
An Approach to the Optimal Scanning Measurement Problem
Using Optimum Experimental Design
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Abstract— We address the problem of activating discrete
scanning sensors so as to maximize some quantitative observ-
ability measure for a given distributed parameter system. In
contrast to the classical approach based on a direct application
of non-linear programming algorithms, the key idea here is to
operate on the density of sensors per unit area instead of the
positions of individual sensors. Mathematically, this procedure
involves searching for a family of “optimal” probability mea-
sures defined on subsets of the set of feasible measurement
points. The method proposed for solving the problem so
formulated, originates from an extremely efficient approach
which is based on directly constrained design measures that
are used in optimum experimental design theory. As a result, a
fast iterative procedure is obtained whose each step reduces to
replacing less informative sensor locations with points which
furnish more information about the system state.

I. INTRODUCTION

This paper seeks to study a problem which has rela-
tively often been addressed in the control literature:How
should one choose the locations of measurement sensors
for a given distributed parameter system (DPS) so as to
increase its degree of observability quantified by a suitable
observability measure?Certainly the selection of these
sensor positions may have such a dramatic effect on the
performance possibilities as to far outweigh the optimal
“tuning” of the control signals that takes place after sensor
locations are selected. Specific features of this problem and
past approaches are surveyed e.g. in [1], [2]. However, the
results communicated by most authors are rather limited to
the selection of stationary sensor positions. A generalization
which imposes itself is to apply sensors which are capable
of tracking points providing at a given time moment best
information about the system state. In particular, it happens
frequently that the observation system comprises multiple
sensors whose positions are already specified and it is
desired to activate only a subset of them during a given
time interval while the other sensors remain dormant [3]. A
reason for not using all the available sensors could be the
reduction of the observation system complexity and the cost
of operation and maintenance [1]. Such a scanning strategy
of taking measurements can be also interpreted in terms of
several sensors which are mobile. This line of research has
drawn some attention of both scientists and engineers, but
the existing methods are still of little use in practice.
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Ordinarily, the task is reduced to examining a given
finite set of possible candidate locations. Then we seek
the best subset of locations from among all the possible
ones. Numerical algorithms for the construction of optimum
sensor configurations by searching over a list of candidate
locations customarily involve an iterative improvement of
the initial sensor configuration. The combinatorial nature
of the problem so formulated implies that with a long list
of candidate points and the DPS discretization involving a
high-dimensionality of the lumped representation, compli-
cated search algorithms can readily consume appreciable
computer time and space. In contrast to this approach, the
key idea here is to operate on the density of sensors per unit
area instead of the positions of individual sensors. Such con-
ditions allow us to relax the discrete optimization problem
in context and to replace it by its continuous approximation.
Mathematically, this procedure involves looking for a family
of ‘optimal’ probability measures defined on subsets of the
set of feasible measurement points. In spite of its somewhat
abstract assumptions, the resulting algorithm of exchange
type is very easy to implement. The underlying concepts
have already been applied in the context of sensor location
for parameter estimation [4]–[6]. A main contribution of
the present paper consists in a non-trivial generalizationof
those results to output selection in control system design,
where to the best of the authors’ knowledge the approach
based on sensor densities has not been employed yet.

II. PROBLEM FORMULATION

A. Observability in a Quantitative Sense

Given a linear DPS described by a partial differential
equation model, consider its finite-dimensional approxima-
tion (e.g. obtained via the finite-element method) in the
form of the following system of linear ordinary differential
equations:

dy(t)

dt
= A(t)y(t), t ∈ T = [t0, tf ], (1)

y(t0) = y0, (2)

such thaty(t) ∈ R
n andA(t) ∈ R

n×n, which is augmented
by the sensor location parameterized counterpart of the
output equation

z(t) = C(t; ζ(t))y(t), (3)

where z(t) ∈ R
N , C(t; ζ(t)) ∈ R

N×n, and the notation
emphasizes the dependence of the output matrixC on
the current spatial configuration of sensorsζ(t) (to be
determined in what follows).



As regards a quantitative measure for state observability,
consider the observability Gramian

W (ζ) =

∫ tf

t0

ΦT(t, t0)C
T(t; ζ(t))C(t; ζ(t))Φ(t, t0) dt,

(4)
where the fundamental (or transition) matrixΦ(t, t0) obeys

dΦ(t, t0)

dt
= A(t)Φ(t, t0), Φ(t0, t0) = I, (5)

I being the identity matrix.
An optimal sensor configuration strategyζ⋆ can be found

by minimizing some convex functionΨ defined onW (ζ)
[1]. Common choices include the following:

1) Ψ(W ) = − ln detW ,
2) Ψ(W ) = traceW−1,
3) Ψ(W ) = − traceW ,
4) Ψ(W ) = λmax(W

−1),
whereλmax( · ) stands for the largest eigenvalue of its ma-
trix argument. Since the last criterion is non-differentiable
when there are repeated eigenvalues, its use will not be
considered here.

B. Scanning Problem for Optimal Observability

Let us form an arbitrary partition of the time intervalT =
[t0, tf ] by choosing pointst0 < t1 < · · · < tL = tf defining
subintervalsTℓ = [tℓ−1, tℓ), ℓ = 1, . . . , L. We then consider
N scanning sensors which will possibly be changing their
locations at the beginning of every time subinterval, but
will be remaining stationary for the duration of each of the
subintervals. Thus the sensor configurationζ can be viewed
as follows:

ζ(t) = (x1
ℓ , . . . , x

N
ℓ ) for t ∈ Tℓ, ℓ = 1, . . . , L, (6)

wherexj
ℓ ∈ X ⊂ R

d stands for the location of thej-th
sensor on the subintervalTℓ, X being the part of the spatial
domain where the measurements can be taken.

Assume that the consecutive rows of the matrixC(t; ζ(t))
in (3) correspond to contributions from different sensors,i.e.

C(t, ζ(t)) =



γT(x1

ℓ , t)
...

γT(xN
ℓ , t)


 for t ∈ Tℓ, ℓ = 1, . . . , L,

(7)
where γ : R

d+1 → R is a given function. Then we can
decompose the Gramian as follows:

W (ζ) =
L∑

ℓ=1

N∑

j=1

Υℓ(x
j
ℓ), (8)

where

Υℓ(x) =

∫ tℓ

tℓ−1

g(x, t)gT(x, t) dt, (9)

g(x, t) = ΦT(t, t0)γ(x, t). (10)

We have thus arrived at the crucial point for the presented
approach, as the proposed algorithm of finding best sensor

locations may only be employed on condition that the
Gramian constitutes the sum of some matrices, each of
them being completely defined by the position of only one
scanning sensor on one subintervalTℓ, cf. (8).

C. Conversion to Finding Optimal Sensor Densities

When the number of sensorsN is large, which is rather
a common situation in applications such as air pollution
monitoring networks or control architectures for smart ma-
terial systems, the optimal sensor location problem becomes
extremely difficult from a computational point of view. Con-
sequently, we propose tooperate on the spatial density of
sensors, rather thanon the sensor locations. This is proved
reasonable for a sufficiently largeN and potential solutions
would be satisfactory for many technical processes.

Performing such a conversion does not eliminate the
discrete nature of the original formulation, and therefore
the resultant computational problem is still not amenable
to solution. Thus we relax the definition of the set of
admissible solutions by observing that the density of sensors
over the subintervalTℓ can be approximately described by
a probability measureξℓ(dx) on the space(X,B), where
B is the σ-algebra of all Borel subsets ofX. As regards
the practical interpretation of the so produced solutions,
one possibility is to partitionX into non-overlapping sub-
domains∆Xi of relatively small areas and then, on the
subintervalTℓ, to allocate to each of them the number

Nℓ(∆Xi) =

⌈
N

∫

∆Xi

ξℓ(dx)

⌉
(11)

of sensors (⌈ρ⌉ is the smallest integer≥ ρ).
Thus our aim is to find probability measuresξℓ, ℓ =

1, . . . , L overX. For notational convenience, in what fol-
lows we shall briefly writeξ = (ξ1, . . . , ξL) and call ξ a
design measure(or a designfor short).

Such an extension of the concept of the sensor configu-
ration allows us to replace (8) by

W (ξ) =
L∑

ℓ=1

∫

X

Υℓ(x) ξℓ(dx). (12)

A rather natural additional assumption is that the density
of sensorsNℓ(∆Xi)/N in a given part∆Xi must not
exceed some prescribed level. In terms of the probability
measures, this amounts to imposing the conditions

ξℓ(dx) ≤ ω(dx), ℓ = 1, . . . , L, (13)

whereω(dx) is a given measure satisfying
∫

X
ω(dx) ≥ 1.

Defining J(ξ) = Ψ[W (ξ)], we may phrase the scanning
sensor location problem as the selection of

ξ⋆ = arg min
ξ∈Ξ(X)

J(ξ), (14)

whereΞ(X) denotes the set of all competing designs whose
components satisfy (13) (note thatΞ(X) is non-empty and
convex). We callξ⋆ the (Ψ, ω)-optimal solution.



The idea of working with sensor densities in lieu of
sensor positions was proposed by Fedorov [7] who sought
spatially distributed observations maximizing the accuracy
of parameter estimates of a given static system (the problem
pertains to the general setting of optimum experimental de-
sign theory [8], [9]). Fedorov’s ideas were then generalized
to the context of optimum stationary [6] and scanning [5]
sensor locations for parameter estimation in dynamic DPS’s.

In the sequel, we will need the following assumptions:
(A1) X is compact,
(A2) Υℓ ∈ C(X; RN×N ),
(A3) Ψ is convex,
(A4) If W1 �W2, thenΨ(W1) ≥ Ψ(W2),
(A5) ω(dx) is atomless, i.e. for any∆X ⊂ X there exists

a ∆X ′ ⊂ ∆X such that∫

∆X′

ω(dx) <

∫

∆X

ω(dx), (15)

(A6) There exists a finite realq such that
{
ξ = (ξ1, . . . , ξL) :

J(ξ) ≤ q <∞, ξℓ(dx) ≤ ω(dx),

ℓ = 1, . . . , L
}

= Ξ̃(X) 6= ∅,

(A7) For anyξ ∈ Ξ̃(X) and ξ̄ ∈ Ξ(X), we have

dJ(ξ; ξ̄ − ξ) =

L∑

ℓ=1

∫

X

ψℓ(x, ξ) ξ̄ℓ(dx), (16)

where the left-hand side stands for the one-sided
directional derivative ofJ at ξ in the directionξ̄− ξ,

dJ(ξ; ξ̄ − ξ)

= lim
λ↓0

J(ξ + λ(ξ̄ − ξ)) − J(ξ)

λ

=
d

dλ
Ψ[W (ξ) + λ(W (ξ̄) −W (ξ))]

∣∣∣
λ=0+

(17)

andψℓ( · , ξ), ℓ = 1, . . . , L areC(X) functions.
Assumption (A4) characterizesΨ as a linear ordering

of Ξ(X) (W1 �W2 iff W2 −W1 is non-negative definite).
In turn, Assumption (A7) means that the directional deriva-
tive of J must be somewhat specific. Note, however, that
requiring Ψ to be differentiable with respect to individual
elements of its matrix argument, we obtain

ψℓ(x, ξ) = c(ξ) − φℓ(x, ξ), (18)

the functionsc andϕ being respectively defined as

c(ξ) = −
1

L
trace

[ ◦

Ψ(ξ)W (ξ)
]
, (19)

φℓ(x, ξ) = − trace
[ ◦

Ψ(ξ)Υℓ(x)
]
, (20)

where
◦

Ψ(ξ) =
∂Ψ(W )

∂W

∣∣∣∣
W=W (ξ)

.

Table I lists specific forms of the so introduced functions
for the most popular design criteria.

TABLE I

FUNCTIONS DEFINING THE DIRECTIONAL DERIVATIVES.

Ψ[W (ξ)] φℓ(x, ξ) c(ξ)

− ln det W (ξ) trace
[
W−1(ξ)Υℓ(x)

]
N

trace W−1(ξ) trace
[
W−2(ξ)Υℓ(x)

]
trace W−1(ξ)

− trace W (ξ) trace Υℓ(x) trace W (ξ)

In what follows, we writeΞ̄(X) for the collection of all
the designsξ whose components satisfy the requirement1

ξℓ(∆X) =

{
ω(∆X) for ∆X ⊂ supp ξℓ,

0 for ∆X ⊂ X \ supp ξℓ.
(21)

The point of this definition is that the designs from̄Ξ(X)
turn out to be vital while formulating optimality conditions.
The main feature of a designξ ∈ Ξ̄(X) is that for each of
its componentsξℓ the design domainX can be split into two
subsets for whichξℓ coincides either with the zero-measure
of with the upper boundω.

III. CHARACTERIZATION OF OPTIMAL DESIGNS

We begin with a fundamental result regarding the form
of (Ψ, ω)-optimal designs.

Theorem 1:Under Assumptions (A1)–(A7), a(Ψ, ω)-
optimal design exists in̄Ξ(X).

Consequently, we can focus our attention on designs from
the setΞ̄(X). Our goal now is to develop a method for
checking whether or not a given designξ ∈ Ξ̄(X) is (Ψ, ω)-
optimal. The test stated below in Theorem 2 is based on the
following notion of the separability of two sets:.

Definition 1: Given a designξ, we will say that the
function ψℓ( · , ξ) defined by (18)separatessetsX1 and
X2 with respect toω(dx) if for any two sets∆X1 ⊂ X1

and∆X2 ⊂ X2 satisfying
∫

∆X1

ω(dx) =

∫

∆X2

ω(dx) (22)

we have
∫

∆X1

ψℓ(x, ξ)ω(dx) ≤

∫

∆X2

ψℓ(x, ξ)ω(dx). (23)

Theorem 2:A necessary and sufficient condition for
ξ⋆ = (ξ⋆

1 , . . . , ξ
⋆
L) ∈ Ξ̄(X) to be (Ψ, ω)-optimal is that

the functionsψℓ( · , ξ
⋆) separateX⋆

ℓ = supp ξ⋆
ℓ andX \X⋆

ℓ

for ℓ = 1, . . . , L.
As a companion to the above result, we next consider the

special case whereω(dx) has a continuous density̺.
Corollary 1: Let ξ⋆ ∈ Ξ̄(X) andX⋆

ℓ = supp ξ⋆
ℓ , ℓ =

1, . . . , L. If ω(dx) = ̺(x) dx, where ̺(x) is a positive

1The support of a measureξℓ is defined as the closed setsupp ξℓ =
X \

⋃
{G : ξℓ(G) = 0, G – open}, cf. [10, p.80].



continuous function, thenξ⋆ is (Ψ, ω)-optimal iff

sup
x∈X⋆

ℓ

ψℓ(x, ξ
⋆) ≤ inf

x∈X\X⋆
ℓ

ψℓ(x, ξ
⋆), ℓ = 1, . . . , L.

(24)
Corollary 2: Under the assumptions of Corollary 1, if

moreover∂Ψ(W )/∂W
∣∣
W=W (ξ⋆)

exists and is bounded,
thenξ⋆ is (Ψ, ω)-optimal iff

inf
x∈X⋆

ℓ

φℓ(x, ξ
⋆) ≥ sup

x∈X\X⋆
ℓ

φℓ(x, ξ
⋆), ℓ = 1, . . . , L.

(25)
According to the above result, the functionsφℓ play

a leading role in indicating spatial points which provide
the most valuable information in terms of the adopted
optimality criterionΨ. They constitute a good starting point
for constructing numerical procedures of determining best
sensor configurations in practice.

IV. NUMERICAL PROCEDURE OF EXCHANGE
TYPE

A. General Algorithm

Corollary 2 forms a basis for an efficient numerical
algorithm of determining(Ψ, ω)-optimal designs. Its main
idea is to move some measure from an area of lower values
of φℓ( · , ξ

(k)) to those with higher values, as we expect
that such a procedure will improve the current designξ(k).
Details regarding this scheme are summarized as follows:

Algorithm 1: General scanning strategy algorithm:

1) Guess an initial designξ(0) ∈ Ξ̄(X). Select a toler-
ance0 < η ≪ 1. Setk = 0.

2) Forℓ = 1, . . . , L separately setX(k)
1ℓ = supp ξ

(k)
ℓ and

X
(k)
2ℓ = X \X

(k)
1ℓ (the bar over the symbol denoting

a set stands for its closure), and determine

x
(k)
1ℓ = arg min

x∈X
(k)
1ℓ

φℓ(x, ξ
(k)),

x
(k)
2ℓ = arg max

x∈X
(k)
2ℓ

φℓ(x, ξ
(k)).

(26)

If φℓ(x
(k)
1ℓ , ξ

(k)) > φℓ(x
(k)
2ℓ , ξ

(k)) − η for all ℓ =
1, . . . , L, then STOP.

3) For ℓ = 1, . . . , L proceed as follows: If
φℓ(x

(k)
1ℓ , ξ

(k)) > φℓ(x
(k)
2ℓ , ξ

(k))−η, then fixS(k)
1ℓ (α) =

S
(k)
2ℓ = ∅. Otherwise defineS(k)

1ℓ (α) as the inter-
section ofX(k)

1ℓ and the ball centered atx(k)
1ℓ with

a radius adjusted so that
∫

S
(k)
1ℓ

(α)
ρ(x) dx = α, and

similarly, let S(k)
2ℓ (α) be the intersection ofX(k)

2ℓ and
the ball centered atx(k)

2ℓ with a radius adjusted so
as to satisfy

∫
S

(k)
2ℓ

(α)
ρ(x) dx = α. Then construct

ξ(k+1) = (ξ
(k)
1 (α(k)), . . . , ξ

(k)
L (α(k))) ∈ Ξ̄(X) by

choosingα(k) so that

Ψ[W (ξ
(k)
1 (α(k)), . . . , ξ

(k)
L (α(k)))]

= min
α∈(0,ᾱ]

Ψ[W (ξ
(k)
1 (α), . . . , ξ

(k)
L (α))], (27)

where

supp ξ
(k)
ℓ (α) = (X

(k)
1ℓ \ S

(k)
1ℓ (α)) ∪ S

(k)
2ℓ (α), (28)

and ᾱ = min{1,
∫

X
̺(x) dx − 1}. Incrementk and

go to Step 2.
The properties of this feasible-direction-like algorithm

can be considered in some detail, but in practice the scheme
outlined in what follows is preferred as it is much easier to
implement.

B. Implementation Issues

Within the framework of the sensor placement, we usu-
ally deal with a constant allowable sensor density̺(x) =
const. Moreover, while implementing Algorithm 1 on a
computer, all integrals are most often replaced by sums
over some finite grid elements (the grid produced by the
finite-element method can be employed for that purpose).
Analogously, the setsX, X(k)

1ℓ , X(k)
2ℓ , S(k)

1ℓ and S(k)
2ℓ then

simply consist of grid nodes. Thus Algorithm 1 can be
interpreted as an exchange-type algorithm (in each itera-
tion some points are deleted from the current design and
replaced by the same number of vacant points). In practice,
α(k) is usually fixed and, what is more, one-point exchanges
are most often adopted, i.e.S(k)

1ℓ =
{
x

(k)
1ℓ

}
and S(k)

2ℓ ={
x

(k)
2ℓ

}
, which substantially simplifies the implementation.

Taking account of the above remarks, the following
computational scheme can be developed:

Algorithm 2: Practical exchange-type scanning strategy
algorithm:

1) Constructa priori a sufficiently dense set of possible

sensor locations̃X =
{
xj

}N ′

j=1
covering the domain

X, whereN ′ > N . For each node of this grid, deter-
mine and store the matricesΥℓ(x

j), ℓ = 1, . . . , L.
SelectN -element setsX̃(0)

1ℓ ⊂ X̃, ℓ = 1, . . . , L
which constitute initial guesses regarding best sites
for locating sensors over the consecutive subintervals
Tℓ. They will possibly be improved in what follows.
Setk = 0.

2) Assemble the Gramian

W (k) =

L∑

ℓ=1

∑

x∈X̃
(k)
1ℓ

Υℓ(x) (29)

and compute

G(k) = −
∂Ψ(W )

∂W

∣∣∣∣
W=W (k)

. (30)

For ℓ = 1, . . . , L separately, determine

x
(k)
1ℓ = arg min

x∈X̃
(k)
1ℓ

trace
{
G(k)Υℓ(x)

}
,

x
(k)
2ℓ = arg max

x∈X̃\X̃
(k)
1ℓ

trace
{
G(k)Υℓ(x)

}
.

(31)



If trace
{
G(k)Υℓ(x

(k)
1ℓ )

}
≤ trace

{
G(k)Υℓ(x

(k)
2ℓ )

}
−η,

where0 < η ≪ 1, then setS(k)
1ℓ =

{
x

(k)
1ℓ

}
andS(k)

2ℓ ={
x

(k)
2ℓ

}
, otherwise fixS(k)

1ℓ = S
(k)
2ℓ = ∅.

3) If trace
{
G(k)Υℓ(x

(k)
1ℓ )

}
> trace

{
G(k)Υℓ(x

(k)
2ℓ )

}
− η

for all ℓ = 1, . . . , L, then STOP. Otherwise, set

X̃
(k+1)
1ℓ = (X̃

(k)
1ℓ \ S

(k)
1ℓ ) ∪ S

(k)
2ℓ . (32)

Incrementk and go to Step 2.
The integration required for determining the matrices

Υℓ(x
j) can be performed using common quadratures.

Algorithm 2 performs well and turns out to be extremely
fast despite the high dimensionality of the original problem.
Switching from the formulation in terms of seeking the
best sensor locations to that in terms of determining best
sensor densities makes it possible to avoid the complications
caused by the inherent combinatorial nature of the sensor
location problem.

Apart from the decided advantages of the approach,
two issues should be addressed as potential shortcomings.
First of all, note that one-point exchanges in Algorithm 2
being a simplified version of Algorithm 1 correspond to
the situation in which allα(k)’s are the same, while the
convergence of the proposed scheme is guaranteed only for
a sequence of properly selectedα(k)’s, cf. (27). As a result,
some minor oscillations of the quantityΨ[W (ξ(k))] may be
observed after the initial stage of a monotonic decrease in
its values. In practice, however, if the grid̃X is sufficiently
dense, the reduction in the value of the performance index
is so significant that we may hope that the obtained designs
do not deviate too much from the optimal ones.

Another delicate question concerns the memory manage-
ment, as the storage of large dense matricesΥℓ(x

j) for
all points xj , j = 1, . . . , N ′ and all time subintervalsTℓ,
ℓ = 1, . . . , L requires(N ′)3×L words. Consequently, suffi-
ciently large random access memory should be available for
the execution of the relevant program. For reasonably dense
grids and two spatial dimensions, the Matlab environment is
applicable in this respect, the more so that the powerful and
flexible Partial Differential Equation Toolbox [11] can then
be employed to generate an unstructured two-dimensional
spatial mesh and the related grid of nodes (they can be
treated as potential points at which sensors may be located)
and to form the matricesA(t) in (1) via the finite element
method (it is then used to produce an approximation to
the transition matrix through solving (5) using e.g. the
backward-difference method).

V. NUMERICAL EXAMPLE

The following numerical example serves as a vehicle
for the display of the practical performance of the solu-
tion technique presented in Section IV. Consider the two-
dimensional heat equation

∂y

∂t
− µ∆y = 0 in Ω × T , (33)
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Fig. 1. Spatial domainΩ and an unstructured mesh on it.

which describes the diffusion of heat over the time interval
T = [0, 1] in a body represented geometrically by the spatial
domainΩ, whereµ = 0.1 is the diffusion coefficient. The
form of Ω, which can represent e.g. a metal block with two
circular cracks or cavities, is given in Fig. 1.

Equation (33) is supplemented with the zero Dirichlet
boundary conditions on the outer boundaries ofΩ and
the zero Neumann conditions on both the inner circular
boundaries. Using the PDE Toolbox which provides a
powerful and flexible environment for the study and solution
of partial differential equations in MATLAB, the triangular
mesh of 243 nodes shown in Fig. 1 was built on the domain
Ω using the graphical user interface implemented in the
routinepdetool. The mesh nodes which do not lie on the
outer boundary (there were 189 such nodes) were treated as
candidates for locatingN = 90 pointwise sensors, i.e. they
formed the setX̃ in Algorithm 2. The observation horizon
T was partitioned into four subintervals

Tℓ =
[ℓ− 1

4
,
ℓ

4

)
, ℓ = 1, . . . , 4. (34)

The matricesΥℓ(x
j) for ℓ = 1, . . . , 4 andj = 1, . . . , 189

were then computed in accordance with the developments of
Section IV-B. In particular, approximation of the integrals
(9) was performed by dividing the intervalTℓ into seven
equal subintervals and then using the trapezoidal rule. The
ODE (5) was integrated by fixing the time step∆t = 1/28
and employing the backward difference method.

At this step, the stiffness and mass matrices result-
ing from applying the method of lines semidiscretization
were needed. They were therefore assembled using the
procedureassempde. Computation of theΥℓ(x

j)’s took
approximately 90 s on a Pentium IV 2.40 GHz computer
equipped with 524 MB RAM and running Windows 2000.
The initial selection of sensor configurations was performed
at random several times so as to avoid getting stuck in
a local minimum. Algorithm 2 was then run for each
such starting configuration for the performance indices
Ψ1[W ] = − ln det(W ) and Ψ2[W ] = − trace(W ). For
comparison, optimal locations of stationary sensors were
also determined using the same technique (i.e. by setting



(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 2. Optimal selection of consecutive sensor configurations for
the criteria Ψ1[W ] = − ln det(W ) (panels (a)–(d)) andΨ2[W ] =
− trace(W ) (panels (e)–(h)).

(a) (b)

Fig. 3. Optimal selection of stationary sensor locations forthe criteria
Ψ1[W ] = − ln det(W ) (panel (a)) andΨ2[W ] = − trace(W ) (panel
(b)).

L = 1). Convergence of the algorithm is rapid, as in the
most time-consuming case of the criterionΨ1 one run took
no more than three minutes. The results are shown in Figs. 2
and 3.

As was expected, major improvements are observed when
scanning sensors are applied, since the ratios of the best
absolute values for the scanning case to those for the station-
ary case equal 1.242 and 1.116 for the criteriaΨ1[W ] and
Ψ2[W ], respectively. In applications,Ψ2[W ] is often pre-
ferred, as its linearity with respect to the contributions from
different sensors leads to extremely simple computations.
Note, however, that this apparent advantage is illusory, since
the resulting Gramian is close to singularity, which may
cause some problems with the system observability. But
this phenomenon is rather obvious, since a larger trace of
a matrix does not necessarily imply that the matrix is non-
singular. This drawback is eliminated through the use of the
determinant of the Gramian as the performance index.

As for the interpretation of the produced solution, the
scanning sensors are to occupy positions which give best
information about the initial state. As time elapses, the
candidate points close to the outer boundary provide less
relevant information since the state at them is mostly
determined by the Dirichlet boundary conditions. Thus,
intuitively, the sensors should tend toward the center ofΩ,
Such a behavior is exhibited by the solution for the criterion
Ψ1[W ], which constitutes an additional argument for its
superiority overΨ2[W ].

VI. CONCLUSIONS

The paper presents a new approach to the problem of
scanning sensor location for linear distributed parameter
dynamic systems based on various criteria defined on the
observability Gramian. A close connection was established
between this problem and modern optimum experimental
design theory. The main idea is to operate on the density of
sensors per unit area instead of the positions of individual
sensors. It was shown that the optimal solutions obey certain
minimax properties that lead to a rapidly convergent algo-
rithm. The technique can be extended to Kalman filtering
and robust control. A version suitable for on-line control
architectures is currently developed.
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