would have that the covariance

E
[
φt(φt)T

]
= E

[
φt+1(φt+1)T

]
= Σ11,

and

E
[
φt+1(φt)T

]
= E

[
φt+1(φt+1)T

]T
= Σ12,

leading to the regression equation

φt+1 = Σ12Σ−1
11 φt + ηt,

for some zero mean η. In order to approximate the phase
behavior properly, we must take enough terms in the ex-
pansion so that the residual term η behaves as white noise.



The measurement process here depends nonlinearly on
the phase, even though the regression modeling of the
temporal phase correlations produces a linear dynamical
system. The computational complexity of the nonlinear filter
leads us to consider a more empirically based approach,
which is the subject of the next section.

V. A SECOND APPROACH TO BAYESIAN
TRACKING

The problem of tilt estimation through nonlinear filter-
ing, with the OTF providing the measurement model, is
extremely challenging for frame rates of interest in the ABL
system. Thus, we are led to consider a set of filters having
a simpler and more efficient implementation. Toward that
end, we pose a measurement model of the form

yt(x) = w(x−Xt) + nt(x),

in which yt = log(zt), w is a reference image, Xt is the
two dimensional tilt, and nt is the measurement noise. The
multiplicative nature of the scintillation noise leads us to
consider a logarithmic model here. Now, the tilt, which as
above is modeled as the linear component of the phase, is
nearly independent, stochastically, of the rest of the Zernike
coefficients of the phase (see [1]), so we consider the model

Xt+1 = Xt +
∑p
k=0 ÂkXt−k + δt

= Xt + vt + δt

for the temporal dynamics of the tilt, explicitly separating
out the term Xt so that we can include a velocity step.
The coefficients Âk and the covariance of δ are determined
through the regression process described above. Treating δt
as an uncorrelated sequence is of course an approximation.
We plan to examine colored noise problems in future work.

Examining the reference image’s behavior under the
temporal shift, we expand through the linear term of the
Taylor approximation to obtain

w(x−Xt+1) ≈ w(x−Xt) + ∇w(x−Xt) · (vt + δt).

Thus, we rewrite our observation problem as

yt+1(x) = yt(x) + ∇w(x−Xt) · (vt + δt) + n̂t(x),

in which the noise term n̂ now is the difference of the
original noise terms.

Note that the problem of estimating Xt+1 becomes a
problem of estimating v from this measurement equation.
This problem is linear in v, but the dependence on the
current estimate of the tilt is nonlinear.

The estimation algorithm we examine is based on a
Bayesian formulation. We have a parameter dependent
measurement equation, and we have a statistical model of
the parameter’s behavior. That is, we have that

vt =
p∑
k=0

ÂkXt−k,

and that

yt+1(x) = yt(x) + ∇w(x−Xt) · (vt + δt) + n̂t(x)
= yt(x) + ∇w(x−Xt) · vt + ñt(x)

in which the δ term has been absorbed into the noise term ñ.
We assume that the measurement error n̂ has the Gaussian
distribution with zero mean and covariance R. We also
assume that the images are observed as pixel values of inten-
sity, so that the measurement is actually finite dimensional.
For notational purposes, we define Yt = (y1, y2, . . . , yt)
to be the complete observation history vector. Thus, the
measurement distribution p(yt+1|v;Yt) is given by

p(yt+1|v;Yt;Xt) =

1
K

exp
{
−1

2
L(yt+1, yt, v,Xt)TR−1L(yt+1, yt, v,Xt)

}
,

in which K is the usual Gaussian normalizing constant

K =
√

det(R)(2π)N
2/2,

and the exponent is

L(yt+1, yt, v,Xt) = yt+1 − yt −∇w(x−Xt) · v.
It should be noted that the covariance R is dependent on Xt
through the inclusion of the δ term above. The“corrector”
step of the Bayesian inference is the posterior distribution
computation

π(v|Yt+1) =
p(yt+1|v;Yt;Xt)π(v|Yt)∫

V
p(yt+1|v′;Yt;Xt)π(v′|Yt) dv′ .

In order to predict forward to the next time, we must not
only propagate Xt+1 = Xt + vt + δt, but we must also
predict the posterior so that it will become the next step’s
prior. The reason for the additional posterior propagation is
that the velocity v is not a fixed parameter to be estimated
but a dynamic quantity in its own right through the X’s.
Recall that the velocity vt+1 satisfies

vt+1 =
∑p
k=0 ÂkXt+1−k

= Â0(vt +Xt + δt) +
∑p
k=1 ÂkXt+1−k,

so that the distribution of vt, conditioned on the past,
together with the distribution of δt, determine the distri-
bution of vt+1. The computation of Bayesian filter is thus
complete.

VI. RESULTS

We have experimented with the Bayesian algorithm of
Section V on data supplied by Dr. Bill Brown of the
Air Force Research Laboratory at Kirtland AFB. Using
a very high resolution wave optics simulation, Dr. Brown
generated data for an ABL engagement scenario involving a
roughly 200km path of propagation. The turbulence in this
scenario is fairly strong, having a Rytov number of 0.70.



The frame rate of the camera simulated is 5000 Hz, and
the target is moving at roughly 1.5 km/sec. Dr. Brown’s
simulation produced 1050 frames of actively illuminated
target data, as well as 1050 frames of back-propagated point
source data, which provides a “truth” signal. We illustrate
the results of 300 frames of analysis in the figure below.
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Fig. 1. Longitudinal Tilts, truth and Bayes

In Figure 1, we have the “plus sign” graph denoting the
Bayesian tracking scheme following the truth signal very
well. This is in distinction with a centroid tracker, which
is shown in Figure 2. The centroid signal in Figure 2 is
marked with circles on the data points.
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Fig. 2. Longitudinal Tilts, truth and centroid

The Bayesian scheme outperformed the centroid by a
wide margin. The rms error over the full 1050 frame set

is 0.54 pixels for the Bayesian scheme and 0.94 pixels for
the centroid.

VII. CONCLUSIONS AND FUTURE WORK

We have examined in this paper the application of
Bayesian statistical methods to the problem of tilt estimation
in optical tracking problems. The flexibility of the Bayesian
approach allows modeling of many phenomena of interest,
particularly the uneven illumination of the target due to
the turbulent perturbations of the outgoing beams. We have
examined the applicability on open loop simulation data,
and the Bayesian approach shows great promise. Future
work focuses on closed loop simulation in wave optics
software and laboratory settings. Moreover, we plan to
reexamine the filter using the more accurate colored noise
modeling of the tilt process.
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