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Abstract 

This paper focuses on a detailed description of a control 
technique, which has been successfully used in several 
advanced flight control systems research projects over the 
past decade. The technique, called Stochastically Optimal 
Feedforward and Feedback Technique (SOFFT), directly 
descends from optimal control, and in particular from 
Explicit Model Following Control (EMFC). Unlike the 
most used model following techniques, in SOFFT the 
feedforward and feedback control laws are designed 
independently of one another. Moreover, this technique 
relies on different levels of plant models, specifically, a 
simple plant model is used for the synthesis of the feedback  
control law, and another plant model, together with a 
“command” model, are used in the synthesis of the 
feedforward control laws. It is important to notice that the 
controller in its final form is nonlinear in nature. This is 
because the matrices that compose the plant and command 
models are constantly updated as the aircraft moves 
throughout the flight envelope, and at least two Algebraic 
Riccati Equations (ARE) are solved in real time to compute 
the feedback and feedforward gains. 
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1 Introduction 

While the feedback control problem has been studied 
extensively, the feedforward control problem has received 
generally less attention [1]. In some optimal control 
techniques, such as IMFC and EMFC [2], the feedforward 

and feedback control laws are obtained by the optimization 
of a single criterion in which the performance of the 
feedforward and feedback control laws are jointly 
evaluated. This generally places conflicting demands on the 
control law, making it difficult to achieve at the same time 
all the objectives, such as, good closed loop stability 
characteristics (damping and bandwidth), attenuation of 
high frequency disturbances, desired response to input 
command, robustness to low frequency uncertainties and 
unmodeled nonlinearities. In other words, the optimization 
of a single criterion results in a compromise between the 
performance of the feedforward and the feedback 
components of the control system. As an example, when the 
cost function is optimized to provide good tracking 
characteristics, the controller usually has a high bandwidth 
with large feedback gains and poor noise attenuation [3]. 
The SOFFT approach [3,4,5] is directly related to Explicit 
Model Following Control, but unlike EMFC, it decouples 
the feedforward and feedback control design process by 
separating the feedforward and feedback control objectives. 
As a result, compromise between these two part of the 
control system is no longer necessary. In particular, control 
objectives that relate the system response to input 
commands are mainly met by the feedforward controller, 
while objectives that relate closed loop damping and 
disturbance rejection are met by the feedback controller. 
A different set of problems is raised by the fact that the 
system to be controlled (i.e. an high performance aircraft) is 
definitely nonlinear over the full operational range (i.e. 
flight envelope). Typically such a system cannot be 
controlled with satisfactory performance by a single linear 
controller. 
During the last decade, a considerable research effort 
allowed the control community to figure out several ways 
of dealing with this situation. While boundaries between the 
different conceptual control categories tend to disappear as 
the research goes on, it can be said that the main approaches 
towards  the control of nonlinear systems nowadays are: 
Inversion Based Control [6], Adaptive control [7], Gain 
Scheduling Control [8], and Optimal Control [2]. 
Although only recently Gain Scheduling control was given 
a rigorous framework, from a practical standpoint, it has 
definitely been the most used approach when dealing with 



 

nonlinear uncertain systems. Among the reasons for this 
success are its conceptual simplicity, the (apparent) 
possibility of inheriting a well established framework from 
the Linear Multivariable Control theory, and, last but not 
least, a long list of problems solved in the “real world” [8]. 
The control approach described in this paper can be safely 
described as Gain Scheduling since as the aircraft moves 
throughout the flight envelope, the matrices describing its 
linearized (local) model are continuously updated, and two 
ARE are solved to yield the most updated control gains. 
When the matrices of the linearized aircraft model are 
obtained from an identification process [9], the overall 
control system must be viewed as an Adaptive Control 
system. 
NASA Langley sponsored the initial work on this approach, 
in 1992 [3]. As a result a variable gain SOFFT 
methodology was used to design a control system for the 
F/A-18 HARV (High Angle of Attack Research Vehicle) 
Aircraft which displayed excellent performance 
characteristics over the whole flight envelope both within 
simulation and flight testing [4]. Several extension were 
later investigated [5].  
From 1995 to 1999 a NASA-Sponsored project named F-15 
IFCS (Intelligent Flight Control System) was conducted  
by McDonnell-Douglas Aerospace (MDA) under the 
supervision of NASA Ames and Dryden. One goal of the 
project was the development and flight testing of a robust 
flight control system for the F15-ACTIVE aircraft (which is 
augmented with canards and thrust vectoring). The SOFFT 
was one of the investigated techniques along with a 
Setpoint Regulator and a Robust Servo Controller. After a 
detailed comparison, the SOFFT was chosen for 
implementation [5]. Flight tests conducted in 1999 showed 
that the SOFFT outperformed the previous existing 
controllers. 
Within the prosecution of the above project, an approximate 
nonlinear model of the F15 dynamics has been built at 
WVU using a simulation code freely distributed for an 
academic design competition sponsored within the activities 
of the 1991 AIAA GNC conference [9].  The 
Matlab/Simulink based model has then been imported 
within the Flight Dynamics and Control (FDC) Toolbox 
providing the computational environment for this study.  
On the basis of the available reports on the SOFFT 
technique from NASA and Boeing, a detailed Simulink 
implementation of the SOFFT was built for the above 
environment. This implementation has been used as an 
example throughout the paper. 
 

2 Background : EMFC 

The Explicit Model Following Control solves the general 
tracking problem using the Linear Quadratic Regulator 
(LQR) approach. This amounts to finding the closed loop 
control law that minimizes the error between the dynamics 
of the plant and a reference model: 
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where Ax Bx Cx Dx Hx is the plant model and Az Bz Cz Dz Hz 
is a “reference” model. Since the reference model is 
explicitly introduced in the equations the feedforward part 
of the resulting controller includes this model. The control 
input can indeed be expressed as: 
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where P is the solution of the Riccati equation.  Due to the 
special structure of the problem, P is subject to a partition 
into two Riccati equations plus a Lyapunov equation. 
Since the state and input variables in the problem usually 
represent deviations from a reference trajectory: 
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and since the “trajectory” is often a set point condition: 
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by imposing also the constraint: * *
x zH x H z=  we have: 
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So the final control structure has two feedforward matrices 
and one feedback matrix. 
 

3 SOFFT : Design Process 

In the SOFFT approach, the design of the feedforward and 
feedback components is separated into two different stages.  
A peculiar characteristic of this approach is the fact that , 
for the design of the feedforward part alone, two models are 
used: a command model and a reference plant model. The 
reference plant model is then forced to follow the signals 
coming from the command model, by designing a control 
law that minimizes the error between the two models.  
The feedback part then addresses the problem of forcing the 
real plant to follow the behavior of the reference plant 
model. This two stages process could be viewed as a simple 
way to solve the linear servomechanism problem [1]. 
 



 

3.1 FF Design using EMFC 

Since the aim of the SOFFT feedforward design is to 
minimize the error between the dynamics of command 
model and reference plant model, the EMFC is a very 
appropriate framework to be used. Moreover, since the 
feedforward part will be implemented as an unique digital 
block, there is no need to worry about noise attenuation or 
large feedback gains. The cost function can then be chosen 
just to provide good tracking characteristics. 
So, letting  Ax Bx Cx Dx Hx be the reference plant model and 
Az Bz Cz Dz Hz the “command” model, if we follow the steps 
from (1) to (5) then we come up with three feedforward 
matrices Ku Kz Kx that allow the reference plant model to 
follow the behavior of the command model. 
This way of designing the feedforward gains requires the 
solution of an ARE, or, exploiting the structure of the 
problem, two ARE’s and one Lyapunov equation. If this is 
to be done in real time, the computational cost can easily 
become prohibitive. 
 

3.2 FF Design using Perfect Tracking 

Another way of computing the feedforward gains descends 
directly from the Dynamic Inversion control approaches. 
Indeed, if we define the error to be minimized as: 
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by imposing the constraint: * *

x zH x H z=  we already have 

that the error is zero in the “set point condition”. A way to 
ensure that the error remains zero is to design a control law 
that forces the time derivative of the error to remain zero:  
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So, if HxBx is full column rank, (as is often the case when 
the dimension of e is less than or equal to the dimension of 
u) then the control law: 
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is such that the error remains at zero. In some cases, 
(minimum phase plants with HxBx is full column rank) this 
control law is the limit case of an EMFC design with a 
vanishing R in (1). 
From (8), adopting negative feedback convention we have 
the three feedforward matrix gains: 
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If HB is square, as is often the case, then the pseudo-inverse 
becomes the standard inverse. In any case, the solution of 
the Riccati equation is avoided. This is exactly the reason 
that lead to the adoption of this method in the IFCS [5].  
The price to pay for this gain in computational resources is 
that the perfect tracking approach, as any inverting control 
law, works only for minimum phase plants. Indeed, a closer 
look reveals that the error is kept equal to zero by moving 
the poles of the feedforward dynamics to the zeros of the 
following model: 
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So, if the reference plant model (which in our case is time 
varying since Ax Bx Cx Dx Hx are a function of the state) 
happens to be such that the system in (10) is non-minimum 
phase, then the whole feedforward part will be unstable.  
Although this instability was never observed in simulation, 
it would be very desirable to exclude such a case before 
actually implementing the control laws. Perhaps a m-
analysis with real structured uncertainties over Ax Bx Cx Dx 
Hx could pinpoint if this instability of the feedforward part 
can actually take place. 
 

3.3 Feedback Design 

The design of the feedback control is performed 
independently from the feedforward control design by using 
a standard output feedback LQR synthesis on the feedback 
plant model A,B,C,D : 
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where the input, state, and output variables are deviations 
from a reference trajectory u* x* y* , which in this case is 
supplied by the feedforward part, and in particular by the 
input state and output of the “reference” plant model: 
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The following ARE involving the matrices A,B,C,D,Q,R is 
solved: 
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The solution ‘X’ is used to calculate the following state 
feedback matrix: 
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since we have access only to the output vector y rather than 
to the state x , we have to build an equivalent output 
feedback matrix, this can be done with the following 
formula:  
 

( - )yK K C DK +=  (15) 

 
Assuming that C-DK is full column rank, u = -Kyy is 
equivalent to u = -Kx. As a matter of fact, equation (15) is 
obtained by substituting -Kx to u into the equation  
u = -Ky(Cx+Du), eliminating x, and solving for Ky. 
 

3.4 General Structure 

The SOFFT general structure that results from the described 
design process is the one shown in the picture below, with 
one feedback matrix and three feedforward matrices: 
 

 
 Figure 1 

 
4 Nonlinear Extension 

As pointed out in the introduction, a single linear controller 
can hardly cope with the nonlinear behavior exhibited by an 
aircraft over the whole flight envelope. Adaptation was the 
chosen way to deal with this situation, infact, one of the 
main goal of the F15-IFCS project was the development of 
a flight control concept involving the use of parameter 
identification (PID) algorithms able to estimate in real-time 
the aerodynamic coefficients of the aircraft. 
So, as the aircraft moves throughout the flight envelope, the 
non-dimensional stability and control derivatives are 
estimated. If the estimation satisfies certain “quality 
requirements” [9] then these parameters are used to 
compute new values for most of the matrices that compose 
the models used both in the feedback and in the 
feedforward part. Then the feedforward gains Ku Kz Kx are 
computed following the perfect tracking procedure, and the 
feedback matrix Ky is computed by solving an ARE. 

As a result, another (inherently nonlinear) feedback loop 
appears in the control system, which can be easily 
visualized by the blue bottom links in the picture below:  

 
 

 Figure 2 
 
Even in the easier case for which the matrices of the 
controller are scheduled directly from the state variables, as 
it was for the F-18 HARV, the stability of such a system 
cannot be easily guaranteed [8]. Since in our case the 
feedback matrices are the result of an estimation process, 
(so a lot more state variables enters in the description of the 
system), followed by rearrangement into state space form, 
inversions (feedforward) and ARE solution (feedback), it 
definitely can be said that analytical tools like the 
Lyapunov stability criteria become useless, and the system 
cannot be guaranteed to be stable or even bounded at least 
with the tools presently available. 
However, it is also fair to say that if the dynamics of the 
“nonlinear feedback loop” evidenced by the bottom links in 
figure 2, is considerably slower than the dynamics of the 
“linear feedback loop”, and if the PID algorithm works well 
and yields linear matrices that are (at least locally) a 
reasonable representation of the true system dynamics, then 
one can expect that the stability and performance 
proprieties of the typical local linear controller should carry 
over to the overall nonlinear closed loop system [8]. 
 
The next sections will be devoted to a more detailed 
description of the design of the actual lateral and 
longitudinal controllers. 
 

5 Example: Longitudinal Design 

The command models were designed to emulate the 
conventional F15 S/MTD command models. For the 
longitudinal channel, this second order filter was used:  
 

2

22

( )

2
lon sp

cmd lonstk

sp sp sp

K s L
q

s s

αω
δ

ζ ω ω
+

=
+ +

 (16) 

 
In state space form (Az, Bz, Hz) : 
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where wsp Klon La are scheduled with mach, alpha, altitude 
and the derivative Cza, and xsp =  0.8. 
The longitudinal plant model (Ax Bx Cx Dx Hx) has a one 
input, 7 states, 2 outputs : 
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This model includes the short term F15 dynamics, the 
canard actuator model, the canard scheduling with the 
attack angle, the attack angle sensor dynamics, and the 
normal acceleration output equation. Hx is the row vector 
[0 1]. For what concern the numerical value of the 
parameters, wc  = 43 rad/sec, xc = 0.4, wc1 = 66 rad/sec, τf  
= 20 sec, τp = 40 sec and Kc1 is a function of mach, alpha, 
and altitude.  
Rearranging the command and plant models in state space 
format (at each step) the 3 feedforward control matrices Kx, 
Kz and Ku using the perfect tracking approach formulas as 
indicated in the previous sections. For the longitudinal case 
HxBx is scalar; thus the (pseudo) inverse is trivial. 
The plant model for the feedback design is a simplified 
version of the plant used for the feedforward design, where 
all of the dynamics relative to the alpha sensor and canard 
actuators are neglected, the canard schedule with alpha is 
approximated by a constant gain, and the integral of q is 
considered as a state in order to have zero steady state error 
in the q regulation: 
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Given an unitary R matrix and a Q matrix such as: 
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where kq and Qnz are scheduled respectively with dynamic 
pressure and alpha, it is possible to compute (at each step) 
the feedback control as indicated in the previous sections 
 

6 Example : Lateral Design 

The command models used for the lateral-directional 
dynamics are:  
 
1) roll rate command from lateral stick: 
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2) beta and yaw rate command from pedal: 
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where beta and r are used to generate a “total directional 
command” Ycmd: 
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In state space form (Az, Bz)  
 

2

2

0 1 0

2 0

0 0 1/

0 0

0

/ 0

dr dr dr

r

latstk

dr dir
pedal

lat r

p p

K

K

β β
β ω ζ ω β

τ

δ
ω

δ
τ

     
     = − − +     
     −    

 
  
      

 (24) 

 
Since Kβcmd = 1, Krscmd = -0.2, Yv = Vt/Yβ then the Hz matrix 
equation reduces to: 
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The lateral-directional plant model (Ax, Bx, Cx, Dx) has 2 
inputs, 3 states, and 3 outputs consisting in the dutch roll 
dynamics of the plant with mixed inputs. The Hx matrix 
equation is instead: 
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As in the previous cases, the 3 feedforward control matrices 
were calculated using the ‘perfect tracking’ approach 
formulas. This time HxBx is a 2 by 2 matrix thus an inverse 
must be calculated at each step.For what concerns the 
feedback design, R is still unitary, while Q is chosen as: 
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As for the longitudinal case the feedback control is 
computed at each time step using the formulas in section 4. 
 

7 Example : Simulink Implementation 

The Simulink implementation of the full blown nonlinear 
controller was challenging for two main reasons. First of 
since at the time only Matlab 5.3 was available, a complete 
matrix support for Simulink had to be built. Second, an 
important requirement was that the code had to be readily 
“autocodable”, thus excluding any possible use of the 
Matlab interpreter to solve matrix equations (i.e. ARE). The 
following picture shows the upper level diagram of the 
longitudinal SOFFT. 
 

 
 Figure 3 
 

8 Example : Simulation Results 

As an example of the level of tracking that this kind of 
controllers can provide, the response to a doublet in the 
lateral stick channel is shown in figure 4. 

 
 Figure 4 

 
9 Conclusions 

A technique successfully used for the control of two high 
performance aircraft over the last decade has been 
described in detail throughout this paper. The peculiarities 
of this technique were discussed, and examples of its direct 
application were given. 
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