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Abstract— Cascade control strategy is commonly employed
in process control. Usually the inner loop is run at a higher
sampling rate than the outer loop to achieve an effective
cascade control. In this paper, we present a model predictive
controller (MPC) that could handle this multirate cascade
control strategy in a straightforward manner. There is only
one controller to be designed, thus reducing the complexity
of tuning the cascade control system. An illustrative example
is presented to demonstrate the effectiveness of the proposed
control design method.

I. INTRODUCTION

As showed in Figure 1, a typical cascade control system
consists of an inner loop and an outer loop. Cascade
controllers are useful when the outer loop plant contains
right-half plane zeros or a time delay or when the inner
loop has significant disturbance and uncertainty[7].
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Fig. 1. A typical cascade system

The conventional approach to designing a cascade control
system is that an appropriate inner loop controller is first
determined to match the desired dynamics of the inner
control loop. With the inner loop closed, the outer loop con-
troller is next designed. Usually the inner loop has a higher
bandwidth than the outer loop. In practical implementation,
the inner loop usually operates at a faster sampling rate than
the outer loop.

In cascade control, there is one manipulated variable
and two or more measurement. Thus, in this paper, we
proposed to take an alternative approach and design a
predictive controller for the cascade control problem by
sampling the plant outputs,y1 and y2 at different rates,
and generates the control signalu at the faster rate. In other
words, we treat the plant as a non-square multivariable plant
with possibly multirate sampling and control requirements
and design the required controller accordingly following
the Model Predictive Control (MPC) approach. Using this
approach, only one controller needs to be designed. In

addition, different inner- and outer-loop sampling rate and
loop interactions can be accounted for in the design process.

For single-rate cascade control systems, in which the
input updating and the output sampling rates are the same,
efforts have been made to get more efficient and convenient
control strategies. In [10], an IMC-based design for cascade
control using the state space technique was presented. A
cascade predictive structure with an adaptive predictive con-
troller for the inner loop and a PID controller for the outer
loop was implemented in [13] for a distributed collector
solar filed. To control an open-loop unstable Continuous
Stirred Tank Reactor System, Nagrathet al.[8] developed
a state estimation-based model predictive control approach
which employs a single MPC strategy that incorporates both
loops’ measurements and manipulates the system input.
Predictive cascade controllers for the control of the position,
velocity and rotor flux of an induction machine were also
reported in [2], [6].

The rest of this paper is organized as follows. In Section
2, we review a state space formulation of model predictive
control for multirate systems. Section 3 shows the main
results of this paper, that is, a predictive controller for
multirate cascade systems. Section 4 gives a numerical
example on a multirate cascade system which verifies the
proposed design. Finally, a brief concluding remark is made
in Section 5.

II. STATE SPACE FORMULATION OFA

MULTIRATE MODEL PREDICTIVE CONTROLLER

One popular version of Model Predictive Control (MPC)
is the Generalized Predictive Control (GPC). Some recent
interests in extending MPC to multirate situation can be
found in [1], [3], [4], [11], [12]. In particular, [12] used
the lifting technique to develop a GPC scheme for non-
uniformly sampled multirate systems. In this section, we
recall the state space MPC formulation approach for mul-
tirate systems.

Unlike a conventional single-rate system, a multirate
system has different rates for measurement sampling and
control updating. Generally the sampling and updating
pattern are periodic over a larger periodT known as the
frame period. For example, if the measurement sampling
period isnh, and the control updating period ismh, where
m andn are integers andh is the base period, then the frame



period isT = gh, whereg is the least common multiple of
m andn.

Now let us consider a controllable and observable, single-
input single-output linear multirate system, supposing its
base period state space model in discrete-time form is
represented by{

xkT+h = AxkT + B∆ukT

ykT = CxkT ,
(1)

then the basic idea of the state space MPC for multirate
systems can be described as follows:

Firstly, a prediction model is constructed based on the
base period model. For example, at the time instantkT +
imh(i = 0, · · · , n), the prediction model is

Ŷ = Φx(kT + imh) + Ψ∆U, (2)

where

Ŷ =


ŷ(kT + imh + h)
ŷ(kT + imh + 2h)

...
ŷ(kT + imh + Nph)

 , Φ =


CA
CA2

...
CANp

 ,

∆U =


∆u(kT + imh)

∆u(kT + imh + h)
...

∆u(kT + imh + (Nu − 1)h)

 , (3)

Ψ =


CB 0 · · · 0

CAB CB · · · 0
...

...
...

CANp−1B CANp−2B · · · CANp−NuB

 .

(4)
Then the state feedback law can be obtained by minimiz-

ing the cost function

J =
Np∑
j=1

‖ω(kT + imh + jh) − ŷ(kT + imh + jh)‖2

+ λ

Nu∑
j=1

‖∆u(kT + imh + (j − 1)h)‖2, (5)

subject to the following constraints:

∆u(kT + imh + jh) = 0, j 6= 0,m, 2m, · · · . (6)

The parameterNp is known as the upper prediction horizon,
and for simplicity, the lower prediction horizon is cho-
sen to be one in the above formulations. The prediction
horizons define the interval over which the tracking error
is minimized ( ω is the setpoint fory ). The control
horizon, Nu, defines the degree of freedom available for
the minimization. The control weighting,λ, can be used to
penalize excessive control activity, but in practice, it is more
commonly used to ensure a numerically well-conditioned
algorithm.

Substituting (2) into (5) and solving the minimization
problem, we have the following control law:

∆U = K1ω(kT + imh) + K2x(kT + imh), (7)

where

K1 = (ΨT Ψ + λI)−1ΨT ,

K2 = −(ΨT Ψ + λI)−1ΨT Φ. (8)

Using the so-called receding horizon strategy, only the
first element of the control vector obtained from Equation
(7), is applied to the plant. The control calculation is then
repeated at the next control updating instance. Since the
prediction model is the same at every control updating
instance, it can be seen that the controller gainsK1 and
K2 are time invariant.

If the state variables are not directly measurable, and
in particular, in multirate situation, because control and
measurement occur at different rate, the state variable may
not be available at certainkT +imh. In this case the control
law is modified to

∆U = K1ω(kT + imh)+K2x̂(kT + imh|kT +jnh), (9)

wherex̂(kT +imh|kT +jnh) denotes the estimation of the
state atkT + imh based on the most up-to-date input and
output measurements. One possible approach to designing a
state estimator for the multirate system is via the so-called
receding or moving horizon state estimator[5], [9].

III. A PREDICTIVE CONTROLLER FOR
MULTIRATE CASCADE SYSTEMS

In this section, we present our main results, that is,
developing a predictive controller for a multirate cascade
control system. Such a predictive controller can control not
only the inner loop but also the outer loop at the same time.
The basic idea for this approach arises from the fact that
a multirate two-loop cascade control system can also be
treated as an equivalent multirate single-input two-output
control system. We hence can design a predictive controller
for this single-input two-output system with the technique
introduced in Section 2. As it is showed in Figure 2, this
predictive controller is simpler and more compact than the
conventional design with two predictive controllers for the
cascade control and thus it is more convenient to design
and tune.

A. An Equivalent Multivariable System

We first give a multirate multivariable system which is
equivalent to the multirate two-loop cascade system.

Consider a cascade system with the following inner loop
systemP1 and outer loop systemP2

For this multirate double-loop cascade system, we assume
that bothP1 and P2 are controllable and observable. The
continuous-time plant can be represented by[

y1(s)
y2(s)

]
=

[
P1

P1P2

]
u(s) (10)



Without loss of any generality, we assume that its updating
and sampling rates are periodic over a frame periodT . Let
us suppose that the updating period ofu is mh, sampling
period ofy1 is n1h andn2h is the sampling period ofy2.
Here m, n1 and n2 are integers andh is the base period.
Furthermore, we assume thatT is the smallest common
multiple of mn1h andmn2h. The discrete-time base period
model is {

x̃k+1 = Ãx̃k + B̃uk

yk = C̃x̃k
(11)

Next add an integrator into the model[
∆x̃k+1

yk

]
=

[
Ã O

C̃ I

] [
∆x̃k

yk−1

]
+

[
B̃
O

]
∆uk

yk =
[

C̃ I
] [

∆x̃k

yk−1

]
Now we can formulate the cascade control system as a
multirate controller design for a single-input two-output
system using the following compact form{

xk+1 = Axk + Buk

yk = Cxk
(12)

We thus transfer the original cascade system to an equiv-
alent multivariable system based on which a predictive
controller will be derived.

B. Design of the Predictive Controller

For the multirate single-input two-output system (12),we
can find a predictive controller through the technique de-
scribed in Section 2.
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Fig. 2. A controller for a two-loop cascade system

For the whole system, there is only one setpointω which
is for the outputy2. Hence we can write the cost function
as follows,

J =
Np∑
j=1

‖ω(kT + imh + jh) − ŷ2(kT + imh + jh)‖2

+ λ

Nu∑
j=1

‖∆u(kT + imh + (j − 1)h)‖2, (13)

subjecting to the following constraints:

∆u(kT + imh + jh) = 0, j 6= 0,m, 2m, · · · . (14)

Now we can compute the predictive control law as
follows:

Ŷ2 = Φ̄x(kT + imh) + Ψ̄∆U, (15)

where

Ŷ2 =


ŷ2(kT + imh + h)
ŷ2(kT + imh + 2h)

...
ŷ2(kT + imh + Nph)

 , Φ̄ =


ΓA
ΓA2

...
ΓANp

 ,

(16)

∆U =


∆u(kT + imh)

∆u(kT + imh + h)
...

∆u(kT + imh + (Nu − 1)h)

 , (17)

Ψ̄ =


ΓB 0 · · · 0

ΓAB ΓB · · · 0
...

...
...

ΓANp−1B ΓANp−1B · · · ΓANp−NuB

 ,

(18)
and

Γ = the second row ofC

Then from Section 2, we have the following predictive
control law,

∆U = K1ω(kT + imh) + K2x(kT + imh) (19)

with

K1 = (Ψ̄T Ψ̄ + λI)−1Ψ̄T ,

K2 = −(Ψ̄T Ψ̄ + λI)−1Ψ̄T Φ̄. (20)

When the state variablesx are not available at timekT +
imh, the control law in (19) is replaced by

∆U = K1ω(kT + imh) + K2x̂(kT + imh | kT + jnh),
(21)

wherex̂(kT + imh | kT + jnh) denotes estimation of the
state variables at timekT + imh based on the most up-to-
date available state variables. The process of state estimation
will be described next.

C. State Estimation

In practice, we usually can only measure the outputs
and the internal state variables are not available. A state
estimator is thus needed to reconstruct the state variables
according to the available input and output information.
This is feasible if the system is observable.

The design of state estimators can be implemented in
various frameworks, such as the Kalman filter, which gives
the optimal state estimate in the mean square error sense
but need a noise model which may be difficult to obtain.
This paper employs the receding or moving horizon state
estimator to estimate the states that are not available in the
prediction.

The basic strategy of moving horizon estimation (MHE)
is to estimate the state vector based on a finite number of



past measurement samples. The oldest measurement sample
is discarded when a new sample becomes available. The
memory length of the state estimator is thus fixed.

For simplicity, we adopt here the scheme proposed by
[4] in which the design of the state estimator is treated in
the same framework as that in the controller design, that is,
by minimizing the following cost function,

Je =
Ne−1∑
r=0

µ(tj − rh)‖y(tj − rh) − Cx̂(tj − rh)‖2, (22)

with respect to the following constraints,

x̂(tj − rh + h) = Ax̂(tj − rh) + Bυ(tj − rh)∆u(tj − rh),
(23)

whereNe, the estimation horizon, is the main tuning param-
eter for the state estimator. It determines the number of the
past output measurement employed by the state estimator.
The controller makes control signal changes at everymh
intervals, that is , at time0,mh, 2mh, . . .. But the plant
output is only available at time0, n1h, n2h, 2n1h, 2n2h, . . ..
So it is easy to see that

υ(tj − rh) =
{

1 if tj − rh = 0,mh, 2mh, . . .
0 otherwise

(24)

µ(tj−rh) =
{

1 if tj − rh = 0, n1h, n2h, 2n1h, 2n2h, . . .
0 otherwise

(25)
Minimization of Equation (22) with respect tôx(tj −

Neh + h) gives the following optimum state estimates,

x̂(tj − Neh + h) = (MQM)−1MT Q(Y − PΥU) (26)

where

M =


CANe−1

CANe−2

...
C

 ,

P =


CB CAB · · · · · · CANe−2B
0 CB · · · · · · CANe−3B
...

...
...

...
...

0 0 · · · · · · CB
0 0 · · · · · · 0

(27)

U =
[

∆u(tj − h) ∆u(tj − 2h) · · · ∆u(tj − Neh + h)
]T

Y =
[

y(tj) y(tj − h) · · · y(tj − Neh + h)
]

(28)

andQ is a diagonal matrix which containsµ(tj −rh), Υ is
a diagonal matrix which containsυ(tj −rh). The estimated
state can be written as

x̂(tj) = EyY + EuU (29)

where

Ey = ANe−1(MT QM)−1MT Q

Eu =
[

B AB · · · ANe−2B
]
Υ − EyPΥ

IV. A NUMERICAL EXAMPLE

In this section, we verify the efficiency of the proposed
MPC design in controlling the following multirate cascade
system. The plantP1 and P2 has the following transfer
function representations

P1(s) =
1

10s + 1
P2(s) =

e−5s

20s + 1
We chooseP2 to have a time delay because cascade
controller is only useful ifP2 has RHP zeros or a time delay.
Assume the sampling period of outer-loop isT = 1s, while
the sampling period of inner-loop isT/m, wherem is an
integer. Using the techniques presented in Section 3 with
tuning parameters chosen as:Np = m ∗ 10 (ensuring the
same length of prediction horizon under different sampling
patterns),Nu = 2 (choosing the same number of degree-of-
freedom) andλ = 0.01, we can design the MPC controller
for this multirate cascade system. For the estimator design,
we choose the estimation horizon to beNe = 5. For various
values ofm = 2, 4 and 8, the closed-loop response of the
cascade control system is illustrated in Figure 3. The step
signal is injected att = 1s, and the inner-loop disturbance
is added att = 100s. It can be seen that the controller
achieve zero steady-state error and give reasonable setpoint
and disturbance responses. With the MPC framework, con-
straints on the intermediate measurementy1 and the control
signalu could be added.

Fig. 3. Step and disturbance responses of the cascade control system

V. CONCLUSIONS

We present in this paper a MPC design for multirate
cascade systems. The proposed predictive controller is sim-
ple to design and tune. Properties of the proposed control
design, such as the effect of sampling ratiom and the
estimation horizonNe are currently under investigation.



REFERENCES

[1] P. Carini, R. Micheli and R. Scattolini, ”Multirate self-tuning
predictive control with application to a binary distillation column,”
International Journal of System Science, Vol. 21, 1990, pp. 51-64.

[2] D. Dumur, P. Boucher and T. Kolb, “Application of cascaded
constrained receding horizon predictive control to an induction
machine,”Proceedings of IEEE International Conference on Con-
trol Applications, Dearborn, MI, 1996, pp. 888-893.

[3] J. H. Lee and M. S. Gelomino and M. Morari. “Model pre-
dictive control of multirate sampled-data systems: a state-space
approach,”International Journal of Control, Vol. 55, 1992, pp.
153-191.

[4] K. V. Ling and K. W. Lim, “A state space GPC with extensions
to multirate control,”Automatica, Vol. 32, No. 7, 1996, pp. 1067-
1071.

[5] K. V. Ling and K. W. Lim, “Receding horizon recursive state
etimation,” IEEE Trans. Automat. Contr., vol.44, pp.1750-1753,
1999.

[6] M. K. Maaziz, P. Boucher and D. Dumur, “A new RST cascade
predictive control scheme for induction machines,”Proceedings of
the 1999 IEEE International Conference on Control Applications,
Hawaii, USA, August, 1999, pp. 927-932.

[7] M. Morari and E. Zafiriou,Robust Process Control, Prentice Hall,
NJ, 1989.

[8] D. Nagrath, V. Prasad and B. W. Bequette, “A model predictive
formulation for control of open-loop unstable cascade systems,”
Chemical Engineering Science, Vol. 57, 2002, pp. 365-378.

[9] C. V. Rao, J. B. Rawlings and D. Q. Mayne, “Constrained State
Estimation for Nonlinear Discrete-Time Systems: Stability and
Moving Horizon Approximations,”IEEE Trans. Automat. Contr.,
vol.48, pp.246-258, 2003.

[10] L. P. Russo and B. W. Bequette, “State-space versus input/output
representation for cascade control of unstable systems,”Industrial
and Engineering Chemistry Research, Vol. 36, No. 6, 1997, pp.
2271-2278.

[11] R. Scattolini and N. Schiavoni, “A multirate model based predic-
tive controller,” IEEE Transactions on Automatic Control, Vol. 40,
No. 6, 1995, pp. 1093-1097.

[12] J. Sheng, T. W. Chen and S. L. Shah, ”Generalized predictive
control for non-uniformly sampled systems,”Journal of Process
Control, Vol. 12, 2002, pp. 875-885.

[13] R. N. Silva, L. M. Rato, J. M. Lemos and F. Coito, “Cascade
control of a distributed collector solar field,”Journal of Process
Control, Vol. 7, No. 2, 1997, pp. 111-117.


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control ConferenceBoston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeP08.3
	Page0: 1575
	Page1: 1576
	Page2: 1577
	Page3: 1578
	Page4: 1579


