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Abstract— In this paper, a characterization of the minimum-
phase property of nonlinear systems in terms of a dissipation
inequality is given. It is shown that this characterization
contains the minimum-phase property in the sense of Byrnes-
Isidori, if the system possesses a well-defined normal form.
Furthermore it is shown that, when this dissipation inequalities
is satisfied, a kind of minimum-phase behavior follows for
general nonlinear systems. Various examples and applications
are given which show the usefulness and limits of such a point
of view.

I. INTRODUCTION

In control theory, the notion of minimum-phase behavior
plays an important role for systems analysis and controller
design. For linear time-invariant single-input-single-output
systems, the minimum-phase property is characterized for
example by all zeros of the transfer function being in the
open left half plane. For nonlinear systems, loosely speaking,
a system is said to be minimum-phase if it has asymptotically
stable zero output constrained dynamics (zero dynamics),
which are obtained when the output of the system is kept
identically equal to zero [6]. In the special case of nonlinear
systems affine in the input with well-defined normal form,
a precise definition of the minimum-phase property can be
given [2]. This is referred to as the minimum-phase property
in the sense of Byrnes-Isidori. There, the minimum-phase
property is equivalent to the situation that an equilibrium
point, lets say xE = 0, is asymptotically stable under the
constraint that y(t) = 0, t ≥ 0. In the general case, however,
a precise definition of minimum-phase behavior for general
nonlinear systems is not an easy task. The reason for this
is that the zero dynamics may not be well defined, and
even if this is the case, it make no sense to speak about
stability without saying something about equilibrium points
(or sets). Beside this, it may be difficult to check if a system
is minimum-phase or not. At least two strategies exists:
The first one goes via transforming the system into normal
form, if the normal form exists. The second one goes via
simply setting y(t), ẏ(t) ... to zero and by calculating the
remaining dynamics (zero dynamics). The second strategy is
more general, since it also works when a transformation into
the normal form is not possible.

In this paper, a third possibility is given to characterize the
minimum-phase property, namely in terms of a dissipation
inequality. It is shown that this characterization contains

the minimum-phase property in the sense of Byrnes-Isidori,
if the system possesses a well-defined normal form and
thus generalizes this concept to a broader class of systems.
Furthermore it is shown that, when the dissipation inequality
is satisfied, a kind of minimum-phase behavior follows.
Various examples are given which show the usefulness and
limits of such a point of view. Another important point of this
characterization stems from the fact that the geometrically
motivated notion of minimum-phase behavior is expressed in
a Lyapunov-based language, namely in terms of a dissipation
inequality.

The remaining paper is organized as follows. In Section 2
the class of systems to be considered as well as a definition of
the minimum-phase property for general nonlinear systems
is given. In Section 3 the dissipation inequality is introduced
and the connections to the minimum-phase property are
derived. In Section 4 some examples demonstrate the results
and limits of Section 3. In Section 5 some connections to
the passivation procedure and control-Lyapunov functions are
given. Finally, Section 6 concludes with discussions.

II. NOTIONS OF THE MINIMUM-PHASE PROPERTY

The class of control systems considered in this paper is of
the form

ẋ = f(x, u) (1)

y = h(x),

where x ∈ R
n is the state, u ∈ R

m is the input, and y ∈ R
l is

the output. The functions f, h are assumed to be sufficiently
often differentiable, with f(0, 0) = 0, h(0) = 0.

Systems which are minimum-phase in the sense of
Byrnes-Isidori exhibit stable behavior under the constraint
that the output is identically zero. Motivated by this, the
following definition is used here to characterize minimum-
phase behavior of system (1):

Definition 1: System (1) is said to possess the minimum-
phase property with respect to the equilibrium point xE = 0,
if xE is asymptotically stable under the constraint y(t) = 0,
t ≥ 0.

Stability of xE = 0 under the constraint y(t) = h(x(t)) = 0,
t ≥ 0 is used here as follows: The property below must
hold under the constraint y(t) ≡ 0 and all its derivatives



ẏ(t), ÿ(t)... ≡ 0: For any admissible1 (output-zeroing) con-
trol law u = u(t) and for any ε > 0 there exists a δ > 0 such
that for any initial condition x0 = x(t = 0) with |x0| < δ

follows that |x(t)| < ε for t ≥ 0.
For simplicity, it is assumed that also the derivatives

ẏ(t), ÿ(t)... must be identically zero to avoid situations
such as ẏ(t) is not identically zero but zero almost
everywhere, which implies that y(t) is identically zero.
This would require a much more complicated mathematical
analysis. As usual, asymptotic stability is stability plus
convergence to zero, i.e., x(t) = 0 for t → ∞. Note that in
contrast to ”ordinary unconstraint stability”, it may happen
that there exists no nontrivial trajectory x(t) such that
y(t) = h(x(t)) ≡ 0.

Alternative notions. An alternative definition of the
minimum-phase property for systems not affine in the input
is given in [6]. There, a system is termed minimum-phase
with respect to an equilibrium xE , if the equilibrium point is
stabilizable under an appropriate feedback u = kz(x) which
keeps the output identically to zero. For a precise definition
cf. [6]. Hence, as a consequence of this definition, the
minimum-phase property is not feedback invariant anymore.
Definition 1, in contrast, states that the equilibrium point
xE has to be asymptotically stable under any control law u,
this preserves the well-known feedback invariance property
of minimum-phase behavior. However, the definitions given
here and in [2], [6] are equivalent, if the output-zeroing
feedback u = kz(x) is unique. For example, this is the case
for input-affine systems under appropriate assumptions. In
[4] another alternative (stronger) notion of minimum-phase
behavior is given, based on output-input-stability which is in
the spirit of Sontag’s ”input-to-state stability” philosophy. In
particular, the following dissipation inequality can be found
there:

∇V (x)f(x, u) ≤ −α(|x|) + χ(|y[r]|), ∀x, u (2)

where V is a positive definite, radially unbounded function
and α, χ are of class K and unbounded. r = [r1, ..., rl],
where r is the vectorial relative degree and y[r] is a (stacked)
vector where the entries of the vector are the derivatives
of the output up to order r − 1. For details cf. [4] and the
reference therein. However, if this dissipation inequality is
satisfied, then system (1) is (strongly) minimum-phase as
well as uniformly zero-detectable in the sense as defined
in [4]. The converse statement is not true, that means, it
does not fully coincide with well-established notion of
minimum-phase in the sense of Byrnes-Isidori.

Remark 1: For simplicity, Definition 1 and all following
results deal with the equilibrium point xE = 0. Furthermore,
it should be emphasized that the minimum-phase property as

1It is assumed that the solution of system (1) exists.

defined above is of local nature, although global statements
can be made under additional assumptions. Furthermore,
one can relax most of the results by assuming only stability
and not asymptotic stability.

Further definitions and notations. Recall that a function
V : R

n → R is called positive definite, if V (0) = 0,
V (x) > 0 ∀x 6= 0. If V is differentiable, than the
row vector ∂V

∂x
(x) = ∇V (x) denotes the derivative of

V with respect to x. A function α : [0,∞) → [0,∞)
is said to be of class K if it is continuous, strictly
increasing, and α(0) = 0. Furthermore, ẏ, ÿ, ..., y(k)

denotes the derivatives of the output with respect to
the vector field f , i.e., ẏ = ∂h

∂x
(x)f(x, u) aso. y[i] is

used as a short form for the (stack) vector y[i1,...,il] =
[y1, ẏ1, ÿ1, ..., y

(i1−1)
1 , y2, ..., y

(i2−1)
2 , ..., yl, ..., y

(il−1)
l ]T

which may depend on x, u, u̇, .... U(x̄) denotes a
neighborhood of a point x̄ ∈ R

n and |x| denotes the
Euclidian norm of x ∈ R

n. Finally, y(t) ≡ 0 is used as
a short form for y(t) = 0, ∀t ≥ 0, for a given function
y : R → R

m.

III. MAIN RESULTS

As already mentioned in the previous section, the
dissipation inequality (2) is a sufficient condition for the
minimum-phase property. The following slight modification,
summarized in the next definition, allows a more symmetric
statement, i.e., the dissipation inequality characterizes the
minimum-phase property if system (1) is given in or can be
transformed into normal form:

Definition 2: System (1) is said to be minimum-phase
detectable of degree d = [d1, ..., dl] at xE = 0, if there
exists a differentiable positive definite function V : R

n → R

such that

∇V (x)f(x, u) < |y[d]|ρ, (3)

for all u ∈ R
m and all nonzero x ∈ U(xE) and for some

scalar-valued function ρ. ρ is a function with depends on
the same arguments as y[d], i.e. ρ = ρ(x, u, u̇, ...), and
d = [d1, ..., dl] is called the detectability degree at xE = 0.

The ”detectability vector” y[d] is formed by successively
differentiating the output y = h(x). In contrast to the
definition of the relative degree [2], where the rule is to
differentiate until the input appears, loosely spoken, no
assumption on differentiability is made here a priori. This
means, the rule is here to differentiate as long as you can
(like). As a consequence, one can say that the smoother
the system and the feedback is, the ”sharper” may be the
dissipation inequality. The term ”minimum-phase detectable”
is used here, because the dissipation inequality detects the
minimum-phase property, which may depend on the choice of
the detectability degree d. Although the inequalities (2), (3)



are very similar, they have different meanings. Geometrically
spoken, inequality (3) guarantees negative definiteness (only)
on a subset, namely on the set where |y[d]| = 0. For
|y[d]| > 0, one can always find a function ρ such that the
left side is dominated by the right side of the dissipation
inequality (3). Inequality (2) on the other hand guarantees
that the left side becomes negative definite whenever |y[r−1]|
becomes small.

Now, the following statements can be made. If the dis-
sipation inequality (3) is satisfied, then the system has the
minimum-phase property in the sense of Definition 1. More-
over for input-affine systems with well-defined normal form,
the dissipation inequality is equivalent to minimum-phase
behavior in the sense of Byrnes-Isidori, if the detectability
degree is chosen to be the relative degree plus one, i.e.,
d = [d1, ..., dl] = r+1 = [r1+1, ..., rl+1]. These statements
are proven below.

Normal form. Assume that there is a local change of
coordinates [ξ, η]T = Φ(x), with Φ continuously differen-
tiable, such that system (1) with the same number of inputs
and outputs, i.e., l = m, can be represented in normal form
([2],p.224):

ξ̇i
1 = ξi

2

ξ̇i
2 = ξi

3

. . .

ξ̇i
ri−1 = ξi

ri
(4)

ξ̇i
ri

= bi(ξ, η) +
m∑

j=1

aij(ξ, η)uj

η̇ = q(ξ, η) + p(ξ, η)u

yi = ξi
1,

where it is assumed that q(0, η) − p(0, η)A−1(0, η)b(0, η)
is locally Lipschitz, with the square matrix A(ξ, η) =
(aij(ξ, η)), i, j = 1...m. For example, if system (1) is
a single-input-single-output system affine in u with f, h

sufficiently smooth, than a local change of coordinates
exists if the relative degree is well defined. The multi-
input-multi-output case is more involved [2]. However,
if the normal form is well-defined, then the dissipation
inequality (3) characterizes the minimum-phase property
with a detectability degree which is one higher than the
relative degree.

Theorem 1: Assume there is a local change of
coordinates [ξ, η]T = Φ(x), with Φ continuously
differentiable, such that system (1) can be represented
in normal form (4). Then system (1) has the minimum-phase
property if and only if the dissipation inequality (3) is
satisfied with a detectability degree equal to the relative
degree plus one, i.e., d = r + 1.

Proof: First, it is shown that the minimum-phase prop-
erty implies the dissipation inequality. Note that the unique
output zeroing feedback u = kz(ξ, η) is given by kz(ξ, η) =
−A−1(ξ, η)b(ξ, η) with b(ξ, η) = [b1(ξ, η), ..., bm(ξ, η)]T

and the asymptotic stable zero dynamics is given by

η̇ = q(0, η) − p(0, η)A−1(0, η)b(0, η). (5)

Let W (η) be a Lyapunov function of (5). The existence of
such an Lyapunov function is guaranteed due to Massera’s
converse Lyapunov theorem. Massera’s theorem [5], [10]
assumes a locally Lipschitz right-hand side of the differential
equation for the existence of a continuously differential
Lyapunov function.

Define V (ξ, η) = U(ξ) + W (η) > 0, where U(ξ) is
an arbitrary differentiable positive definite function. The
derivative along the trajectories of (4) is given by:

V̇ (ξ, η) = ∇ξU(ξ)ξ̇ + ∇ηW (η)η̇. (6)

Now, two cases may happen:
Case 1: y[d] is zero, i.e., ξi

1 = ... = ξi
ri

= ξ̇i
ri

= 0,
(u = kz(ξ, η)), i = 1...m. In this case set ρ to zero. What
remains is ∇ηW (η)η̇, which is negative definite for some
neighborhood around η = 0, since asymptotic stability of
the zero dynamics was assumed.

Case 2: y[d] is not zero, i.e., ∃ξi
j 6= 0 or ξ̇i

ri
6= 0 (u 6=

kz(ξ, η)). In this case define

ρ(ξ, η, u) >
∇ξU(ξ)ξ̇ + ∇ηW (η)η̇

|y[d]|
. (7)

By defining ρ so, the dissipation inequality (3) is satisfied.
Next it is shown that the dissipation inequality implies

minimum-phase property. This is done by contradiction.
Assume system (4) has not the minimum-phase property,
i.e., there exists an initial condition η0, ξ0 = 0, and a
control law u such that y(t) = 0 for all t ≥ 0 but the
equilibrium ξE = ηE = 0 is not asymptotically stable.
Let u = kz(ξ, η) with initial condition η0, ξ0 = 0, then
y[d] ≡ 0 and hence ξ ≡ 0. This leads to a contradiction since
the dissipation inequality V̇ (ξ, η) < 0, implies asymptotic
stability of ηE = 0.

Finally note that the dissipation inequality in the original
coordinates can be obtained by the inverse transformation
x = Φ−1(ξ, η) with Ṽ (x) = V (Φ(x)).

Remark 2: Note that the proof goes through as long as
the system can be represented in the following form:

ξ̇1 = f1(ξ1, ξ2, η, u)

ξ̇2 = f2(ξ1, ξ2, η) + A(ξ1, ξ2, η)u

η̇ = q(ξ, η) + p(ξ, η)u

yi = ξi
1,

with ξ1 = [ξ1
1 , ..., ξ1

r1−1, ξ
1
2 , ..., ξ1

r2−1, ..., ξ
1
rm−1],

ξ2 = [ξ2
r1

, ..., ξ2
rm

], f1(ξ1, 0, η, kz(ξ
1, ξ2, η)) = 0, and



A(ξ1, ξ2, η) locally invertable, i = 1...m. This form
contains also the generalized normal form ([2],p.310).

Theorem 2: If the dissipation inequality (3) is satisfied,
then system (1) has the minimum-phase property.

Proof: The argument is the same as in the second part
of the proof of Theorem 1. Assume system (1) has not the
minimum-phase property, i.e., there exists an initial condition
x0 and a control law u = uz such that y(t) ≡ 0 but the
equilibrium xE = 0 is not asymptotically stable. Let u = uz

and the initial condition be x0, then y[d] ≡ 0. This leads
to a contradiction since the dissipation inequality V̇ (x) < 0
implies asymptotic stability of xE = 0 whenever y[d] ≡ 0.

Remark 3: The converse statement in Theorem 2 is not
true for r+1 6= d, i.e., if system (1) is minimum-phase, then
the dissipation inequality (3) is not necessarily satisfied. For
example this is the case if d is not chosen high enough (cf.
Example 2 below). Another reason is that the existence of a
(differentiable) Lyapunov function is necessary, which may
become restrictive, since the zero dynamics may be quite
complicated (cf. Example 4 below).

Remark 4: For reasons of completeness we mention that
one can use the following dissipation inequality in Definition
2 instead of the dissipation inequality (3):

∇V (x)f(x, u) < (y[d])T ρ (8)

for all u ∈ R
m and all nonzero x ∈ U(xE). ρ is now a

vector-valued function.

IV. EXAMPLES

In this section examples are given which show advantages
and limits of the concept introduced in Section 3.

Example 1: Consider the nonlinear system

ẋ1 = −x1 + x3
2

ẋ2 = x2u

y = x2.

The relative degree r is not well-defined for x2 = 0.
Nevertheless the system has the minimum-phase property
with zero dynamics ẋ1 = −x1 and the dissipation inequality
is satisfied with a V (x) = 1

2 (x2
1 + x2

2) and d = 1 since
V̇ (x) = −x2

1 + x1x
3
2 + x2

2u < |x2|ρ(x, u), with ρ(x, u) = 0

for x2 = 0 and ρ(x, u) >
−x2

1
+x1x3

2
+x2

2
u

|x2|
otherwise. Hence,

the minimum-phase property can be established globally,
although the relative degree is not well-defined for x2 = 0.

Example 2: Consider the linear system

ẋ1 = x2

ẋ2 = x3 + u

ẋ3 = x1 + x2 − x3

y = x1.

The relative degree r is two and the system is minimum-
phase. However, for d = 1 the minimum-phase property
cannot be established. To show this, set x1 = 0 (y[1] = x1).
Then a positive definite function V must be found, such that
∇V (x)ẋ = Vx1

(x)x2+Vx2
(x)(x3+u)+Vx3

(x)(x2−x3) < 0
holds for nonzero x with x1 = 0 and for all u. But such
a function does not exist, since one can always find an u

such ∇V (x)ẋ is not negative definite. Hence, the converse
statement of Theorem 1 is not true for r + 1 6= d.

Example 3: Consider the non-input affine system

ẋ1 = x2

ẋ2 = x2
1(1 − u)2 + u2(1 − x1)

2

ẋ3 = (−x3 + x4)x1 + (x3 − 4x4)(1 − x1)

ẋ4 = (−x3 − 7x4)x1 + (x3 − 2x4)(1 − x1)

y = x2.

From y ≡ 0 follows x2 ≡ 0, from ẏ ≡ 0 follows that either
x1 = 1, u = 1 or x1 = 0, u = 0. Hence the zero dynamics is

[
ẋ3

ẋ4

]

=

[
−1 1
−1 −7

]

︸ ︷︷ ︸

A1

[
x3

x4

]

if the initial condition x1(t = 0) = 1 and
[

ẋ3

ẋ4

]

=

[
1 −4
1 −2

]

︸ ︷︷ ︸

A2

[
x3

x4

]

.

if x1(t = 0) = 0. Both matrices A1, A2 are asymptotically
stable. Note that the system has the (local) minimum-phase
property as shown below, but not the global one since x2(t =
0) = 1 implies x2(t) ≡ 1.

However, the dissipation inequality can be satisfied as fol-
lows: Choose d = 2 and V (x) = x2

1+x2
2+[x3, x4]P [x3, x4]

T

where P > 0 is a positive definite matrix with AT
2 P +

PA2 = −Q2 < 0. Then the dissipation inequality is given
by V̇ (x, u) = 2x1x2 + 2x2ẋ2 + [x3, x4]S(x1)[x3, x4]

T <

|[x2, x
2
1(1 − u)2 + u2(1 − x1)

2]|ρ(x, u), with S(x1) =
(
P2A1 + AT

1 P2

)
x1 +

(
P2A2 + AT

2 P2

)
(1−x1). Now, three

cases may happen:
Case 1: x1 = 0, x2 = 0, u = 0. Then the right side of the

dissipation inequality is zero, and we get −xT Q2x < 0.
Case 2: x1 = 1, x2 = 0, u = 1. Then again the right side

of the dissipation inequality is zero, but this case is not of
interest because x1 = 1 and it is enough to establish the
dissipation inequality in a neighborhood of xE = 0.



Case 3: Otherwise, (neither Case 1 nor Case 2), the right
side of the dissipation inequality is nonzero, therefore it
does not matter what happens on the left side, since ρ can
be chosen such the the left side is always dominated by the
right side. Hence, minimum-phase detectability of degree 2
is established.

Example 4: The next example shows that a converse
statement of Theorem 2 is quite involved and includes
switched systems theory [3]. To see this, consider the system

ξ̇1 = ξ2

ξ̇2 = u(1 − u)

η̇ = f0(η)(1 − u) + f1(η)u

y = ξ1

with η ∈ R
n. One can see that the zero dynamics are

given by the systems η̇ = f0(η), η̇ = f1(η), whereas a
switching between these systems is possible with u ∈ {0, 1}
by simultaneously keeping the output identically zero. If d

is chosen to be two and the fi’s are asymptotically stable
and share a common Lyapunov function, then the minimum-
phase property can be established.

V. APPLICATIONS

In this section a characterization of passivation outputs
in connection with control-Lyapunov functions is given.
Furthermore, a remark on linear time-invariant systems
concludes this section.

Control-Lyapunov functions. Consider the system

ẋ = f(x) + g(x)u, (9)

u ∈ R, f, g suitably defined. Let V be a control-Lyapunov
function (CLF) of this system, i.e., V positive definite on R

n

and for nonzero x holds: ∇V (x)f(x) < 0 if ∇V (x)g(x) =
0. A starting point of this work was the following question:
Is

ỹ = s(x)∇V (x)g(x), (10)

with s(x) 6= 0 a minimum-phase output for system (9)
or at least behaves such an output like a minimum-
phase output? The answer is yes for linear time-invariant
systems with a quadratic Lyapunov function. In the
general nonlinear case, however, the relative degree
is not well-defined. Anyway, the output is a (global)
minimum-phase detectable output of degree one, since
∇V (x)f(x)+∇V (x)g(x)u < |s(x)∇V (x)g(x)|ρ(x, u) with
ρ(x, u) >

∇V (x)f(x)+∇V (x)g(x)u
|s(x)∇V (x)g(x)| whenever ∇V (x)g(x) 6= 0

and ρ(x, u) = 0 otherwise. Note that a minimum-phase
detectable output of degree one is very closely related to
the passivation procedure [8] as shown next.

Passivation. Consider system (9) and V is again a CLF
of this system. A passivating output ỹ of such a system is

a (possible fictitious) output such that the system becomes
passive from ũ to ỹ under an appropriate feedback u =
kp(x) + ũ. The fictitious output

ỹ = ∇V (x)g(x), (11)

is a passivating output for system (9) which follows from
the literature [8]. Furthermore, it is also well-known that a
passivating output must be (weakly) minimum-phase with
relative degree one. This characterization is, of course,
only valid if the normal form is well-defined. However,
it is always possible to characterize passivating outputs
as outputs which have to be minimum-phase detectable
of degree one, as shown above. Loosely spoken, given
a CLF V = V (x), one can always choose a passivating
output, namely ỹ = ∇V (x)g(x), which is a particular
minimum-phase output. This statement holds globally
without assuming any existence of a certain normal
form. This fact also shows that the notion of passivity and
minimum-phase is closely related on the choice of the output.

Linear time-invariant systems. As a final point, lets apply
the dissipation inequality (3) to the class of linear time-
invariant systems with a single input and a single output:

ẋ = Ax + bu (12)

y = cT x,

where A is the system matrix of appropriate dimension and b,
c is the input and output vector, respectively. The derivatives
of the output y up to the order of the relative degree r are:

y = cT x

ẏ = cT Ax

. . .

y(r−1) = cT Ar−1x

y(r) = cT Arx + cT Ar−1bu.

Hence, dissipation inequality (3) with V (x) = xT Px, where
P is a positive definite matrix, takes the form

xT (PA + AT P )x (13)

+xT Pbu + ubT Px < |y[r]|ρ(x, u)

with

y[r] =









cT x

cT Ax

...

cT Ar−1x

cT Arx + cT Ar−1bu









.

Since the output-zeroing feedback is explicitly given by
kz(x) = − 1

cT Ar−1b
cT Arx, the variable u in dissipation

inequality (13) can be eliminated by setting u = kz(x). This



yields to

xT

(

PA + AT P −
1

cT Ar−1b
(PbcT Ar + (Ar)T cbT P )

)

x

< σxT
(
ccT + AT ccT A + ... + (Ar−1)T ccT Ar−1

)
x,

with ρ(x, u) = ρ(x) = σ|y[r]|, where σ is a (sufficiently
high) chosen constant.

Remark 5: Note that the last inequality is affine in the
variables P, σ. Hence the problem reduces to a linear matrix
inequality, which can be solved via semidefinite program-
ming [1]. Note also that the last inequality reveals the
underlying geometric concept of this dissipation inequality
formulation, namely positivity on a subset. Readers who are
aware of semidefinite programming or of quadratic forms
may immediately see the connection to Finsler’s lemma [1]
which states that xT Rx < 0 for all nonzero x such that
ST x = 0 if and only if there exists a constant σ such that
xT (R − σSST )x < 0 for all nonzero x, where R,S are
matrices of appropriate dimension.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper a characterization of the minimum-phase
property in terms of a new dissipation inequality was given.
This dissipation inequality also implies a kind of minimum-
phase behavior, defined in Definition 1, which extends the
concepts of minimum-phase behavior in the sense of Byrnes-
Isidori to a more general class of nonlinear systems. Such a
formulation may be helpful, for example, when the system
cannot be transformed into normal form or when it is
more natural to work with dissipation inequalities. Moreover
note that the unknowns V , ρ in the dissipation inequality
(3) enter linear in the inequality. Hence, in combination
with polynomial control systems, an efficient computer-
aided analysis is possible by using the tools introduced in
[7]. In how far Definition 1 is useful may depend on the
application. It could be useful to have a stronger notion as
introducted in [4]. Or one would like to have a concept,
as introducted in [6], in which one output zeroing feedback
with stable zero dynamics is enough or a ”uniform” concept
in which all output zeroing feedbacks must have a stable
zero dynamics. An open and interesting question is surely
to ask for a converse statement of Theorem 2. In particular
which assumptions are necessary and sufficient but not too
restrictive. Other interesting questions are formulations of the
dissipation inequality in the spirit of input-to-state stability
as well as some possible applications on the analysis of
feedback limitations [9]. Finally, notice that the smoothness
assumption on the system are rather mild and may be further
relaxed, for example, by an integral version the dissipation
inequality.
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