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Abstract— This paper addresses stability boundaries in non-
autonomous systems. An analytical criterion for stability
boundaries in one degree of freedom (time-periodic) perturbed
Hamiltonian systems was recently proposed. The criterion
evaluates basin boundaries of non-resonant solutions. This
paper discusses the stability boundaries with respect to the
resonant solutions based on the above result and subharmonic
Melnikov functions. At first one degree of freedom perturbed
(time-independent) Hamiltonian systems for the resonant solu-
tions is derived using coordinates transformations and second
order averaging. Then an approximate expression for the basin
boundaries of the resonant solutions is obtained based on
the above analytical criterion. This paper also exhibits the
effectiveness of the approximate expression through a simple
example.

I. INTRODUCTION

In many engineering fields it is much important to eval-
uate stability boundaries of dynamical systems precisely.
The stability boundaries are basin boundaries of stable
equilibrium points or periodic solutions which correspond
to stable operating conditions of practical systems. The
stability boundaries of autonomous dynamical systems are
discussed based on several analytical methods: Lyapunov’s
direct methods [1], [2], dynamical systems theory [3], [4],
passivity-based approach [5], [6] and so forth. However,
for non-autonomous systems, any analytical criterion for
the stability boundaries was not proposed; thus the evalua-
tion depended on numerical simulation such as cell-to-cell
mapping [7]. It was hence strongly required to derive an
analytical criterion for the stability boundaries of the non-
autonomous systems.

In [8] we proposed an analytical criterion for stability
boundaries in one degree of freedom (abbreviated as ODF)
(time-periodic) perturbed Hamiltonian systems based on
a Melnikov’s perturbation method [9], [10], [11]. Our
proposed criterion has some advantages in its easy and
quick evaluation and is applicable to various engineering
systems. The criterion addresses the basin boundaries of
non-resonant solutions, and is not therefore effective if
the genesis of resonant solutions happens in the non-
autonomous systems. Although the resonant solutions and
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associated basin structures were phenomenologically dis-
cussed in [12], [13], [14], [15], [16] and so forth, any
analytical and effective approach to the basin boundaries
of the resonant solutions has not been reported.

The present paper discusses basin boundaries of the res-
onant solutions based on subharmonic Melnikov functions
and related theory [9], [10], [11], [17], [18], thereby obtain-
ing an approximate expression for the basin boundaries. At
first ODF (time-independent) perturbed Hamiltonian system
for the resonant solutions is derived using coordinates
transformations and second order averaging. Applying our
proposed criterion to the perturbed Hamiltonian system, we
obtain an approximate expression for the basin boundaries
of the resonant solutions. The approximate expression can
be derived with the original Hamiltonian system and enables
for us to clarify the stability boundaries with respect to
the resonant solutions analytically. Utilizing the expression
we can also evaluate the stability boundaries of the non-
autonomous systems with both non-resonant and resonant
solutions.

II. SYSTEM MODEL AND PRELIMINARIES

This paper deals with ODF (time-periodic) perturbed
Hamiltonian system as follows:

dq

dt
= JDH(q) + εg(q, t), (1)

whereH denotes the Hamiltonian function andε (≥ 0) the

small parameter, andq
�
= (x, y)T (x, y ∈ R),



J
�
=

(
0 1

−1 0

)
,

DH(q)
�
=

(
∂H

∂x
(x, y),

∂H

∂y
(x, y)

)T

,

g(q, t)
�
= (g1(x, y, t), g2(x, y, t))T .

(2)

The symbol T denotes the transpose operation of vectors.
g(q, t) has the periodicity ofT (= 2π/Ω) for t. The right-
hand side of the system (1) is assumed to be tractable in
the region we are interested in. Additionally the system (1)
under ε = 0 holds the following assumptions [10], [11],
[17], [18]: The assumed phase structure is schematically
shown in Fig. 1.

Assumption 1 For ε = 0 the system (1) possesses a

homoclinic orbitΓ 0 �
= {q0(t) | t ∈ R} to a saddle point

p0.
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Fig. 1. Assumed phase structure of non-autonomous system (1) under
ε = 0.

Assumption 2 The interior ofΓ 0 ∩ {p0} is filled with
a continuous family of periodic orbitsqα(t), α ∈ (−1, 0)
with period Tα. Letting d(x,Γ 0)

�
= inf

q∈Γ0
|x − q|, we

have lim
α→0

sup
t∈R

d(qα(t),Γ 0) = 0 and lim
α→0

Tα = +∞. In

addition the system (1) underε = 0 possesses a centerp−1

surrounded by the continuous family of the periodic orbits.
Assumption 3 Tα is a differentiable function of the

Hamiltonian valuehα
�
= H(qα(t)) and dTα/dhα > 0

insideΓ 0 ∩ {p0}.

A discrete dynamical system is introduced for the trans-
formed system as follows:


dq

dt
= JDH(q) + εg(q, φ),

dφ

dt
= Ω ,

(3)

whereφ has the periodicity of2π, that is,φ ∈ S1. If we

take a global sectionΣφ0

�
= {(q, φ) ∈ R2 × S1 |φ = φ0 ∈

S1}, for some fixed phaseφ0 the autonomous system (3)
is transformed into a discrete dynamical system:

P ε
φ0

: Σφ0 → Σφ0 . (4)

A periodic orbit with the periodT in the system (1) is
transformed into a fixed point of the same type stability in
P ε

φ0
. P ε

φ0
is often called Poincaré map.

III. AN ANALYTICAL CRITERION FOR BASIN
BOUNDARIES OF NON-RESONANT SOLUTIONS

BASED ON MELNIKOV’S METHOD

This section briefly introduces an analytical criterion for
the basin boundary of the non-resonant solution in the
discrete dynamical systemP ε

φ0
based on the Melnikov’s

method. The detail derivation and numerical examples are
shown in [8].

A. Non-Resonant and Resonant Solutions

Before starting the discussion let us confirm non-resonant
and resonant solutions in the non-autonomous system (1). A
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Fig. 2. Schematic phase structure of discrete dynamical systemP ε
φ0

for
sufficiently smallε.

non-resonant solution γε
0(t) in the system (1) is a periodic

solution with the periodT , which is represented asγε
0(t) =

p0 +O(ε), having the same stability asp0. For sufficiently
smallε the non-resonant solutionγε

0(t) uniquely exists, and
associated invariant manifolds areCr-close to those of the
unperturbed periodic orbitp0 × S1 [10], [11], [17], [18];
Here γε

0(t) is transformed into a fixed pointpε
0 of P ε

φ0
.

Furthermore we make the following assumption pertinent
to the basin boundary:

Assumption 4 A non-resonant fixed pointpε
−1, associ-

ated withp−1, of P ε
φ0

uniquely exists and is asymptotically
stable.

Assumption 4 is necessary for the evaluation of the basin
boundary of the non-resonant solutionpε

−1. On the other
hand aresonant solution in the system (1) is a periodic
solution, which associated fixed or periodic point ofP ε

φ0

does not coincide with bothpε
0 andpε

−1.

B. Derivation of An Analytical Criterion

Based on the above discussion Fig. 2 shows the schematic
phase structure of the discrete dynamical systemP ε

φ0
for

sufficiently smallε. In the figureq0(−t0) denotes a point
on the homoclinic orbitΓ 0 as a parametert0 ∈ R and
DH(q0(−t0)) the normal vector at the pointq0(−t0).
In addition, q s

ε represents the intersection point of the
normal vectorDH(q0(−t0)) and the stable manifold, which
possibly coincides with the basin boundary ofpε

−1, of the
saddle pointpε

0.
We now derive an analytical criterion for the basin

boundary ofpε
−1 in P ε

φ0
using the distance betweenq0(−t0)

on Γ 0 and q s
ε on the stable manifold. The distance

d s(q0(−t0), φ0, ε) is defined as follows:

d s
(
q0(−t0), φ0, ε

)
= ε

∆s
1

(
q0(−t0), φ0

)
|DH(q0(−t0)) | + O(ε2)

�
= d s

1

(
q0(−t0), φ0

)
+ O(ε2) (5)



where∆s
1

(
q0(−t0), φ0

)
is given by

∆s
1

(
q0(−t0), φ0

)
= −

∫ +∞

−t0

DH(q0(t))

· g (
q0(t),Ω(t + t0) + φ0

)
dt. (6)

It is then expected that for sufficiently smallε the following
modified pointq0′(−t0, φ0) is close to the stable manifold:

q0′(−t0, φ0)
�
= q0(−t0)

+
d s
1(q0(−t0), φ0)
|DH(q0(−t0))| DH(q0(−t0)). (7)

We hence propose the modified homoclinic orbitΓ 0′
φ0

as an
analytical criterion for the basin boundary ofpε

−1 in P ε
φ0

:

Γ 0′
φ0

�
= {q0′(−t0, φ0) | t0 ∈ R andφ0 ∈ S1}. (8)

Remark 1 Our proposed criterion has the following ad-
vantages:

• The criterion can be calculated with the information
about the system (1) underε = 0, that is, the integrable
system.

• Since the criterion is based on the stable manifold
which possibly coincides with the true stability bound-
ary, the criterion is not conservative such as the Lya-
punov’s direct methods for the autonomous systems.

On the other hand we can indicate the disadvantages of our
proposed criterion as follows:

• The criterion does not provides us with any sufficient
condition for the basin boundary of the non-resonant
solution.

• The criterion cannot necessarily grasp various stability
boundaries which possibly appear in the system (1):
for examples, (i) genesis of resonant solutions and
associated basin boundaries, (ii) fractal growth in the
basin boundary of the non-resonant solution.

In Section IV, to get rid of the disadvantage (i), we show an
analytical approach to the basin boundaries of the resonant
solutions.
Remark 2 If more than one saddle point with associated
homoclinic orbit and family of periodic orbits exist in the
system (1), our proposed criterion can be applied to each
homoclinic orbit.

IV. AN ANALYTICAL APPROACH TO BASIN
BOUNDARIES OF RESONANT SOLUTIONS

BASED ON SUBHARMONIC MELNIKOV
FUNCTIONS

This section discusses the basin boundaries of the res-
onant solutions based on the subharmonic Melnikov func-
tions and related theory [9], [10], [11], [17], [18].
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Fig. 3. Conceptual diagram of action angle coordinates transformation.

A. Action Angle Coordinates Transformation

At first, in the interior of Γ 0 ∩ {p0} the system (1)
can be transformed into another system via an action
angle coordinates transformation [9], [11]. Fig. 3 shows the
conceptual diagram of the action angle transformation in the
system (1) underε = 0. The transformation can be found
as follows:


I = TI(x, y)

�
=

1
2π

∮
H(x,y)=Hc

ydx,

θ = Tθ(x, y)
�
=

2π

T (Hc)
s(x, y),

(9)

where T (Hc) denotes the period of the periodic orbit
satisfyingH(x, y) = Hc(= const.). s(x, y) represents the
time taken for the solution starting at a prefixed point on the
periodic orbitH(x, y) = Hc to reachq. The transformation
(9) is one of canonical transformations, and its differentiable
inverse exists:x = Tx(I, θ) and y = Ty(I, θ). As a result
the system (1) is represented as follows:




dI

dt
= ε

(
∂TI

∂x
g1 +

∂TI

∂y
g2

)
,

�
= εF (I, θ, t),

dθ

dt
= Ω̃(I) + ε

(
∂Tθ

∂x
g1 +

∂Tθ

∂y
g2

)
,

�
= Ω̃(I) + εG(I, θ, t),

(10)

whereΩ̃(I) stands for the angular frequency of the periodic
orbit satisfying H(I) = Hc(= const.). The functions
F and G apparently have the periodicity ofT for t. A
discrete dynamical system̃P ε

φ0
can also be defined by the

transformed system as follows:


dI

dt
= εF (I, θ, φ),

dθ

dt
= Ω̃(I) + εG(I, θ, φ),

dφ

dt
= Ω .

(11)



B. One Degree of Freedom Perturbed Hamiltonian Systems
for Resonant Solutions

We consider small perturbation in the neighborhood of
the following resonance relation:

mΩ̃(Im/n) = nΩ = n
2π

T
, (12)

wherem and n are relatively prime integers andIm/n an
action value satisfying the above relation; A region near
I = Im/n in P̃ ε

φ0
at φ0 = 0 (abbreviated as̃P ε

0 ) is called a
resonance band. The small perturbation is now introduced
as follows:

I = Im/n +
√

εh, θ = Ω̃(Im/n)t + σ. (13)

The perturbation is regarded as a kind of van der Pol
transformations [10], [11], [19]. A variational system is then
obtained as follows:



dh

dt
=

√
εF (Im/n, θ, t)

+ ε
∂F

∂I
(Im/n, θ, t)h + O(ε3/2),

dσ

dt
=

√
ε
∂Ω̃
∂I

(Im/n)h

+ ε

{
1
2

∂2Ω̃
∂I2

(Im/n)h2 + G(Im/n, θ, t)

}

+ O(ε3/2).
(14)

We are in a position to derive ODF perturbed Hamiltonian
system for the resonant solutions by applying the second
order averaging [10], [11], [19], [20] to the variational
system (14). A second order averaged system is obtained
as follows:



dh

dt
= µ

1
2πn

M̄
m/n
1

(
σ

Ω̃(Im/n)

)

+ ε
∂F

∂I
(σ)h,

dσ

dt
= µ

∂Ω̃
∂I

(Im/n)h

+ ε

{
1
2

∂2Ω̃
∂I2

(Im/n)h
2

+ G(σ)

}
,

(15)

whereµ
�
=

√
ε is treated as a dependent parameter, and



M̄
m/n
1

(
σ

Ω̃(Im/n)

)
�
= Ω̃(Im/n)

∫ mT

0

F (Im/n, Ω̃(Im/n)τ + σ, τ)dτ,

∂F

∂I
(σ)

�
=

1
mT

∫ mT

0

∂F

∂I
(Im/n, Ω̃(Im/n)τ + σ, τ)dτ,

G(σ)
�
=

1
mT

∫ mT

0

G(Im/n, Ω̃(Im/n)τ + σ, τ)dτ.

(16)

M̄
m/n
1 (σ/Ω̃(Im/n)) is well-known as a subharmonic Mel-

nikov function [10], [11], [17], [18]. The averaged system
(15) is ODF (time-independent) perturbed Hamiltonian sys-
tem with the HamiltonianK(σ, h):

dq

dt
= JDK(q) + εg(q), (17)

whereq
�
= (σ, h)T and



K(q)
�
= µ

{
∂Ω̃
∂I

(Im/n)
h

2

2
−

∫
M̄

m/n
1

(
σ

Ω̃(Im/n)

)
dσ

2πn

}
,

DK(q)
�
=

(
∂K

∂σ
(q),

∂K

∂h
(q)

)T

,

g(q)

�
=

(
1
2

∂2Ω̃
∂I2

(Im/n)h
2

+ G(σ),
∂F

∂I
(σ)h

)T

.

(18)
Remark 3 The subharmonic Melnikov function
M̄

m/n
1 (σ/Ω̃(Im/n)) provides us with existence and

stability conditions of the resonant fixed or periodic
points in the discrete dynamical system̃P ε

0 . In [11]
M̄

m/n
1 (σ/Ω̃(Im/n)) is discussed in terms of̃P ε

φ0
and its

first derivation, and is derived as the existence condition for
m resonant periodic points of̃P ε

0 . Roughly speaking, the
condition of P̃ ε

0 is identical to the existence condition for
equilibrium points in the averaged system (17) underε = 0,
that is, M̄m/n

1 (σ/Ω̃(Im/n)) = 0 and h = 0. In addition,
if M̄

m/n
1 (σ/Ω̃(Im/n)) possesses some zero points, then

we have2m zero points; Associatedm equilibrium points
have the saddle-type stability. This property directly leads
to the assumptions which the averaged system (17) will
hold in the next subsection.
Remark 4 The averaged system (17) possibly has the
sufficient property to clarify the phase structure of the
discrete dynamical system̃P ε

0 qualitatively. As discussed
in [10], [11], [17], [18], provided that∂Ω(Im/n)/∂I is
bounded and sufficiently smallε, the second order aver-
aging is generally relevant to determine the stability for all
equilibrium points of the averaged system (17). In addition,
through the phase structure of the averaged system (17), we
can grasp the phase structure in the resonance band (12) of
P̃ ε

0 qualitatively.
Remark 5 The phase structure of the averaged system
(17) can be analytically examined based on the original
system (1) underε = 0. In addition we can understand the
phase structure of the averaged system (17) underε = 0
analytically because of its integrable property.

C. Main Result: An Approximate Expression for Basin
Boundaries of Resonant Solutions

This subsection states the main result obtained in this
paper: an approximate expression for the basin boundaries



of the resonant solutions based on the averaged system
(17) and our proposed criterion in Section III. In order to
apply our proposed criterion to the averaged system (17),
we introduce the following assumptions which are identical
to Assumptions 1 and 2:

Assumption 5 For ε = 0 the averaged system (17)

possesses a homoclinic orbitΓ
0

(i)
�
= {q0

(i)(t) | t ∈ R} to
each saddle pointp0(i) for i = 1, · · · ,m.

Assumption 6 Each interior of Γ
0

(i) ∩ {p0(i)} is
filled with a continuous family of periodic orbits
qα

(i)(t), α ∈ (−1, 0) with period Tα(i). We assume

lim
α→0

sup
t∈R

d(qα
(i)(t),Γ

0

(i)) = 0 and lim
α→0

Tα(i) = +∞. In

addition the averaged system (17) underε = 0 possesses a
centerp−1(i) surrounded by each continuous family of the
periodic orbits.

As mentioned in Section III, for sufficiently smallε, each
non-resonant equilibrium pointpε

0(i) related top0(i) in the
averaged system (17) uniquely exists and becomes a saddle
point. In addition we make the following assumption:

Assumption 7 Each non-resonant equilibrium point
pε
−1(i) associated withp−1(i) for i = 1, · · · ,m in the

averaged system (17) uniquely exists and is asymptotically
stable.

Thus, for sufficiently smallε, the averaged system (17)
has the same phase structure as Fig. 2 qualitatively.

We now derive an approximate expression for the basin
boundaries of the resonant solutions as same as the process
in Section III. From the above discussion each modified
homoclinic orbit Γ

0′
(i) for i = 1, · · · ,m is obtained as

follows:

Γ
0′
(i)

�
= {q0′

(i)(−t0) | t0 ∈ R}, (19)

wheret0 parameterizes each point onΓ
0

(i) and


q0′
(i)(−t0)

�
= q0

(i)(−t0)

+
d

s

1(i)(q
0
(i)(−t0))

|DK(q0
(i)(−t0))|

DK(q0
(i)(−t0)),

d
s

1(i)(q
0
(i)(−t0))

�
= ε

1
|DK(q0

(i)(−t0))|
·
(
−

∫ +∞

−t0

DK(q0
(i)(t)) · g(q0

(i)(t))dt.

)
.

(20)

As shown in Section III each modified homoclinic orbit
Γ

0′
(i) is close to the stable manifold, which coincides with

the basin boundary ofpε
−1(i), of the saddle pointpε

0(i). We

hence propose
m⋃

i=1

Γ
0′
(i) as an approximate expression for

the basin boundaries of the resonant solutions.

Remark 6 The expression can be directly derived with
the original Hamiltonian system (1) which is the integrable
system.

Remark 7 To describe the expression
m⋃

i=1

Γ
0′
(i) in the

original x − y plane, it is necessary that each point on
m⋃

i=1

Γ
0′
(i) in σ̄ − h̄ plane is transformed into a point in

x− y plane. The transformation is performed based on the
following formula:

I = Im/n +
√

ε h, θ = σ, (21)

and
x = Tx(I, θ), y = Ty(I, θ). (22)

Remark 8 The expression approximately represents the
basin boundaries of the resonant solutions. We obtained
m⋃

i=1

Γ
0′
(i) through the averaged system (17) which is derived

by truncating the variational system (14) untilO(ε) terms.
Although the phase structure of the averaged system (17)
is identical to that ofP̃ ε

0 in the resonance band (12)
qualitatively, it should be noted that the expression provides
us with second order information about the basin boundaries
of the resonant solutions.

D. Example

Our present approach is applied to the following concrete
non-autonomous system [10], [18]:



dx

dt
= y{Ω − (x2 + y2)}
+ ε{δx − x(x2 + y2) + γx cos t},

dy

dt
= −x{Ω − (x2 + y2)}
+ ε{δy − y(x2 + y2)}.

(23)

For ε = 0 the system (23) is ODF Hamiltonian system with
the HamiltonianH(x, y):

H(x, y) = Ω
x2 + y2

2
−

(
x2 + y2

2

)2

. (24)

The system (23) underε = 0 does not have any hyperbolic
saddle point and associated homoclinic orbit. However,
in the interior of the circle{(x, y) |x2 + y2 = Ω} the
Hamiltonian system possesses a center at the origin and
a family of periodic solutions satisfying Assumption 3; We
can therefore analyze the system (23). In addition, forε �= 0,
γ = 0 and0 < δ < Ω , the system (23) has a non-resonant
unstable focus at the origin and a stable limit cycle with
the period2π/(Ω − δ).

We now consider 1/2–harmonic entrainment and asso-
ciated basin boundary in system (23). The entrainment is
mathematically represented by the resonance relation (12)
at m = 2 andn = 1. Using the following transformations:

x =
√

2I sin θ, y =
√

2I cos θ, (25)
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Fig. 4. Basin structure and approximate expression for discrete dynamical
systemP ε

0 associated with non-autonomous system (23). The fixed point
U1 is completely unstable, that is, source, andS(or D)2i (i = 1, 2) stand
for the completely stable (or directly unstable) 2-periodic points.

and
θ =

t

2
+ σ, I =

ω

2
+
√

εh, (26)

whereω
�
= Ω − 1/2, and averagingO(ε) terms we obtain

the second order averaged system as follows:


dσ

dt
= µ(−2h)

+ ε
γ

4
sin 2σ,

dh

dt
= µω

(
δ − ω − γ

4
cos 2σ

)
+ ε

{
2(δ − 2ω) − γ

2
cos 2σ

}
h,

(27)

whereµ
�
=

√
ε and all single bars are dropped. Forε = 0

the averaged system (27) is ODF Hamiltonian system with
the HamiltonianK(σ, h):

K(σ, h) = µ
[
−h2 − ω

{
(δ − ω)σ − γ

8
sin 2σ

}]
. (28)

By calculating the approximate expression for the averaged
system (27) we can discuss the basin boundary in the non-
autonomous system (23).

Figure 4 shows the basin structure and the approximate
expression in the discrete dynamical systemP ε

0 associated
with the system (23) atΩ = 1.0, ε = 0.05, δ = 0.7 and
γ = 1.1. In the figure theblack point, plotted at the origin,
denotes the sourceU1 andQP the quasi-periodic solution.
The white and dark-gray regions in Fig. 4 represent the
basins of 2-periodic pointsS2

i (i = 1, 2) and the light-
gray region the basin ofQP. The approximate expression
is described with twoblack solid lines, and precisely grasps
a part of the basin boundaries ofS2

i . This example shows

the effectiveness of the approximate expression although it
can not clarify the detail of the basin boundaries ofS2

i .
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