
Input-output Analysis of Decentralized Relay 
Systems 

Nikolay V. Faldin, Platon I. Fedorovski, Igor M. Boiko 

 
 
Abstract—A method of input-output analysis of 

decentralized relay systems is proposed in the paper.  The 
proposed method furnishes a better accuracy than the 
describing function method and does not require the 
involvement of the filtering hypothesis. An example 
illustrating application of the method and assessment of its 
accuracy is given. 

I. INTRODUCTION 

 RELAY  control systems are extensively used in various 
industries in many cases providing cheaper solutions 

and better performance compared to other types of control 
system.  Some application examples are various on-off 
process control systems, DC motor, pneumatic and 
hydraulic relay servo actuators, etc. Relays used in those 
control systems normally have two-level ideal or hysteresis 
characteristic. Application of a decentralized relay may 
provide some advantages over a single relay control. 
Among those advantages the most important are: smaller 
amplitude of self-excited oscillations and higher tracking 
accuracy of servo control.  A method of input-output 
analysis of dead-zone relay servo systems was given in [1], 
which was the extension of the methodology proposed in 
[2] and [3] for the hysteresis relay. The current paper 
extends mentioned above methods to the case of two relays. 
The obtained results well agree with known exact [4] and 
approximate [5] methods of analysis of periodic motions in 
relay systems as well as of periodic motions in 
decentralized relay systems [6]. 

II. PROBLEM FORMULATION AND MAIN 
RESULTS 
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Fig.1.  Decentralized relay system with two relays. 
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The decentralized relay system, which is going to be 
analysed in the paper, can be represented by the block 
diagram (Fig. 1). It consists of a plant given by the transfer 
function W , two identical hysteresis relays (R)(0 s

)(s

1 and R2) 
and two linear filters given by the transfer functions W  
and . The filters given by W  and W  
transform signal x into signals and  that have a phase 
shift in respect to each other.  As a result, relays R

)(1 s
)(2 s2W )(1 s

2y1y
1 and R2 

switch at different times and control U, which is the sum of 
their outputs, is equivalent to the output of a certain dead-
zone relay (Fig. 2). 
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Fig. 2.  Resultant control. 

A. Analysis of the periodic motion 
Let us denote the transfer functions: 

; ; )()()( 10
*

1 sWsWsW = )()()( 10
*
2 sWsWsW =

2
A  being the 

amplitude of the relay outputs (R1 and R2); and 2κ being 
the hysteresis of relays R1 and R2.  We can assume without 
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loss of generality that in periodic motion, the signal 
has a phase lag with respect to signal the .The 

resultant control U  is the sum of the two relay outputs 

as shown in Fig. 2. Let x  be the state 
vector of the system, 2T be the period of self-excited 
oscillations and γ be the relative duration of the positive 
pulse (Fig. 2).  Let us denote the value of x in a periodic 
motion at the time of the control U switch from zero to plus 
as . Let us denote the value of x in a periodic 
motion at the time of the control U switch from plus to zero 
as .  Define the phase locus of the relay system 

with two relays as vectors  and . Let us 
call the components of the phase locus R-characteristics. 
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To determine the parameters of the self-excited 
oscillations (period 2T and relative pulse duration γ) the 
following set of equation should be solved: 

) , Z , 

)y , . 

where ,  are R-characteristics pertaining 
to the input signals of the relays R

)γ

)t

,
1 and R2 respectively; 

is the value of  in periodic motion at the 

time of relay R1 switch from plus to minus;  is the 
value of  in periodic motion at the time of relay R2 
switch from mines to plus. 

Consider the components of the phase locus.  Let the 
linear part of system be given by: 
                                  , (1) = f  
where C , U is a scalar control.  nnn×

Find vector x value at the time of the control U switch from 
zero to minus (this time corresponds to half of the period): 
    , (2) T ()x
where  is the solution of equation ; E is the 
identity matrix of respective dimension. Formula (2) is 
valid if vector x is continuous on t∈ [ .  Since the 
solution is symmetric on period 2T, for periodic motion the 
following holds:  and the first component of 

the phase locus x  is:  

=

)

E ))(− . 

The second component x  can be determined as 

a solution of (2) at t=γT subject to control is U  and 

initial state is x : 1

) == x  

B. Input-output analysis of type zero relay servo system 
Suppose the transfer function doesn’t have zero poles. 

Also suppose that in the autonomous mode there exists 
symmetric oscillations with parameters T  and γ . 0 0

In the case of non-symmetric control (fig. 3) (it can occur 
when a constant input signal is introduced) the parameters 
of the oscillations can be defined by four function-vectors 

, , 

, x . 
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Here  corresponds to the control U switch from zero 
to plus, x  - from plus to zero,  - from zero to minus, 

- from minus to zero.  
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Fig. 3.  Control signal. 

 

Let the control U be as shown in the Fig. 3.  Introduce a 
small constant input signal f.  This will result in small 
deviations of the limit circle parameters , ,  
and .   

1τ∆ 2τ∆ 3τ∆

T∆=∆ 4τ
Let us write the conditions of proper relays switching 

with an accuracy of up to the first order of small quantity: 
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Consider symmetric periodic functions U  
corresponding to R-characteristics where time  stands 

for respective relay switching.  For U  0  stands for 
relay R

)(ti

0=t

)(ti =t
2 switch from minus to plus. Asymmetry of control 

U can be caused by a variation of the time of any switch of 
either of the relays. Denote asymmetric control as follows: 

)()()(~ tUtUtU i
j

ii
j δ+= , 

where is a symmetric periodic function; δ  is a 
control increment, which too is a 2T-periodic function and 
caused by the increment τ .  The typical control increment 
is shown in Fig. 4 
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Let us denote 
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Since the superposition principle is valid for the linear 
part of the system, the following can be set forth for R-
characteristics  i

jx~

i
j

ii
j xxx δ+=~ , 

where  - R-characteristic corresponding to periodic 

signal δ . According to (4): 
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The analysis of increment  proves the following 

formulas to be valid if the plant is linear: 
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Derive from (3) the following equalities with the use of 
equations (6): 

0=∆T , , (7) 321 τττ ∆−∆=∆
If the input signal is not introduced the following 

equalities are valid: 
,1

2 κ=− y     , ,     . κ−=− 2
1y κ−=− 3

2y κ=− 4
1y

Taking into consideration (7), rewrite equations (3) as: 
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The equivalent gains of the relays can be found as 
quotients of averaged over the period control component U 
and averaged input signals of the relays  and .  1y 2y

1

1
1 y
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2

2
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UK = . (9) 

For 2121  , , , yyUU  the following formulas are obviously 
true: 
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Considering (7), (9) – (11) the following formulas of the 
equivalent gains of the relays can be derived: 
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Variables  and 1τ∆ 2τ∆  can be obtained from (8). As a 
result, the following final formulas of the equivalent gains 
can be obtained: 
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C. Input-output analysis of type one relay servo system 
Let us consider input-output analysis of the system if the 

plant contains one zero pole. Let the system be as depicted 
in Fig. 5  
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Fig. 5.   Type one control system. 

 
Let the signal U be 

UtUtU += )()( 0 , 

where U  is a symmetric 2T-periodic function (Fig. 2). )(0 t
If control U is asymmetric the following formula is valid: 
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11 txtUktx ++= ν  (14) 

where  is a constant value determined by the initial 
conditions,  is a 2T-periodic function with zero 
average over the period value. Asymmetric periodic motion 
may exist in the system if the input signal  
is introduced. Let in the steady oscillatory process the ramp 
input applied to the relays be: 
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Write the conditions of relay switches with an accuracy 

of up to the first order of small quantity – with the use of 
equations (7): 
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Consider propagation of signal f through the filter W  
with the constant and ramp components being of interest, 
with the use of Laplace transform. 
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Here, Z(s) is the Laplace transform of the motion 
component vanishing with time. It will not be taken into 
account below. Factor  can be determined through the 

representation of 
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Reasoning along similar lines, consider the input signal 

f(t) propagation through the filter W . Therefore, the 
following equations are valid with (15) and (16) taken into 
account: 
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the set of equations (15) can be rewritten as: 
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Let us denote . The equivalent gains of the 

relays are determined as above (formulas (9)) but  and 
 are now equal to: 
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representation of 

)(~ *
1

sW )(*
2

s

)())( 10 sW
s
ksW +(  and 

)()(( 0 ssW ) 2W
s
k

+  respectively with the integrators being 

not considered. Now we can write the formulas of the 
equivalent gains of the relays:  
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In formulas (21): 
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D. Derivatives of R-characteristics 
To calculate the equivalent gains of the relays it is 

necessary to know the derivatives j
ix τ∂∂ . Suppose that 

transfer functions W  and W  are represented as 
partial fractions. Obviously the following statements are 

true: 
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from a variational equation pertaining to a particular partial 
fraction. 

1x

as
k
+

1
1

td
xd δ

)(1
1 t

)1τ−

+− ta kAe
x

Uk δ=

1
)1 τ∆

)0(xδ

)(1
1δ tU

(x T2

1

0

−

aγ

)( =sW

1M

2M

1N

2N

βγ

βγ

1( +

1(

1( −

1(

eT) +

γ eT) −
1( γα +eT

1(α +eT

1( γα −eT

1( γα −eT

T

β

β +

β

β −

)γ

)γ

)γ

)γ

Let us obtain the formula of 1τ∂∂  for transfer 

function sW =)( . Variational equation for this 

element is: 
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Increment  is depicted in Fig. 4. Control 

variation  is approximately equal to δ-function: 

. Equation (22) has the following 
solution: 
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In a periodic motion δ . Then according to 

(23), the following formula of derivative of R-characteristic 
can be obtained: 
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To obtain the formula of the derivative of R-
characteristic for the element with transfer function 

222 2 βαα +++

+

ss
DCs , this transfer function can be 

represented as a sum of two transfer functions with 
complex conjugate coefficients.  

Formulas of the derivatives R-characteristics for various 
elements are presented in Table 1.  Note that the table 
provides not all the derivatives but only those, which are 
necessary for calculation of the equivalent gains of the 
relays. 

Table 1 has the following notation 
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III. EXAMPLE OF INPUT-OUTPUT ANALYSIS 
Let the transfer functions of system be: 

)12.004.0)(15.0(
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In the autonomous mode, stable self-excited oscillations 
of period T and parameter γ  exist in the 
system. The equivalent gains of the relays calculated with 
the use of the above formulas are: 

7.00 = 58.00 =

24.01 =K ,  636.02 =K
Simulation of the system via integration of the original 

differential equation (DE) with successive Fourier analysis 
was done for the proposed method accuracy assessment.  
Both frequency responses: calculated on the basis of the 
developed approach and through DE solution are presented 
in Table 2. 

TABLE 2 
Proposed approach DE solution Frequency, 

1−s  
o,φ  А o,φ  А 

0.1 -1.9 0.751 -1.879 0.752 
0.2 -3.92 0.75357 -3.85 0.7538 
0.3 -5.891 0.75631 -5.803 0.7562 
0.4 -7.718 0.76015 -7.879 0.7594 

 
The proposed method does not require the filter 

hypothesis to be valid, unlike the describing functions 
method. Moreover, the actual shape of the oscillations is 
taken into account when deriving the formulas of the 
equivalent gains. 

IV. CONCLUSION 
A method of input-output analysis of decentralized relay 

systems is proposed above. Although the proposed 
approach results in more complex final formulas and the 
analysis procedure compared to one relay case, it still 
remains reasonably simple and provides many advantages 
over the describing function method. 
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