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Abstract— This paper presents an extension of the Two-
Level Model Predictive Control (MPC) scheme presented in
[13]. The procedure in [13] allows for computationally efficient
MPC over a subset of the controllable state-space. The first
controller level provides a stability guarantee and the second
level optimizes performance. This two-level control scheme
allows for a transparent tradeoff between the necessary on-line
computation power and performance. However, the scheme
also suffers from two drawbacks. The two-level controller [13]
does not cover all controllable states and in order to guarantee
constraint satisfaction in closed-loop, it is necessary to resort
to open-loop control for certain initial states. These issues are
dealt with in this paper. We will extend the procedure such that
the controller covers the infinite time controllable setK∞(XI)
with closed-loop stability and feasibility guarantee. The set
K∞(XI) denotes all states which may be driven to the setXI

by an admissible control law.

I. I NTRODUCTION

In Model Predictive Control (MPC) an optimization
problem is solved on-line over a prediction horizonN and
subsequently only the first element of the obtained input
sequence is applied to the plant. This procedure is repeated
at each time step, thus leading to closed loop control.
In general, a stability proof for the closed-loop system
is obtained by imposing a set constraint on the terminal
statexN as well as an associated terminal costx′Px [11].
However, the constraint onxN may require the prediction
horizonN to be very large for the optimization problem to
be feasible. Large prediction horizons inherently result in
prohibitive computation times, thus creating a clear need for
fast and efficient alternatives to the classic MPC approach.

The authors in [3] proposed to use multi-parametric
programming to solve the quadratic optimization problem
associated with MPC off-line. However, the computational
complexity is exponential in the number of inputsm and
prediction horizonN , thus making it unsuitable for large
problems. The authors in [10] proposed an interpolation
of feasible input sequences which were computed off-
line beforehand to obtain robust stabilizing control. This
idea was applied and extended in [13], [1], where the
authors presented an efficient way of partitioning the state-
space and interpolating input sequences by using a two
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level controller which provides close to optimal closed-
loop performance. Level 1 is computationally efficient and
generates a stabilizing feedback law whereas Level 2 is used
to further optimize for performance.

The concept of [13] is extended in this paper to cover
the infinite time controllable setK∞(XI). The resulting
controller guarantees that the state will enter an arbitrarily
small neighborhood of the origin in finite time and does
not rely on the intermediate use of open-loop control to
provide these properties. The method presented in this paper
replaces Level 1 of [13] whereas Level 2 is identical to the
scheme presented in [13]. The paper is structured as follows.
A general problem definition and a recap of the results in
[13] is given in Section II. Section III and IV describe
the proposed control scheme while Section V illustrates the
advantages of the proposed scheme on numerical examples.

II. PROBLEM STATEMENT AND PROPERTIES

In this section, we will first introduce the formulation of
the MPC problem considered here, before we restate some
of the results of two-level MPC published in [13].

Definition 1: A polytope is a bounded and closed set
defined by a finite intersection of hyperplanes. A hyperplane
bounding a polytope is referred to as a facet of that
polytope. A full dimensional polytope inRn with n + 1
vertices is referred to as simplex.

A. Formulation of MPC

Assume a linear, time-invariant, discrete-time system

x(k + 1) = Ax(k) + Bu(k), (1)

with A ∈ R
n×n andB ∈ R

n×m. Let x(k) denote the mea-
sured state at timek and xk denote the predicted state at
time k given the statex(0). Let uk be the computed input
for time k, given x(0). Assume now that the states and
the inputs of the system in (1) are subject to the following
constraints

x(k) ∈ X ⊂ R
n, u(k) ∈ U ⊂ R

m, ∀k > 0, (2)

where X and U are bounded and closed polytopic sets
containing the origin in their interior, and consider the finite-



time constrained optimal control problem

J∗

N (x(0)) = min
u0,...,uN−1

N−1
∑

k=0

(

u′

kRuk + x′

kQxk

)

+ x′

NQfxN (3a)

subj. toxk ∈ X, ∀k ∈ {1, . . . , N}, (3b)

uk−1 ∈ U, ∀k ∈ {1, . . . , N}, (3c)

xN ∈ Tset, (3d)

xk+1 = Axk + Buk, x0 = x(0), (3e)

Q º 0, Qf º 0, R Â 0. (3f)

The optimizerU∗

N (x(0)) = [u′

0, . . . , u
′

N−1]
′ to problem (3)

is a function of the initial conditionx(0).
Definition 2: [5] The setXI will denote the maximum

admissible set for linear systems (1) subject to the optimal
unconstrained LQR feedback lawFLQR derived from the
cost objective in (3):

XI = {x(0) ∈ R
n| x(k) ∈ X, FLQRx(k) ∈ U,

x(k + 1) = (A + BFLQR)x(k), ∀k ≥ 0}
AssumePARE to be the solution of the Algebraic Riccati
Equation (ARE). If the terminal set constraintTset = XI

and Qf = PARE in (3), then stability and feasibility
are guaranteed if (3) is implemented as Receding Horizon
Control (RHC) [11]. RHC is a control policy where the
optimization problem (3) is solved at each time-step but
only the first inputu0 of the resulting input sequence is
applied. We will henceforth assume thatTset = XI .

Definition 3: [8] The finite time controllable setKs(XI)
is the largest set of states inRn for which there exists an
admissible (for (2)) time-varying state feedback control law
such that the setXI is reached ins steps. Here,

Ks(XI) ={x(0) ∈ X| ∃u(0) ∈ U,

Ax(0) + Bu(0) ∈ Ks−1(XI)},

with K0(XI) = XI . The setKs(XI) can easily be computed
by applying projection methods (e.g., [7]).
The infinite time controllable setK∞(XI) is defined ac-
cordingly for s → ∞. If Ks(XI) = Ks−1(XI), this
implies K∞(XI) = Ks(XI) [8]. Since the constraints in
(2) are compact the setK∞ is also bounded. Note that the
set K∞(XI) may not be finitely determined, even if it is
bounded (e.g., ifK∞(XI) has open boundaries).

B. Two Level MPC

The concept of two-level MPC is that at level 1, a stabi-
lizing MPC solution is constructed by linear interpolation
of off-line solutions, while at level 2, a suboptimal solu-
tion tailored to the computation resources is computed by
solving an optimization problem of arbitrary size. Equation
(3) can be formulated as an optimization problem with the
free variablesU∗

N (x(0)) andα(x(0)) which corresponds to
an upper bound on the value function, i.e.,J∗

N (x(0)) ≤
α(x(0)).

Theorem 1:[13] Consider an LTI system (1) subject to
the input and output constraints (2). At each sampling
time k, a sequence ofN -step control movesU∗

N (x(k)),
which minimizes the upper boundα(x(k)) on the MPC
objective functionJ∗

∞
(x(k)), are obtained from the solution

(if it exists) of the following linear objective minimization
problem:

min
α(x(k)), U(x(k))

α(x(k)), J∗

N (x(k)) ≤ α(x(k)), (4)

subject to (3b) - (3e). The first control move of the sequence
U∗

N (x(k)) is applied to the system. Suppose that (4) is
feasible fork = 0, then the proposed controller makes the
closed-loop system asymptotically stable.
Equation (4) can be solved by using LMI or quadratically
constrained quadratic program (QCQP) solvers.

Corollary 1: [13] Consider a polytopic set of statesX =
Co{x(1), ..., x(L)} in the state spaceRn, whereCo denotes
the convex hull, andx(j), j = 1, .., L, are vertices of the
convex hull. Suppose for each vertexx(j), the solution of
the minimization in Theorem 1 isα(j) and U (j). On line,

at time k, if x(k) =
L
∑

j=1

θjx
(j) ∈ X with

L
∑

j=1

θj = 1 and

0 ≤ θj ≤ 1, then α̃(x(k)) =
L
∑

j=1

θjα
(j) and Ũ(x(k)) =

L
∑

j=1

θjU
(j) are a feasible solution for the minimization in

(4).
Given a Cartesian coordinate systemRn with a set of
unit base vectorse(1), ..., e(n), the authors in [13] consider
a polytope of the formX = Co{±a1e

(1), ...,±ane(n)}
with 2n vertices and subsequently apply an interpolated
input sequence according to Corollary 1 in Level 1 of
the algorithm. In Level 2, an LMI (or QCQP) as in (3)
is solved for mfree < N free inputs, i.e.,U∗

mfree
=

[u∗

0, . . . , u
∗

mfree−1, umfree
, . . . , uN−1], where the input se-

quence[umfree
, . . . , uN−1] is taken from Level 1. If the

new cost functional improves upon that of Level 1 (i.e.,
J∗

mfree
(x(k)) < α̃(x(k))) the input from Level 2 is applied,

otherwise the solution of Level 1 is used.
The 2-Level approach boasts significant computational

advantages over standard solution methods, since the de-
grees of freedommfree in the on-line optimization prob-
lem may be arbitrarily chosen. However, only considering
diamond shaped setsX is restrictive since only a subset of
the controllable states can be controlled with the 2-Level
controller. Furthermore, even if the initial state is contained
in X , there is no guarantee the state will be able to remain
within X for the future time steps, thus making it necessary
to rely on open-loop control if the state exits the controllable
set.

III. L EVEL 1 CONTROL FORKs(XI)

As previously stated, the contribution of this paper is an
efficient way of computing an interpolated input sequence
according to Corollary 1 for all controllable statesx ∈



Ks(XI). In this section we will first describe the off-line
computation procedure before presenting an efficient way
of applying the results on-line.

A. Off-Line Computation

In this section, three methods of pre-computing certain
elements of the optimal control solution will be presented.
The three methods offer a trade-off between the necessary
on-line and off-line computation time. Note that the off-line
computation time may not be negligible for the approaches
presented here, which makes the distinction between the
three approaches necessary. First, the infinite time control-
lable setK∞(XI) will be computed in both half-plane

K∞(XI) = {x ∈ R
n|Hx ≤ K}

and vertex

K∞(XI) = {x ∈ R
n|x =

L
∑

i=1

Φix
(i), Φi ≥ 0,

L
∑

i=1

Φi = 1}

representation, wherex(i) denotes thei − th vertex of
K∞(XI). Since the iterative computation ofK∞(XI) may
not terminate in finite time it is advisable to set an upper
bounds on the number of iterations which are computed,
such that we will henceforth consider only the setKs(XI).
The half-plane and vertex representation of polytopes will
be referred to asH and V representation respectively.
Though the move fromH to V representation is computa-
tionally taxing [7], [4], [14], the procedure is performed off-
line where runtime is not of primary importance. It should
be noted however, that the requirement to move fromH to
V puts a limit on the size of problems which are tractable
with the proposed approach.

In the second step of the off-line procedure, the optimal
input sequenceUN (x(i)) and the upper bound on the value
function α(x(i)) are computed for each of the vertices
x(i) of the reach-setKs(XI) by solving (3). Note that
a terminal set constraint (3d) needs to be imposed to
guarantee feasibility (invariance) and that we also require
an appropriate terminal weightQf to be used in order to
guarantee stability [11].

Note that unlike [13], the state spaceKs(XI) is not
automatically divided into simplices. In order to deal with
this issue, a lookup table is computed which associates the
f − th facet hfx ≤ kf to the vertices of that facet, i.e.,
X(f) = T (f) whereX(f) is a set of vertices which lie on
thef−th facet andT (f) denotes the lookup table function.
After this initialization, three approaches are feasible:

(a) Simplex-Based 1:For each facetf , subdivide the
polytope which is defined by the verticesX(f) and the
origin into simplices (see Figure 1(b)). It is necessary
to add the origin to each set of vertices in order to
obtain a full dimensional simplex. A polytope with
the verticesX(f) and the origin will henceforth be
referred to as segmentf . The simplex division of
segmentf can be achieved by applying Delaunay

Triangulation [14] which is included in commercial
software [2], [4]. Subsequently create a second lookup
table S(f, c) which associates all the simplices in
V−representation with the respective facet. In the
table X(f,c) = S(f, c), f denotes the facet number,
c ∈ N

+ is the index for the associated simplex number
andX(f,c) denotes the set of vertices defining simplex
c.

(b) Simplex-Based 2:Directly divide the full polytope
Ks(XI) into simplices via Delaunay Triangulation,
i.e., do not deal with each segmentf separately (see
Figure 1(c)). This will result in a smaller number of
simplices, but the on-line identification of the active
simplex may take more time, i.e., there is a tradeoff
between the necessary storage space and on-line com-
putational speed. Subsequently store all simplices in
V−representation in a data structure which we will
denote asX(c) = S(c), wherec is an index counter
used to access each of the simplices. As beforeX(c),
is a set containing all vertices which define simplex
c.

(c) Facet-Based:Add the origin to each vertex list stored
in T (f).

Note that there is no difference in the off-line computation
between methods (a) and (c) in two dimensions. While
method (a) always divides the entire setKs(XI) into sim-
plices, method (c) will subdivideKs(XI) into full dimen-
sional polytopes. Once the vertices of each simplex (a,b)
or of the setKs(XI) (c) have been computed, solve (3) for
each of the vertices and store the associated input sequence
UN (x(i)) and α(x(i)) = J∗

N (x(i)) in an appropriate data
structure.

B. On-Line Computation

The following Lemmas will be used in the on-line
procedure.

Lemma 1: [12] (i) Define the polytopesPf as segment
f of Ks(XI), i.e.,Pf is the polytope defined by all vertices
on facetf of Ks(XI) and the origin. (ii) Normalize the
inequalities definingKs(XI) according to

Hx − K ≤ 0; KT =







1
1
...






; H =







hT
1

hT
2
...







Note that 0 ∈ Ks(XI) follows from (2). (iii) Compute
the valuesγf = hT

f x and computef for which γf is a
maximum. Then ifx ∈ Ks(XI), it follows that x lies in
polytopePf .

Lemma 2: If a state is contained in a polytopex ∈
P, then there exists a vectorΦ, such that x =
∑L

i=1 Φix
(i), 0 ≤ Φi ≤ 1,

∑L
i=1 Φi = 1, where x(i)

denotes the i-th vertex ofP. If P is a simplex and allx(i) are
known, the computation ofΦ can be realized with a simple
function evaluation. By substitutingΦ1 = 1 −

∑L

i=2 Φi an
equation system withn equalities andL = n unknowns is
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(b) Triangulation method 1 of reach-set
Ks (10 simplices).
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(c) Triangulation method 2 of reach-set
Ks (8 simplices).

Fig. 1. Reach-setKs with the corresponding triangulation.

obtained which can be solved by simple matrix inversion.
If the polytopeP is a simplex, the inverse of the matrix
will exist.

For efficient on-line implementation we propose the
following algorithm,

Algorithm 1:

1) Obtain a state measurementx(k) ∈ R
n. If x(k) /∈

K∞(XI) then no feasible input sequence exists for
the given state.

2) Initialize c = 0 and then proceed depending on which
off-line approach was taken:

a) Simplex-Based 1: Obtain the facet which is
closest to the statex(k) according to Lemma
1. Obtain the simplices inV representation as-
sociated with facetf through the lookup ta-
ble X(f,c) = S(f, c). Apply the procedure of
Lemma 2 to obtainΦ. If ||Φ||1 6= 1 or any
Φi(x) < 0, setc = c + 1 and repeat (a).

b) Simplex-Based 2: Compute Φ according to
Lemma 2. If ||Φ||1 6= 1 or any Φi(x) < 0, set
c = c + 1 and repeat (b).

c) Facet-Based:Obtain the facet which is closest
to the statex(k) according to Lemma 1. Obtain
the vertices associated with facetf through
the lookup tableX(f) = S(f) and solve the
following LP

min
Φ

[α(1), . . . , α(I)]Φ, subj. to,

0 ≤ Φi ≤ 1, i = {1, . . . , I},
I

∑

i=1

Φi = 1, x(k) =

I
∑

i=1

X(f)(i)Φi,

whereI denotes the number of vertices associ-
ated with facetf andX(f)(i) denotes thei− th
vertex of facetf .

3) Obtain the input sequenceU(x(k)) =
∑I

i=1 ΦiU
(i),

the cost boundα(x(k)) =
∑I

i=1 Φiα
(i).

4) If α(x(k)) < α(x(k|k − 1)), apply the first input of
the sequenceU(x(k)). The term(k|k−1) denotes the
predicted state at timek given a state measurement
at time k − 1. If α(x(k)) > α(x(k|k − 1)), apply
the second input ofU(x(k − 1)). For U(x(k −
1)) = [u0, u1, . . . , uN−1], now set U(x(k)) =
[u0, . . . , uN−1, FLQRxN ] andα(x(k)) = α(x(k|k −
1)). The shifted boundsα(x(k|k − 1)) are easily
computed as shown in [13] (Note thatα(x(k|k−1)) <
α(x(k − 1)) ). Goto 1.

Method (a) and (b) have the advantage that no LPs
will need to be solved on-line. Method (a) is faster on-
line because of the efficient detection of the active sim-
plex. However, (a) requires more storage space than (b),
since more simplices are needed to cover the full polytope
Ks(XI). Method (c) relies on solving LPs on-line. Though
this is computationally more taxing than method (a) or (b), it
is possible to include an objective when formulating the LP.
The objective[α(1), . . . , α(I)]Φ will yield the interpolation
resulting in the lowest bound on the value function and may
thus produce a superior control law compared to Method (a)
or (b). It should also be noted that although an LP needs
to be solved at each time step, the size of this LP is given
by the number of vertices of each segmentf whereas the
size of the control problem (3) is mainly influenced by the
prediction horizon times the number of inputs. Therefore,
the proposed approach may be significantly faster than
direct computation of a feasible input sequence.

Theorem 2:Algorithm 1 ascertains asymptotic stability
and constraint satisfaction (2) for all time.

Proof: Feasibility: Since the reach setKs(XI) of
an optimization problem as in (3) is convex andAx(i) +
Bu(i) ∈ Ks(XI) this directly implies

∑I
i=1 Φi(Ax(i) +

Bu(i)) ∈ Ks(XI). Since (3) will be feasible for allx(k) ∈
Ks(XI), constraint satisfaction is guaranteed for all time.



Stability: As is clear from Algorithm 1, Step 4, the function
α(x) is strictly decreasing. SinceKs(XI) is bounded and
because of Theorem 1,α(x) is also bounded from above
and below. Therefore, the functionα(x) serves as a Lya-
punov function which guarantees asymptotic stability of the
closed-loop system.

IV. L EVEL 2 CONTROL FORKs(XI)

We will refer the reader to [13] for a detailed description
of the second level and simply restate the basics in this
section. Once the input sequenceU∗

N (x) = [u0, . . . , uN−1]
and the bound on the cost functionα(x) are obtained with
the methods in Section III-B for an initial statex, an
optimization problem is solved over an arbitrary number
of free inputsmfree, i.e.,

L∗(x,Umfree
) = min

u∗

0
,...,u∗

mfree

L(x,Umfree
) (5a)

subj. toxk ∈ X, ∀k ∈ {1, . . . , N}, (5b)

uk−1 ∈ U, ∀k ∈ {1, . . . , N}, (5c)

xN ∈ Tset, (5d)

J∗

N (x,Umfree
) < α(x) (5e)

xk+1 = Axk + Buk, x0 = x(0), (5f)

whereUmfree
= [u∗

0, . . . , u
∗

mfree
, umfree+1, . . . , uN−1]. In

general we will choosemfree ¿ N , such that the on-
line optimization problem is easily solved. This second
level allows us to make use of the long prediction horizon
computed at level 1 while optimizing for performance over
only a small number of inputs. If the cost of Level 1 can
be improved upon, i.e. (5e) is satisfied, the input sequence
obtained at the second level will be implemented, otherwise
the solution obtained at Level 1 is applied. Note that the
Level 2 controller cannot destabilize the closed-loop system
since (5e) is satisfied.

Remark 1:The presentation up to this point has been
restricted to LTI systems and the standard open loop MPC
formulation. However, as shown in [13], the extension to
LTV or polytopic LDI systems is straightforward. It is fur-
thermore possible to consider systems subject to persistent
additive disturbances. Moreover, since MPC algorithms for
LTV and LDI systems provide a computationally efficient
alternative to nonlinear MPC algorithms for constrained
nonlinear systems, the proposed algorithm can also be im-
plemented for the control of constrained nonlinear systems.

V. EXAMPLES

Example 1:Consider the discrete-time double integrator
with the state-space representation:

x(k + 1) =

(

1 1
0 1

)

x(k) +

(

1
0.5

)

u(k)

y(k) = [1 0] x(k)

The task is to regulate the system to the origin while
fulfilling the input and output constraints

−1 ≤ u(k) ≤ 1, −50 ≤ y(k) ≤ 50, ∀k ≥ 0

Example 1 Simplex 1 Simplex 2 Facet-Based

K1 8 6 3
K5 16 14 3
K10 26 24 3
K20 26 24 3
K30 36 34 3
K40 44 42 3

TABLE I

THE NUMBERS FOR THESIMPLEX-BASED METHODS1 & 2 DENOTE

THE NUMBER OF SIMPLICES IN EACH REACH SET, WHILE THE NUMBER

FOR THE FACET BASED METHODS DENOTES THE MAXIMUM NUMBER

OF VERTICES FOR EACH SEGMENT OFKs(XI).

The cost on the state is set toQ = I and the input-cost is
R = 1.
For example 1, the reach set computation terminates after
40 steps, i.e.,K∞(XI) = K40(XI). The solution complexity
of the result is shown in Table I. Note that the on-line
implementation complexity for the simplex methods grows
linearly with the number of obtained simplices, since a set-
membership test needs to be performed for each simplex, in
the worst case. The complexity of the facet-based approach
grows polynomially, since interior-point LP solvers have
polynomial complexity. For the Level 1 controller, problem
(3) was solved for each vertex for a prediction horizon of
N = 40. The resulting runtime and performance is given
in Tables II and III. The runtime was compared with the
MATLAB QP solver. The performance was measured by
gridding the state space and computing the closed loop-
trajectory cost to the origin for each initial state. A total
of 115 initial states were considered. We did not consider
the additional impact of the Level 2 controller, in order to
highlight the contribution of this paper, which is the mod-
ification to the Level 1 controller. Note that even without
the additional improvement of the level 2 controller, the
performance degradation incurred by the Level 1 controller
is marginal (see Table III).

Before concluding, a brief comparison of feedback con-
trollers based on triangulation and multi-parametric feed-
back controllers [6] will be given. Note that unlike the
method in [6], the triangulation based controller considered
here does not guarantee optimal performance. Specifically,
20 random stable systems withn = 4 states andm = 2 in-
puts were generated. Subsequently, both the infinite horizon
optimal solution with the multi-parametric algorithm in [6]
and the triangulation controller (b) from Section III-A were
computed. Figure 2 depicts the difference in the number of
controller regions for two different cost objectives. As can
be deduced, the number of controller regions obtained with
multi-parametric programming can vary widely depending
on the cost function in (3), whereas the complexity of the
triangulation controller is independent of the performance
objective. Therefore triangulation based 2-Level MPC may
be preferable to multi-parametric controllers for certain
problems.



Example 1 Simplex 1 Simplex 2 Facet-Based QP solver

Average Time 1.24 msec 1.38 msec 1.62 msec 140 msec
Worst-Case Time 1.42 msec 1.58 msec 1.88 msec 258 msec

TABLE II

THE COMPUTATION TIME TO OBTAIN THE INPUT SEQUENCE FOR A GIVEN INITIAL STATE IS GIVEN FOR EXAMPLE 1 FOR THE DIFFERENT METHODS

PRESENTED INSECTION III-A. ‘QP’ DENOTES THE TIME NECESSARY TO SOLVE THE ASSOCIATED QUADRATIC PROGRAM FOR A PREDICTION

HORIZON OFN = 40. THE RUN TIMES WERE OBTAINED ON APENTIUM IV 2.25GHZ MACHINE , 1GB RAM AND THE MATLAB QP AND LP

SOLVERS WERE USED.

Example 1 Simplex 1 Simplex 2 Facet-Based

Mean Performance Decrease 3.2% 4.3% 3.2%
Worst-Case Performance Decrease 8% 8.1% 8%

TABLE III

THE AVERAGE AND WORST CASE PERFORMANCE DECREASE INCURRED FOREXAMPLE 1 FOR THE DIFFERENT METHODS PRESENTED INSECTION

III-A VERSUS ANQP SOLUTION OBTAINED BY OPTIMIZING FOR A PREDICTION HORIZON OFN = 40.
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(a) Q = I, R = 0.1I

0 5 10 15 20
0

0.5

1

1.5

2

x 10
4

System

N
um

be
r 

of
 R

eg
io

ns

MPQP
Triangulation

(b) Q = I, R = 10I

Fig. 2. Number of controller partitions mp-QP vs. Triangulation for
different cost objectives in (3). The same systems were used for the two
cost objectives.

VI. CONCLUSION

It was shown in this paper, how the 2-level MPC approach
in [13] can be extended to cover the maximum controllable
set. In the proposed method, input sequences which can be
computed off-line are used in the on-line implementation
to obtain feasible and stabilizing input sequences. As was
shown, the proposed procedure may significantly reduce
the on-line runtime necessary to obtain input sequences.
Two fundamentally different procedures were presented.
First, sets may be split into simplices by applying the
Delaunay triangulation methods. For this method, on-line
computation of the input sequence boils down to a simple
set-membership test with subsequent function evaluation.
Alternatively, polytopes may be defined for which the
input sequence can be interpolated on-line by solving an
LP. The main drawback of the proposed schemes is the
computational complexity of the off-line procedure, which
makes the approach intractable for large problems.

The presented algorithms are contained in the MPT
toolbox [9] which is available for download.
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