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Abstract— The present research work proposes a new ap-
proach to the problem of quantitatively characterizing the long-
term dynamic behavior of nonlinear discrete-time processes.
The formulation of the problem of interest can be naturally
realized through a system of nonlinear functional equations
(NFEs), for which a rather general set of conditions for the
existence and uniqueness of a locally analytic solution is derived.
The solution to the system of NFEs is then proven to represent
a locally analytic invariant manifold for the nonlinear discrete-
time process of interest. The local analyticity property of the
invariant manifold map enables the development of a series
solution method for the above system of NFEs, which can
be easily implemented using MAPLE. Under a certain set of
conditions, it is shown that the invariant manifold attracts
all system trajectories, and therefore, the long-term dynamic
behavior is determined through the restriction of the discrete-
time process dynamics on the invariant manifold.

I. I NTRODUCTION

Most processes exhibit nonlinear behavior and are typ-
ically modeled by systems of nonlinear ordinary (ODEs)
or partial differential equations (PDEs) in the continuous-
time domain, or systems of nonlinear difference equations
(DEs) in the discrete-time domain [2]. Despite the fact that
the analysis of the dynamic behavior of linear processes
can be performed with rigor and in a thorough manner, it
still remains a rather challenging task for nonlinear pro-
cesses [15]. Among the most notable research objectives
in nonlinear process dynamic analysis is certainly the ex-
istence of invariant manifolds and the associated problem
of finding/computing them. Notice, that the problem under
consideration has been historically motivated by efforts to
develop systematic methods for the simplification of the
analysis of the behavior of nonlinear dynamical systems
by effectively reducing the dimensionality of the original
problem [3,6,8,10,12,14]. Within the above framework, the
restriction of the system dynamics on the invariant manifold
results in a lower-order dynamic model, and therefore, the
latter essentially determines the system’s long-term asymp-
totic behavior, since the original transition or approach to
the manifold can be proven to be a rather fast one under
certain conditions [15]. Furthermore, the study of invariant

†Department of Chemical Engineering, Worcester Polytechnic Institute,
Worcester, MA 01609, USA,nikolas@wpi.edu
‡Department of Chemical and Biochemical Engineering, Univer-

sity of Maryland, Baltimore County, Baltimore, MD 21250, USA,
tgood@umbc.edu

manifolds has been primarily conducted in connection with
the existence problem of (un)stable and center manifolds,
stability, as well as bifurcation analysis [15]. However, it
should be pointed out, that the classical stable and center
manifold theory presupposes the successful transformation
of the original nonlinear dynamical system into one whose
Jacobian matrix of the linearized system around the equi-
librium point of interest is in Jordan canonical form, and
the corresponding stable, unstable and center eigenmodes
appear as decoupled (the state space of interest being the
direct sum of the stable, unstable and center eigenspaces)
[15]. The latter requirement, while always achievable through
a coordinate transformation, may result in a computation-
ally demanding numerical problem particularly for higher-
order systems, such as the ones obtained from discretization
or modal decomposition tehnniques applied to distributed
parameter systems [2]. Moreover, a conceptually similar
geometric notion of a positively invariant finite-dimensional
manifold was introduced in the study of the dynamic model
reduction problem for parabolic PDE systems [2]. Finally,
research results on symmetry-induced generalized invariants
for distributed parameter systems were reported in [11].

The present research work proposes a new approach to
the problem of quantitatively characterizing the long-term
dynamic behavior of nonlinear discrete-time processes. The
formulation of the problem of interest is realized through a
system of nonlinear functional equations (NFEs), for which
a rather general set of conditions for solvability is derived.
In particular, the aforementioned set of conditions guarantees
the existence and uniqueness of a locally analytic solution,
which is then proven to be a locally analytic invariant mani-
fold map for the nonlinear discrete-time process considered.
It should be pointed out, that within the proposed frame-
work of analysis, the formulation of the problem of interest
does not presuppose the special structure of the Jacobian
eigenspace of the linearized system required in the classical
stable and center manifold theory, thus effectively overcom-
ing the associated problems of computing the requisite trans-
formation into the Jordan canonical form with the explicit
decoupling of the stable, unstable and center eigenspaces, as
well as the numerical solution to the associated eigenstructure
problem [15]. Furthermore, the local analyticity property of
the invariant manifold map enables the development of a
series solution method that can be easily implemented using
MAPLE. Under a certain set of conditions, it can be shown
that the invariant manifold attracts all system trajectories,
and therefore, the long-term dynamic behavior is calculated



through the restriction of the discrete-time process dynamics
on the above invariant manifold.

II. M ATHEMATICAL PRELIMINARIES

Nonlinear discrete-time dynamic processes are considered:

x(k + 1) = F (x(k), w(k)) (1)

which are driven by the states of an exogeneous nonlinear
discrete-time autonomous dynamical system:

w(k + 1) = G(w(k)) (2)

wherek ∈ N is the discrete-time index andN the set of
positive integers,x ∈ Un ⊂ Rn is the process state vector,
w ∈ Um ⊂ Rm is the state vector associated with dynamics
(2), andUn, Um are open subsets of the Euclidean spacesRn

andRm respectively. Notice that the above dynamic process
description may represent a process whose dynamics (1) is
driven by:

(i) the input/disturbance dynamics (2), where input or dis-
turbance changes are modelled as outputs of the exogeneous
system (2), or

(ii) a time-varying process parameter vectorw(k) that
follows dynamics (2) and models phenomena such as catalyst
deactivation, enzymatic thermal deactivation, heat-transfer
coefficient changes, etc., or

(iii) an upstream process modelled by (2), in which case,
a cascade connection of the two nonlinear processes results
in the ”block-triangular” structure (1)-(2). It is assumed that
the discrete-time process model (1)-(2) is obtained either
through the employment of efficient discretization methods
for the original continuous-time process, or through direct
identification methods. It is also assumed that theF (x,w)
and G(w) maps of the discrete-time dynamics (1)-(2) are
real analytic vector functions defined onUn × Um andUm

respectively. Without loss of generality, let the originx0 = 0
be an equilibrium point of (1):F (0, 0) = 0, that corresponds
to w0 = 0 with G(0) = 0. The following assumption is also
made:

Assumption 1: Matrix A =
∂G

∂w
(0) has non-zero eigenval-

ueski, (i = 1, ..., m) that all lie inside or outside the unit disc
(Poincaŕe domain [15]). This assumption implies that thew-
dynamics is either locally asymptotically stable or unstable,
and that theG(w) map is locally invertible aroundw0 = 0.

The original nonlinear discrete-time dynamic process
model (1)-(2) can be rewritten as follows:

x(k + 1) = Bx(k) + Cw(k) + f(x(k), w(k))
w(k + 1) = Aw(k) + g(w(k)) (3)

where B, C are constant matrices with appropriate dimen-
sions, andf(x,w), g(w) are real analytic functions ofx and

w with f(0, 0) = g(0) = 0, and
∂f

∂x
(0, 0) =

∂f

∂w
(0, 0) =

∂g

∂w
(0) = 0.

The following definition is essential for the ensuing theo-
retical developments.

Definition 1 [15]: A setS ⊂ Rm+n is said to be invariant
under the nonlinear discrete-time dynamics (3) if for each
(x0, w0) ∈ S, the orbit Ω = {(x(k), w(k)), k ∈ N} of (3)
satisfying(x(k = 0), w(k = 0)) = (x0, w0), is such that
(x(k), w(k)) ∈ S for all k ∈ N . An invariant setS ⊂
Rm+n passing through the origin(x0, w0) = (0, 0) is said
to be an analytic local invariant manifold of (3), ifS has the
local topological structure of an analytic manifold around
the origin.

III. M AIN RESULTS

Together with system (3) an associated system of nonlinear
functional equations (NFEs) is also considered:

π(Aw + g(w)) = Bπ(w) + Cw + f(π(w), w)
π(0) = 0 (4)

whereπ : Rm −→ Rn is the unknown vector function of
(4).

The following technical lemma reported in [9] is necessary.
Lemma 1 Let Assumption 1 hold true for system (1)-

(2). Consider the system of NFEs (4) and assume that the

eigenvalueski, (i = 1, ..., m) of matrix A =
∂G

∂w
(0) are

not related to the eigenvaluesλj , (j = 1, ..., n) of matrix

B =
∂F

∂x
(0, 0) through any equations of the following type:

m∏

i=1

kdi
i = λj (5)

(j = 1, ..., n), where all thedi’s are non-negative integers
with:

∑m
i=1 di > 0. Then, the system of NFEs (4) admits a

unique locally analytic solutionπ(w) in a neighborhood of
w = 0.

Remark 1: Let us now consider the linear case where
G(w) = Aw andF (x,w) = Bx + Cw, with A, B,C being
constant matrices with appropriate dimensions. Then, the
unique solution to the system of functional equations (4) is
given by:π = Πw, whereΠ is the solution of the Lyapunov-
Sylvester matrix equation:

ΠA−BΠ = C (6)

It is known that the above linear matrix equation (6) admits
a unique solutionΠ as long as the eigenspectra of matrices
A,B are disjoined [7]. Notice, that the latter is guaranteed
by the assumptions of Lemma 1, and therefore, the linear
result is reproduced.

We are now in a position to present the paper’s main
results.

Theorem 1 Suppose that for system (1)-(2) Assumption 1
holds true, as well as the assumptions of Lemma 1. Then,
there exists a neighborhoodV ⊂ Rm of w0 = 0, and a



unique and locally analytic mappingπ : V −→ Rn such
that:

S = {(x,w) ∈ Rn × V : x = π(w), π(0) = 0} (7)

is an analytic local invariant manifold of (1)-(2) (in the sense
of Definition 1) that passes through the equilibrium point
(x0, w0) = (0, 0), whereπ(w) is the unique solution of the
associated system of NFEs (4).

Proof: For the graph of the mappingx = π(w) to be
a local invariant manifold that passes through the origin
(x0, w0) = (0, 0), it has to satisfy the following system of
invariance NFEs:

π(Aw + g(w)) = Bπ(w) + Cw + f(π(w), w)
π(0) = 0 (8)

The above condition can be easily deduced by applying the
one-step forward in time operator onx = π(w) and along
an arbitrary solution curve(x(k), w(k)) of (1)-(2) which
belongs to the manifold of interest, i.e. identically satisfies
x(k) = π(w(k)). The above system of invariance NFEs (8)
is exactly the system of NFEs (4) associated with the original
discrete-time dynamics and the mapsF (x,w), G(w). Under
the assumptions stated, the above system of NFEs (8) admits
a unique and locally analytic solution in a neighborhood
V ⊂ Rm of w0 = 0 due to Lemma 1. Therefore, the set
(7) represents an analytic local invariant manifold of (1)-(2).

Remark 2: For practical reasons one must provide a
solution scheme for the system of invariance NFEs (4).
Notice, thatF (x,w), G(w), π(w) are locally analytic, and
therefore, the proposed method suggests their expansion in
Taylor series, followed by a procedure that equates the same
order Taylor coefficients of both sides of (4). This procedure
leads to recursion formulas, through which one can calculate
the N -th order Taylor coefficients of the unknown solution
x = π(w), given the Taylor coefficients ofx = π(w) up
to the orderN − 1 by solving a system of linear algebraic
equations. In the derivation of the recursion formulas, it is
convenient to use the following tensorial notation:

a) The entries of a constant matrixA are represented as
aj

i , where the subscripti refers to the corresponding row and
the superscriptj to the corresponding column of the matrix.

b) The partial derivatives of theµ-th componentFµ(x,w)
of the vector functionF (x,w) with respect to the state
variables x evaluated at(x,w) = (0, 0) are denoted as
follows:F i

µ = ∂Fµ

∂xi
(0, 0), F ij

µ = ∂2Fµ

∂xi∂xj
(0, 0), F ijk

µ =
∂3Fµ

∂xi∂xj∂xk
(0, 0) etc., wherei, j, k, ..=1, ..., n

c) The partial derivatives of theµ-th componentFµ(x,w)
of the vector functionF (x, w) with respect to the variables
w evaluated at(x, w) = (0, 0) are denoted as follows:̄F i

µ =
∂iFµ

∂wi (0, 0), etc.
d) The standard summation convention where repeated

upper and lower tensorial indices are summed up.

Under the above notation thel-th componentπl(w) of the
unknown solutionπ(w) can be expanded in a multivariate
Taylor series as follows:

πl(w) =
1
1!

πi1
l wi1 +

1
2!

πi1i2
l wi1wi2 + ... +

+
1

N !
πi1i2...iN

l wi1wi2 ...wiN + ... (9)

and similarly for F (x,w), G(w). Inserting the Taylor ex-
pansions ofπ(w), F (x,w), G(w) into (4) and matching the
Taylor coefficients of the same order, the following relation
for the N -th order terms can be obtained:

N∑

L=1

∑

0≤m1≤m2≤...≤mL

πj1...jL

l Gm1
j1

...GmL
jL

= Fµ
l πi1...iN

µ

+ F̄ i1...iN

l + f i1...iN

l (πi1...iN−1) (10)

where i1, ..., iN = 1, ...,m, l = 1, ..., n,
∑L

j=1 mj = N

and f i1...iN

l (πi1...iN−1) is a function of Taylor coefficients
of the unknown solutionπ(w) calculated in the previous
recursive steps. Note that the second summation symbol in
(10) suggests summing up the relevant quantities over the

N !
m1!...mL!

possible combinations to assign theN indices

(i1, ..., iN ) as upper indices to theL positionsGj1 ...GjL ,
with m1 of them being put in the first position,m2 of them
in the second position, etc. (

∑L
j=1 mj = N ). Furthermore,

notice that equations (10) represent a set of linearalgebraic
equations in the unknown coefficientsπi1,...,iN

µ . Finally, a
simple MAPLE code has been developed to automatically
compute the Taylor coefficients of the unknown solution
x = π(w) of NFEs (4).

Theorem 2 Let matrixB have stable eigenvalues (|λi| <
1, i = 1, ..., n) and all assumptions of Theorem 1 hold
true. Furthermore, letS (7) be an invariant manifold of
(1)-(2), whereπ(w) is the solution to the associated system
of invariance NFEs (4) and(x(k), w(k)) a solution curve
of (1)-(2). There exists a neighborhoodU0 of the origin
(x0, w0) = (0, 0) and a real numberM ∈ (0, 1) such that,
if (x(0), w(0)) ∈ U0, then:

||x(k)− π(w(k))||2 ≤ (M)k||x(0)− π(w(0))||2 (11)

Proof: Denote byz the ”off-manifold” coordinate:

z(k) = x(k)− π(w(k)) (12)

whose dynamics is described by:

z(k + 1) = B(z(k) + π(w(k))) + Cw(k) +
+ f(z(k) + π(w(k)), w(k))−
− Bπ(w(k))− Cw(k)− f(π(w(k)), w(k)) =
= Bz(k) + N(z(k), w(k)) (13)

where:N(z, w) = f(z+π(w), w)−f(π(w), w). Notice that
N(z, w) is a real analytic vector function with:N(0, 0) =



0 and no linear terms inz:
∂N

∂z
(0, 0) = 0. Consequently:

||N(z, w)||2
||z||2 −→ 0 as||z||2 −→ 0, and thus, for an arbitrary

constantL > 0 there exist positiveρ1, ρ2, such that in the
domain: ||z||2 < ρ1, ||w||2 < ρ2 the following inequality
holds:

||N(z, w)||2 < L||z||2 (14)

Furthermore, since matrixB has all its eigenvalues with
modulus less than one, there exist positive constantsβ ∈
(0, 1) andγ such that [1]:

||(B)ky||2 ≤ γ(β)k||y||2 (15)

for all y ∈ Rn. From equation (13), one obtains [4]:

z(k) = (B)kz(0) +
k−1∑

j=0

(B)k−j−1N(z(j), w(j)) (16)

and therefore:

||z(k)||2 ≤ γ(β)k||z(0)||2 +
k−1∑

j=0

γL(β)k−j−1||z(j)||2 (17)

or:

(β)−k||z(k)||2 ≤ γ{||z(0)||2 +
k−1∑

j=0

L(β)−j−1||z(j)||2}
(18)

Applying Gronwall-Bellman’s inequality [4], it can be de-
duced that:

(β)−k||z(k)||2 ≤ ||z(0)||2
k−1∏

j=0

(1 + γL(β)−1) ⇒

(β)−k||z(k)||2 ≤ ||z(0)||2(β)−k(β + Lγ)k ⇒
||z(k)||2 ≤ (M)k||z(0)||2 ⇒

||x(k)− π(w(k))||2 ≤ (M)k||x(0)− π(w(0))||2 (19)

whereM = β + Lγ. SinceL can be made arbitrarily small,

let us choose:L <
1− β

γ
so that0 < M < 1, and the proof

is complete.
Theorem 2 states that, as time tends to infinity, any

trajectory of (1)-(2) starting at a point sufficiently close to
the origin converges to a trajectory that lies entirely on the
invariant manifoldS. Therefore, the long-term asymptotic
response of the nonlinear process (1) in the presence of the
w-dynamics (2) is given by:

x(k) ≈k→∞ π(w(k)) (20)

whereπ(w) is the unique solution to the associated system
of invariance NFEs (4). Equivalently, the invariant manifold
S (7) is rendered locally attractive [1,15].

A. Special Case: The Long-Term Dynamic Behavior of
Linear Discrete-Time Processes

Let us now consider a linear (linearized) system:

x(k + 1) = Bx(k) + Cw(k) (21)

andw ∈ R a time-varying scalar process parameter following
the first-order dynamics:

w(k + 1) = aw(k) (22)

with B,C being constant matrices with appropriate di-
mensions and|a| < 1 (stability assumption for thew-
dynamics). Notice that one may envision a case where a
chemical reaction system withx being the composition
vector (in deviation form from the reference steady state
conditions), andw the catalyst activity corresponding to a
specific deactivation mechanism, is modelled by (21)-(22)
[5]. In this case, the objective is to determine the long-
term dynamic behavior of process (21) in the presence of
catalyst deactivation (22), and therefore, to investigate the
possibility of catalyst replacement if conversion or selectivity
are affected in an adverse manner. It is assumed that the
eigenspectrum of matrixB is comprised of eigenvaluesλi

with |λi| < 1, i = 1, ..., n, and therefore the discrete-time
process (21) is assumed to be a stable one (or stabilized via
controller action). Furthermore, it is assumed that the time-
constant associated with the catalyst activityw-dynamics is
larger compared to the dominant process time-constant (such
as in catalyst deactivation due to poisoning [5]) :

|a| >> ρ (23)

where ρ = maxi|λi|, (i = 1, ..., n) is the spectral radius
of B. One may now explicitly calculate the long-term
asymptotic process response by solving the system of linear
difference equations (21)-(22):

x(k) = Bkx(0) +
k−1∑

i=0

Bk−i−1Caiw(0) =

= Bkx(0)− w(0){akI −Bk}(B − aI)−1C(24)

where the following matrix identity was used:

k−1∑

j=0

Bk−j−1aj = {Bk − akI}(B − aI)−1 (25)

Under assumption (23), it can be easily inferred that the long-
term asymptotic process response is given by:

x(k) ≈k→∞ −w(0)(B − aI)−1Cak (26)

Notice, that in the linear case (21)-(22) the associated system
of invariance NFEs (4) takes the following form:

π(aw) = Bπ(w) + Cw

π(0) = 0 (27)



Under the assumptions of Theorem 1, the above system of
NFEs admits a unique solution:π(w) = Πw, whereΠ is the
unique solution that satisfies the following Lyapunov matrix
equation:

ΠaI −BΠ = C (28)

It is easy to show that (28) admits the following solution:

Π = −(B − aI)−1C (29)

where(B − aI) is indeed an invertible matrix sincea does
not belong to the eigenspectrum of the process characteristic
matrix B, which is guaranteed by Lemma 1 and Theorem 1.
According to Theorem 2, the invariant manifoldx = Πw is
locally attractive, and the long-term asymptotic behavior of
the chemical reaction system (21) in the presence of catalyst
deactivation (22) is given by:

x(k) ≈k→∞ Πw(k) = −w(0)(B − aI)−1Cak (30)

The above expression was derived on the basis of the
invariant manifold construction of the proposed approach,
and it coincides with the one (Eq. (26)) obtained through a
direct calculation of the solution of the discrete-time linear
process dynamic equations (21)-(22).

IV. I LLUSTRATIVE EXAMPLE

Immobilized cell and enzyme bioreactors are now widely
used in a variety of interesting applications. In these sys-
tems, the short-term behavior of the bioreactor is dependent
upon the nonlinear kinetics of the immobilized enzymes or
cells participating in the reactions. However, the long-term
behavior of the bioreactors depends upon the stability of
the immobilized enzymes or the viability of the immobi-
lized cells. The short term behavior of these systems are
important in determining the conversion of a nutraceutical
or degradation of a toxin for example, parameters that
define the performance of the bioreactor. The long term
behavior of the bioreactor will determine when the enzyme
or cell catalyst needs to be replaced to maintain conversions
at acceptable levels. Therefore, accurately estimating when
bioreactor performance declines below acceptable levels has
important consequences for the profitability of a process or
the health of a patient.

Actual kinetic data on enzyme performance and enzyme
degradation are considered in the present study, obtained
from previous work by Hill and coworkers [13] for an
immobilized enzyme bioreactor for the production of food
grade linoleic acid from corn oil. There is one enzymatic
step for the reaction described, however, multiple enzymatic
steps are necessary for the conversion of corn oil to the
desired nutraceutical, conjugated linoleic acid [13]. In order
to illustrate and evaluate the proposed method, we have
included a second enzymatic step in our example and used
kinetic parameters for the second enzyme that were assumed
to be representative. In the example, we assume that the

enzymatic bioreactor behaves as an ideal continuous stirred
tank reactor (CSTR). It is also assumed that the first enzyme
converts substrate into product, in this case corn oil into
linoelic acid, via a ping-pong bi bi mechanism, as reported in
[13]. The second enzyme converts substrate to product via a
Michaelis-Menten mechanism, and both enzymes degrade via
a first order decomposition process. The following nonlinear
dynamic process model is considered:

dS

dt
= f (1)(S, E1, E2) =

k1E1S

1− k2S
+

k3E2S

KM2 + S
+

+
v0

V
(S0 − S)

dE1

dt
= g(1)(E1, E2) = −kd1E1

dE2

dt
= g(2)(E1, E2) = −kd2E2 (31)

The above dynamic equations describe the change in sub-
strate concentration in the reactor as a function of time,
and the degradation of activity of the two enzymes.S,
S0(= 3.4M), E1 and E2 represent the concentrations of
substrate, substrate in the feed stream, enzyme one, and
enzyme two respectively.k1(= 8.2 ∗ 10−2h−1g−1), k2(=
5.9 ∗ 10−1M−1), k3(= 3 ∗ 10−1Mh−1g−1), and KM2(=
8M) represent kinetic parameters describing the rates of
reaction of enzyme one and two, andkd1(= 3.4 ∗ 10−3h−1)
and kd2(= 5 ∗ 10−4h−1) are kinetic parameters describing
the rate of deactivation of enzymes one and two respectively.
v0(= 100ml/h) is the flow rate of the substrate andV (=
50ml) is the reactor volume. Using a time-discretization step:
δ = 0.01h which is smaller than the dominant process time-
constant, Euler’s discretization method was applied in order
to obtain a quite accurate discrete-time dynamic process
model:

S(k + 1) = F (1)(S(k), E1(k), E2(k)) =
= S(k) + f (1)(S(k), E1(k), E2(k))δ

E1(k + 1) = G(1)(E1(k), E2(k)) =
= E1(k) + g(1)(E1(k), E2(k))δ

E2(k + 1) = G(2)(E1(k), E2(k)) =
= E2(k) + g(2)(E1(k), E2(k))δ (32)

In order to conform to the theory presented in previous
sections, the following set of deviation variables relative
to the equilibrium point(S0, E0

1 , E0
2) = (3.4, 0, 0, ) are

introduced:

x1 = S − S0

w1 = E1 − E0
1

w2 = E2 − E0
2 (33)

Let us also denote:̄F (1)(x1, w1, w2) = F (1)(x1 + S0, w1 +
E0

1 , w2 + E0
2), Ḡ(i)(w1, w2) = G(i)(w1 + E0

1 , w2 + E0
2)

(i = 1, 2). Notice that for the bioreactor model (32) all
conditions of Theorems 1 and 2 are satisfied. Therefore,



there exists a unique and locally analytic invariant manifold:
x1 = π(w1, w2), with π(w1, w2) being the solution of the
following nonlinear functional equation:

π(Ḡ(1)(w1, w2), Ḡ(2)(w1, w2)) = F̄ (1)(π(w1, w2), w1, w2)
π(0, 0) = 0 (34)

A series solution of the above functional equation is sought
around the origin. The Taylor coefficients of the unknown
solution x1 = π(w1, w2) can be automatically computed
by using a simple MAPLE code. In particular, a third-order
series truncation is considered leading to the following third-
order Taylor polynomial approximation of the actual solution:

x1 = π[3](w1, w2) = −0.13880w1 + 0.04474w2 −
− 0.00564(w1)2 + 0.00053w1w2 + 0.00041(w2)2 −
− 0.00068(w1)3 + 0.00025(w1)2w2 −
− 0.000015w1(w2)2 + 0.000002(w2)3 (35)

Therefore, according to Theorem 2, the long-term asymptotic
behavior of the bioreactor (32) can be calculated by using the
following formula:

x1(k) ≈k→∞ π[3](w1(k), w2(k)) ≈
≈k→∞ π[3](4(0.99966)k, (0.99995)k) (36)

Both the actual dynamic response of the bioreactor was
computed by simulating the full process model (32), as well
as the long term asymptotic behavior of the bioreactor by
using equation (36). As it can be seen in Figure 1, the
estimated substrate concentration at the outlet of the reactor
obtained through equation (36) is indistinguishable from the
actual substrate concentration at times larger than 150h, the
approximate half life of the fastest decaying enzyme.
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