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Abstract— Direct transcription is a popular way to solve
the complex optimal control problems that arise in industry.
With a direct transcription approach, the problem is fully
discretized and then the discrete problem is solved numerically.
Recently it has been shown that the theory for direct tran-
scription differs in several key ways from the theory for other
approaches. These differences have implications for numerical
algorithms and the interpretation of solutions to practical
problems. This paper examines some of those differences.

I. INTRODUCTION

Optimal control problems arise in essentially all areas. In
practical applications there are almost always a number of
constraints. These constraints can arise either on physical
grounds or from design or operating restrictions. The con-
straints can be equalities or inequalities and can involve the
control, the state, or both.

A number of approaches have been developed to numer-
ically solve optimal control problems. Methods that rely on
the necessary conditions in some form can be very useful
on particular problems. However, these methods suffer from
the fact that adding new constraints can require deriving
new necessary conditions. Also, in many complex problems
actually getting the necessary conditions in a useful form
can be a very difficult task. For example, there can be
a number of constraints going active and inactive with a
complex switching structure [2]. It may not be possible
to get even a reliable estimate on the number of switches
much less which constraints they involve. We shall point
out another difficulty later in this paper.

One of the alternatives that is frequently used in industry
is direct transcription because it is often the easiest way
to formulate complex problems [1]. The control problem
is fully discretized in time (and in space if it is a PDE
control problem), and then the resulting finite dimensional
optimization problem is passed to a nonlinear programming
(NLP) code. Upon solution of the NLP problem, the solu-
tion is evaluated and if found wanting, the temporal mesh
is refined and the new larger NLP problem is solved. While
simply described, a direct transcription code is actually
quite complex because of the need to have sophisticated
mesh refinement algorithms, state of the art NLP solvers,
and the exploitation of sparse matrix and other structures.
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Over the last decade there has been a considerable
amount of research on direct methods for the solution of
optimal control problems including those that arise from
the control of partial differential equations (PDEs). We note
here only [9], [10], [11], [19], [20], [24] and [15], [16].
There has also been considerable work on the convergence
of the discretizations used when constraints are present, see
for example, [17], [18]. This research has been important in
advancing the understanding and implementation of direct
transcription algorithms. Our emphasis here is somewhat
different. We will be discussing how the theory from the
areas of optimal control and the numerical solution of
constrained differential equations (DAEs) requires careful,
and in some cases a different, interpretation when applied
to direct transcription methods.

For the last several years we have been working on
improvements [5], [7], [6], [8] of Boeing’s optimal control
software project, SOCS (Sparse Optimal Control Software)
[4]. During this effort several things have become appar-
ent. First, provided one has sophisticated mesh refinement
strategies and state of the art NLP solvers and sparse
software, direct transcription works very well on a wide
variety of problems. It provides solutions of many problems
that would be hard to solve by other methods. Secondly,
theory that fully explains this is lacking. Thirdly, some
of the existing theory for optimal control needs to be
modified when talking about direct transcription and failure
to take this into account can lead to wrongful analysis and
misinterpretation of results. This third point is the focus of
this paper. While our observations come from working with
SOCS, they apply to any direct transcription code and in
that sense are fully general.

Section 2 briefly summarizes some very recent results
which are probably new to the ACC audience. Section
3 presents new observations and new computational ex-
perience with a PDE control problem. To simplify the
discussion we will refer to approaches other than direct
transcription as indirect methods. Portions of this paper
appear in the technical report [3].

II. THE DISCRETIZATION NEED NOT “CONVERGE”

A differential algebraic equation (DAE) is a mixed sys-
tem of differential and algebraic equations

F (x′, x, t, u) = 0

where the Jacobian of F with respect to x′ is identically
singular. Often physical models themselves are DAEs [12].



However, even if the original model is explicit, the addition
or activation of constraints means that DAE theory will play
a role. While space prohibits a review of DAE theory here,
we note that an integer called the index measures how far
the differential equation is from being an explicit differential
equation. An ordinary differential equation (ODE) is index
zero. For simple problems, the index is the number of
differentiations needed to produce an ODE.

SOCS has a number of discretizations available. The
default is to use the Lobatto IIIA formulas trapezoid (TR)
and Hermite-Simpson (HS) which are second and fourth
order Runge-Kutta methods. Typically SOCS begins with
TR since experience has shown that it is usually easier to
then get a feasible solution, and then uses HS. However,
sometimes it is necessary to start with HS [6]. Theoretical
results exist for these discretization when applied to DAEs
[12], [21], [23]. In general, the results say that the index
needs to be no more than three, and in the case of TR it
needs to be two or less. The equations also always need to
have a special structure if the index is greater than one.

If the DAE is arising because of equality constraints,
then both direct and indirect approaches require that the
discretization be able to integrate the constrained dynamics.
As a consequence both approaches are limited to low
index (less than or equal to three), and SOCS is limited
theoretically to index two. In practice, SOCS is limited to
index one because of the need to find feasible solutions.
Some direct and indirect methods have been successfully
applied to index three mechanical systems by utilizing
specially designed integrators and exploiting the special
structure of the equations of motion.

With state inequality constraints, the situation is com-
pletely different. When a constraint is active, the indirect
method still needs to be able to solve the resulting DAE
numerically on the interval the constraint is active on. Thus
its discretization must be able to integrate that DAE. Sur-
prisingly this is not true for direct transcription approaches.
We have observed them successfully solve a number of
optimal control problems where the discretization was not
convergent on the DAE that resulted when the constraint
was active.

In an indirect method the failure of the discretization
occurs in part because small errors get amplified as the
integration proceeds. That is, the discretization error growth
equation is unstable. However, in a direct approach the opti-
mizer can choose to make small deviations from the active
inequality constraint. The instability of the discretization
means that this small perturbation can cancel out the large
error growth. The result is that the optimization algorithm
can get a good approximation of the optimal solution even
though the discretization is not convergent in the classical
sense. Thus the interpretation and consequences of the
unstable error growth equation are reversed when working
with direct transcription methods instead of indirect meth-

ods.
This behavior was pointed out in [14], with convergence

results in [7]. It should be pointed out that this analysis
does not use the discrete Lagrange multipliers since we have
observed that they may not converge even though SOCS is
finding the solution correctly.

In the example presented in the next section we will see
that SOCS solves problems with inequality constraints of
order over 20. If such an inequality constraint is active then
the resulting DAE would have index at least 21. Yet there is
no known discretization that is practical or convergent for
DAEs of index greater than 4! Clearly the standard DAE
theory is not correctly describing what is happening with
inequality constraints.

III. THE NECESSARY CONDITIONS CAN BE

MISINTERPRETED

In this section we consider a test problem which is a
boundary controlled heat equation with an inequality con-
straint on the temperature profile. The discretized version
of this problem leads to an optimal control problem with an
inequality constraint whose order increases with the fineness
of the spatial discretization.

Consider the boundary control of the one dimensional
heat equation such as an insulated metal rod. u(x, t) is the
temperature at point x at time t. The spatial and temporal
intervals are 0 ≤ x ≤ π, and 0 ≤ t ≤ 5 respectively. The
control objective is to keep the temperature profile close to
zero but still have the temperature profile stay above a time
varying profile g. The controls are the temperatures at the
ends of the rod. Our control problem is to find state u and
control v0, vπ to minimize J where

J(u, v0, vπ) =
∫ π

0

∫ 5

0

u(x, t)2dxdt

+
∫ 5

0

q1v
2
0(t) + q2v

2
π(t)dt (1)

subject to the constraints

ut = uxx (2a)

u(0, x) = u0(x) (2b)

u(t, 0) = v0(t) (2c)

u(t, π) = vπ(t) (2d)

u(x, t) ≥ g(x, t) (2e)

For fixed scalars c, a, we will take g to be

g(x, t, a, c) = c sinx sin
(

πt

5

)
− a (3)

If the values of a, c are clear from the discussion, we shall
omit them from the notation.

As is common practice, the PDE control problem will
be solved by discretizing using the method of lines and



then applying an ODE optimization package. Let N be a
positive integer and xi = i π

N . This partitions the x interval
into N equal intervals and uses N + 1 grid points. Let
ui(t) = u(t, xi) for i = 1, . . . N − 1 be the value of the
temperature at time t and position xi. The values of u at the
endpoints x0, xN are take to be the control variables; v0 =
u(0, t), vπ = u(π, t). We retain the temporal derivative ut

in (2) and approximate uxx using centered differences. Let
δ = π

N .
The original constraints (2) then become the inequality

constrained ODE

u′
1 =

1
δ2

(u2 − 2u1 + v0) (4a)

u′
i =

1
δ2

(ui+1 − 2ui + ui−1), for

2 ≤ i ≤ N − 2 (4b)

u′
N−1 =

1
δ2

(vπ − 2uN−1 + uN−2) (4c)

ui(t) ≥ g(xi, t) (4d)

The x integration in the original cost (1) is approximated
by the trapezoid rule so that the new cost is

δ

(∫ 5

0

v2
0(t) + v2

π(t) +
N−1∑
i=1

2ui(t)2 dt

)

+
∫ 5

0

q1v
2
0(t) + q2v

2
π(t) dt (5)

The control problem (4) with cost (5) has parameters
a, c, N, qi. Let qi = qi + δ.

We take q1 = q2 = 10−3 which is typical of the
situation where the control weight is really for numerical
regularization in the PDE problem and we are using a fine
spatial mesh. We also take the initial temperature profile to
be zero, u(0, x) = 0. This problem has a very interesting
feature. We have solved this problem for a variety of values
of N and a, c. We assume that N is even since it simplifies
the discussion but the numerical results are similar for
N odd. The only difference is that the constraints are
active at two spatial points if N is odd. We initially take
c = 1, a = 0.7. Then a typical solution profile for u is given
in Figure 1. The controls are in Figure 2. The controls differ
by very little as N changes once N > 5.

Since the problem is symmetric with respect to x, so
is the solution. Examining the numerical solutions, which
were computed to an accuracy of 10−7, the only place the
constraints were active is at xN/2 and then only for some ti.
Figure 3 graphs the grid points where the constraints were
active and is typical of what one sees for different N .

If the constraint (4d) is active, (4) is a DAE in vi, ui and
the index is N

2 +1. Equivalently, the order of the constraint
is N

2 and goes to infinity as N does. We have solved this
problem with N up to 40. Note that this means that we are
solving a problem with order 20 inequality constraint and
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Fig. 1. Optimal state u(x, t) for problem (1),(2) using approximation
(4),(5) with N = 10.
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Fig. 2. Optimal control v for approximation (4),(5) with N = 10 and
N = 31.

the index 21 DAE that results if the constraint is active on
an interval.

1) What is an arc?: Figures 4 and 5 show the plot of
the constraint surface as a function of x, t and the solution
at xN/2. Figure 4 shows the entire constraint surface and
xN/2. Figure 5 shows the N = 10 case just at xN/2. Both
figures seem to show a smooth transition onto the constraint
surface, riding the surface, and then a departure. The graphs
appear the same for other values of N greater than three.

However, when these results were shown at a workshop,
it was pointed out that the computational answers might
not be correct because there was a classical result in the
literature which said that under certain mild appearing
technical assumptions, which hold for this problem, that
the solution of an odd order state constrained problem of
order 3 or higher cannot ride a constraint over a nonzero
length interval [22]. The only possibility is one or more
touch and goes. That is, the intervals a constraint is active
have zero length. Subsequently, this problem was solved by
a very different approach by a different group. They got
answers similar to ours.
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Fig. 3. Points (xi, ti) where the constraints were active for N = 16
when solving problem (4),(5).

Fig. 4. uN/2(t) and the constraint surface with N = 10 when solving
(4),(5). Dashed lines indicate apparent ends of the constraint arc.

It is important to understand what is happening numeri-
cally on this problem in order to interpret the computational
result. While Figures 4 and 5 seem to show an interval on
which the constraint is active we observe in Figure 3 that
there is a small gap which is several mesh points wide near
each end. This is typical. In order to examine this more
carefully we plot the deviation from the constraint s(t)
normalized to the square root of machine precision ε which
is the SOCS tolerance. That is, we plot min{s(t)/ε, 1}.
This expands the deviation within one magnitude of the
precision. The result is in Figure 6 for several values of N .

What we see in Figure 6 is apparently a riding of the
constraint over an interval containing [2, 3] along with one
or two small touch and goes before and after the interval
with the touch and goes not being visible to the naked
eye but showing up numerically. The touch and goes are
indicated by the vertical black half lines in the shaded area.

But does this tell the full story? Consider Figure 7 which
shows a slightly wider window. It depicts the deviation
from the constraint for two values of N . The graph for
N = 31 has been displaced upward to make comparison
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Fig. 5. uN/2(t) and the constraint surface for N = 10 when solving
problem (4),(5).

Fig. 6. Normalized deviation from the constraint for several N when
solving problem (4),(5). Vertical axis scale is in terms of multiples of
10−7.

easier. The touch and goes now appear as the sharp peaks
at either end. We see that the peaks are very small, of
height only about 10−6. However, what is of equal interest
is the behavior in between. We see that the two curves look
like noisy copies of the same curve. For this particular set
of parameters, the problem appears to have an even finer
structure. However, the allowable tolerances in SOCS do not
permit us to directly resolve this behavior by calculating to
higher accuracy.

We are in the process of examining this problem more
carefully but what we know now is the following.

It is true that the analytical solution does not ride the
constraint just as the theory predicts. However, the theoret-
ical deviates from the constraint by less than the accuracy
to which the problem is being solved. The SOCS solution
is correct to the very high accuracy that is requested which
is 10−7.

Another way to view the ill conditioning of this problem
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Fig. 7. Constraint error for N = 10 and N = 31 when solving problem
(4),(5).

is to observe that for this example the theory shows there
is not an active constraint arc. Yet there is an interval on
which the solution state is within 10−7 of the constraint.
Thus, for example, if N = 20, the solution of the optimal
control probelm is very close to the solution of an index
21 DAE and the numerical solution is very close to solving
that index 21 DAE even though ithe discretization would be
wildly divergent if actually applied as a integrator to that
index 21 DAE.

Note also that if one were to try and use the necessary
conditions to define the problem, then one would have to
add a large number of unknown activation times. Then one
would get an extremely ill conditioned problem to solve.
It is also not clear how many of the tiny touch and goes
actually exist. In this situation we see that it is advantageous
to not have to strictly adhere to the necessary conditions.
Direct transcription finds a solution to the desired accuracy
which most would agree is the behavior that one would
see physically. In some sense, direct transcription relaxes
the problem and finds a solution accurate up to the level
requested thereby avoiding having to deal with some of the
technical issues posed by the necessary conditions.
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