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Abstract— Controlling of neutralization processes is a clas-
sical problem beyond many common control techniques avail-
able today due to their strong nonlinearity and extreme
sensitivity to disturbances. This paper proposes an adaptive
fuzzy control scheme for wastewater neutralization process
control. A standard Mamdani type fuzzy system is constructed
to describe the nonlinearity of the process and the parameters
in the fuzzy system are tuned online using the least square
algorithm with deadzone. The controller is designed based
on the fuzzy model and the control action is computed by
exploiting the special features of the fuzzy system. Simulation
results are given in control of the acidity in the continuous
�ow of an industrial wastewater treatment system.

I. INTRODUCTION

Neutralization is a common and important operation in
chemical plants, such as biological, wastewater treatment,
electrochemistry and precipitation systems. The purpose of
neutralization is to adjust the pH value to neutrality for
a certain requirement, for example, to minimize the envi-
ronmental impact in wastewater treatment systems. In the
literature, different approaches to control of neutralization
processes have been applied, such as modified PI, linear
adaptive, model-based, nonlinear adaptive, and predictive
adaptive controllers (see [3], [4], [7] and the references
therein). Despite various techniques devoted to improve
those classical methods, the performance of neutralization
control is not yet adequate due to the inherent nonlinearity
of the titration curve and high sensibility to small perturba-
tions near the equivalence point.

Recently, artificial neural networks, radial basis function
networks and fuzzy systems have been widely used in the
identification and control of nonlinear processes, owing to
their abilities to represent nonlinear mappings to arbitrary
accuracy and learn on-line from the innovation of the
processes [4], [6], [8], [9]. Like many other methods,
artificial neural networks and radial basis function networks,
unfortunately have some severe weaknesses: they can hardly
make use of qualitative heuristic knowledge, they have
not clear physical meanings and thus are not explainable
to users, their construction and initialization are usually
done in a trial-and-error manner and they are complicated
to implement. Comparing with their competitors, fuzzy
systems are capable to do both nonlinear approximation
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and human knowledge incorporation. They are rule-based
systems constructed from a collection of fuzzy IF-THEN
rules� on the other hand, they are nonlinear mappings with
nice properties like universal approximation [10]. There-
fore, fuzzy systems are good candidates for modeling and
controlling of complicated nonlinear processes.

In this paper, an adaptive fuzzy controller is proposed
to control a neutralization process. First, a Mamdani type
fuzzy system with triangular membership functions is built
to describe the nonlinearity of the process and the least
square algorithm with deadzone is used to tune the para-
meters in the fuzzy model. Based on this model a controller
is designed using the decomposing properties of the fuzzy
system. Performance analysis of the scheme is given as well
as numerical results in control of the acidity in the contin-
uous �ow of an industrial wastewater treatment system.

II. ADAPTIVE FUZZY CONTROLLER

A. Control problem

Consider the single-input-single-output nonlinear process
given by

������ � ������� � � � � �������������� � � � � ����������
(1)

where ���� and ���� are the process input and output, re-
spectively� � and� are the orders which are known and ����
is an unknown continuous nonlinear function that describes
the dynamics of the process. Denote the input vector of ����
as 	��� � ������ � � � � ��������� ����� � � � � ���������� �
	 � �	�� � � � � 	��

� � 
 � �� with dimension �, and ��
be the desired trajectory, which is known in advance. The
control task is to determine the control action at sampling
time �, ����, which makes the output of the process at time
���, ������, trace the desired value �������. In short, the
following tracking error cost function is to be minimized:

��� �� � ������ ��� ���� ���
�� (2)

B. Fuzzy model

Since ��� � �� is unknown at time �, to predict it the
following fuzzy system model is used:

	������ � ������� � � � � �������������� � � � � ����������
(3)

where 	��� � �� denotes the prediction of ��� � ��, ���� is
a Mamdani type fuzzy system with the product inference



engine, the singleton fuzzifier, the center-average defuzzi-
fier and triangular membership functions and constructed
through three steps:

Step 1: Let 
 � ���� ��� � � � � � ���� ���. For every �
(� � �� 
� � � � � �), define �� fuzzy sets in ��� � �� � with the
following triangular membership functions:
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Step 2: Construct � �
��
����� fuzzy IF-THEN rules

in the following form:

Rule�������  IF 	� is  ��� and ... and 	� is  ���
THEN � is !������� � (6)

where �� � �� 
� � � � � ��� � � �� �� � �� 
� � � � � �� and !�������
is a fuzzy set with center "������ , which is free to change.

Step 3: Construct a fuzzy system ��	� from the rules
of (6) using the product inference engine, the singleton
fuzzifier and the center average defuzzifier. Then the fuzzy
system can be expressed as follows:

��	� �

���

����
� � �
���

����
"������ �

��
��� ��

��

�

�	���

���

����
� � �
���

����
�
��
��� ��

��

�

�	���

�

���

����

� � �

���

����

"������ ������

�

	
�


���

�
�
��

�

�	�����

�

� � (7)

The last equality is due to the fact that the denominator on
the right hand side of the first equality becomes one if the
triangular membership functions (4)-(5) are used.

The following lemmas reveal the approximation capabil-
ity of the Mamdani type fuzzy system ��	� in the form of
(7) in representing an unknown nonlinear function ��	�.

Lemma 1: For any given continuous function ��	� on a
compact set 
 , and an arbitrary # $ �, a standard Mamdani
type of fuzzy system in the form of (7) exists such that

		��	�� ��	�		� � #� (8)

where the infinity norm 		 
 		� of %�	� on 
 is defined as
		%�	�		� � ���

���

	%�	�	.

Lemma 2: (i) If ��	� is continuously differentiable in the
domain of interest 
, then
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(ii) If ��	� is twice continuously differentiable in 
, then
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C. Adaptation law

Since �
�
��

�

�	�� are fixed triangular membership func-

tions, ��	� can be written into the following form:

��	� � '� �	�"� (11)

where " is the collection of the
��
����� parameters "���� :

" � �"������� � � � � "������� � � � � �

"��������� � � � � "��������� �� � (12)

and '�	� is the corresponding fuzzy basis function vector:

'�	� � �'�������	�� � � � � '��������	�� � � � �
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Equation (11) indicates that ��	� is linear in the parameters
". Therefore, standard parameter tuning algorithms can be
applied to tune the parameters in ��	�, here the following
least square algorithm with deadzone is adopted:

"��� � "��� �� �
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where the initial estimate of " is "���, ) ���� is a positive
definite matrix, the prediction error ����� is defined as

����� � ����� '
� �	��� ���"��� ��� (17)

and the indication function
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with the deadzone � $ � specified by the user.
Remark 1: The reason for using the above tuning algo-

rithm is that it provides good robustness in the presence
of measurement noise, inaccurate modeling or computer
round-off error: the parameter tuning is turned off when the
prediction error is small compared with the disturbances.
For the identification with fuzzy system models, if there
are not enough fuzzy sets defined in the construction
procedure, the approximation error may not be further
reduced regardless of how the fuzzy system model is tuned.



In this case, by Lemma 2, the deadzone can be set as
� �

��
��� 		

��
���
		��� , so that the tuning mechanism is

switched off if the approximation error is already smaller
than the structure error due to the construction.

The cost function in (2) can be written as

��� ��

� ������� ��� ����� ��� � ������ ��� ���� �����

� 
������ ��� ����� ���� � 
������ ��� ���� �����
The adaptive control scheme consists of two parts: (i) the
adaptation law for tuning the parameters in the fuzzy system
model on-line in order to make the predicted output �������
follow the process output ���� ��, which is shown in this
subsection and (ii) the control law for determining ���� in
order to make ������� follow the desired trajectory �������,
which will be further discussed in the followings.

D. Control law
Denote the minimal and maximal values of an allowable

control action as ���	 and ��
�, respectively. The objective
is to find a control �
��� within the range ����	� ��
�� that
can make the error between the predicted output ���� � ��
and the desired output ����� �� as small as possible, i.e.:
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where the control error cost function is defined as


��� �� � ������ ��� ����� ����� (20)

and ������� is the fuzzy system output in the form of (7):
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At time �, ������� and all elements in 	��� � ������ � � � �
������� ����� � � � � �������� , except 	������ � ����, are
known, and the parameter estimates "������ ������ are provided
by the adaptation law (15)-(18). Combining the known
terms into a new parameter "
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for ���� � �� � � � �����, in consequence the fuzzy system
can be rewritten in a simplified form:

��	���� �

�����

������

"
����

����
�
����
���

������� (23)

The membership functions �
�
����
���

������ are defined as in

(4)-(5) and plotted in Fig. 1. We call �������� the center of
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Fig. 1. Membership functions covering the domain of the control ����.
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Fig. 2. ������� as a function of ���� with other components of ���� fixed.

the fuzzy set  ������� , ���� � �� � � � � ����. Clearly, for any
���� covered by the fuzzy sets defined, an index % exists
such that ���� � ������� �

���
����, % � �� 
� � � � , or ���� � �.

From Fig. 1, it is seen that if ���� � ������� �
���
����, then

fuzzy system (23) can be further simplified to
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Hence, the fuzzy system ��	���� is a continuous piece-wise
linear function of ���� when other components of 	��� are
fixed, as shown in Fig. 2. Moreover,
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Lemma 3: Let
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where the index %��	�or %�
�� � �� 
� � � � � or ����. Then
the fuzzy system output satisfies
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From (24), it can be seen that if ���� � �� �
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����, then the control action ���� can be
determined through
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Unfortunately, the control ���� cannot be calculated from
(29) if the index % is not specified. In the the following steps,
a searching method is proposed to find a proper control that
minimizes the control error cost function 
�� � �� in the
form of (20).

Step 1: At time �, compute parameters "
����

��� (for
���� � �� � � � � ����) according to (22), and find "

����
���

from (26) and "
����

��� from (27). If ���� � �� �
�"
����

���� "
����

����, go to Step 2� otherwise, go to Step 3.
Step 2: If ���� � �� � �"

����
���� "

����
����, the control

���� is determined as follows: Find all intervals represented
by index %, which ���� � �� falls into, i.e., ���� � �� �
�"
���
���� "

�
���� or ������� � �"

�
���� "

���
����, and then use

(29) to calculate the control candidate ����� for every such
%. If there are more than one candidates, the final control
���� is chosen as that one that has the smallest 	����� �
���� ��	 (since big change on the control action is usually
undesirable).

Step 3: If ������� *� �"
����

���� "
����

����, which implies
that �� � �� cannot reach zero by any control ���� �
����	� ��
��: (i) when ���� � �� � "

����
���, the control

is chosen as ���� � �������� � (ii) when ����� �� $ "
����

���,
the control is chosen as ���� � �������� . If there are multiple
of such controls, choose one that has the smallest 	�����
���� ��	 as the final control action.

E. Performance analysis
Consider ��		"� representing the fuzzy system (7) with

parameter ". Assume that the unknown process function
��	� is continuous on a compact operating region and,
moreover, it has bounded partial derivatives with respect
to all components of 	. Define the optimal parameter "� as

"� � ������
�

�
���
���

	��		"�� ��	�	

�
� (30)

so that the best fuzzy system approximator of ��	� is
��		"��. Let the minimum approximation error ��	� be
defined as

��	� � ��		"��� ��	�� (31)

From Lemma 2, it is clear that ��	� should satisfy the
following inequalities:
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where the furthest item on the right can be designed in
the construction procedure of the fuzzy system. Define the
tracking error as ����� �� � ����� ��� ���� ��, then

����� �� � ����� ��� ���� ��

� ������ ��� ����� ���
�'� �	�����"���� "�� ���	����� (33)

Recall that our ultimate objective is to make the process
output ��� � �� track the reference trajectory ���� � ��.

From (33), it is clear that the tracking error ���� � �� is
in�uenced by three parts: (i) how close the control action
���� can bring the model output ���� � �� to the target
���� � ��, represented by �
�� � ��, which is defined as
�
�� � �� � ���� � ��� ���� � �� and is called the control
error (	�
�����	 � 

���

 �����), (ii) how close the parameter

estimate "��� is to the optimal parameter "�, described by
'� �	�����"��� � "��, which is called the parameter error,
and (iii) how close the best fuzzy model ��	���	"�� is
to the unknown process nonlinearity ��	����, characterized
by the minimum approximation error ��	����, which is
called the structure error. The aim of the control algorithm
in subsection D, the adaptation law in subsection C, and
the fuzzy system design procedure in subsection B, is to
minimize the control error, the parameter error, and the
structure error, respectively. The prediction error, which is
defined as ������� � ��������������, equals the sum of
the parameter error and the structure error. The performance
of the adaptive control scheme consisting of the fuzzy
system design procedure, the adaptation algorithm, and the
control algorithm, is described by the following theorems.
Due to the page limitation, all proofs to the lemmata and
theorems will be omitted.

Theorem 1: For the identification part, if the fuzzy system
model (3) is used for the process (1), the fuzzy system is
constructed as in subsection II.B. and its parameters are
tuned by using the adaptation law (15)-(18) with deadzone
chosen as � �

��
��� 		

��
���
		��� , then:

(i) the parameter discrepancy �"��� � "���� "� satisfies

		�"���		� � +		�"���		�� for � � �, (34)

where + �condition number of �) ������� � ����� ����
��

����� ������
�

(ii) the prediction error ����� �� � ����� ��� ���� ��
satisfies

��� ���
���

������

� � '� �	��� ���) ��� 
�'�	��� ���
� ��. (35)

Remark 2: From the expressions of triangular member-
ship function (4)-(5) and regression vector (13)-(14), it can
be seen that in the set 
, '�	������ is always bounded in
terms of Euclidean length. Therefore ��'� �	������) ���

�'�	������ and also ��� ���

���
	�����	 is bounded. Moreover,

since �� in Lemma 2 can be made arbitrarily small by
defining sufficiently many fuzzy sets, � can be made less
than any given value. However, there is no guarantee that
the parameter vector "��� will converge to "�.

Theorem 2: For the control part, the control algorithm
provides the best control result that can be achieved via a
single-step allowable control action. That is to say, using
the algorithm, an allowable control �
��� can always be
found, which globally minimizes the control error function

��� ��, i.e.,


��� �	���� � �
���� � ���
���������������


��� ��� (36)



Theorem 3: Consider the overall adaptive control scheme
applied to nonlinear process (1). The tracking error �����
�� � ����� ��� ���� �� satisfies

��� ���
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	�������	 � ��� ���
���

	�������	���� ���
���

���
 ������

(37)
Remark 3: In Theorem 1: (i) the parameter vector " is

bounded since "� is finite and (34) is true� (ii) since the
output of the fuzzy system �� is bounded (" and ' are
both bounded), the prediction error �� is bounded under
the assumption that the process operating region involved
is compact and on it the process ��	� is continuous and
has bounded partial derivatives with respect to all compo-
nents of 	. In Theorem 2, the one-step-ahead control error
function 
 is bounded provided that the desired value �� is
finite since the output of the fuzzy system �� is bounded. In
Theorem 3, the tracking error �� is bounded if 
 is bounded
since (37) is true.

III. WASTEWATER NEUTRALIZATION CONTROL

A. Neutralization process

The process under study is the same as that in [3], [5] and
described as follows. A strong acid �ows into a tank and
is there thoroughly mixed with a strong base whose inward
rate of �ow is controller in such a way as to produce a
neutral outward �ow from the tank. Fig. 3 depicts a simple
diagram of a standard wastewater neutralization tank.

Because the acid and the base are strong, each is com-
pletely dissociated, and also the dissociation of the water
can be disregarded. This can be described by the following
model:

, �- � ���� -�� ���� -�� (38)

where
, �volume of the tank,
� �rate of �ow of the acid,
� �concentration of the acid,
� �rate of �ow of the base,
� �concentration of the base, and
- � �H��� �OH�� is the distance from neutrality.
The pH value � can be calculated from the following

nonlinear transformation:

- � ���� � ���.�� (39)

A c i d :  d ( t )

B a s e :  u ( t )

p H  v a l u e :  y ( t )

Fig. 3. The wasterwater neutralization system.

where .� � water equilibrium constant � ����� (unit:
gram-ion/liter).

It is assumed parameters �, � and , are fixed and
known. For simulation purposes, their values used here
are the same as in [3]: , � 
 liter, � � ���� mol/liter,
� � ���� mol/liter.

The following approximation discrete-time model is de-
veloped for the continuous equation (38):

-����� � -����
/

,
�������� -����� ������� -����� � (40)

where the sampling interval / is � minute.
From (39), it can be seen that the pH value ������ is a

function of -��� ��:

���� �� � ��-��� ���

� �����

�
����-��� �� �

�
����-���� �� � �� ����




�

�

(41)

By using (40), ��� � �� can be further represented as a
function of ����, ���� and ���� in the following N-ARMA
form:

���� �� � � ������ ����� ����� � (42)

where ���� is a nonlinear function.

B. Simulation

The objective is to control the pH value � in the tank
by manipulating the base �ow rate �. Two types of control
tasks are considered in the following:

(i) Setpoint tracking. The control objective is to make the
pH value follow the following reference trajectory closely:
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 �� � ��

(43)

The acid �ow rate ���� � ����
! liter/minute for the whole
time.

(ii) Disturbance rejection. The control objective is to keep
the pH value at a preset level (���� � �) regardless of the
disturbance due to the acid �ow variation as follows:

���� �

�
����
! liter/minute�

����
! � ����
! ��� ��

��
liter/minute�

� � ����
��� � ��

(44)
The fuzzy prediction model is

	���� �� � � ������ ����� ����� � (45)
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Fig. 4. Membership functions for pH value.

where ���� is a Mamdani type fuzzy system in the form of
(7), with a product inference engine, a singleton fuzzifier, a
center-average defuzzifier. The fuzzy sets for the pH value
���� are described by nine triangular membership functions
which are shown in Fig. 4.

For ���� and ����, four fuzzy sets with equally-spaced
triangular membership functions were chosen to uniformly
cover their range, respectively, which are both ����� ����
!�.
All parameters in the fuzzy system are initialized as zero
and tuned on-line based on the input-output observations of
the process and ) ���� � ���(. Both simulations start at
initial states ���� � �� and ���� � ��� liter/minute.

Fig. 5 and 6 show the control results for the setpoint
tracking problem and the disturbance rejection problem,
respectively. It can be seen that the adaptive fuzzy controller
works very well both in tracking a stair-step reference signal
and in disturbance rejection, and the control error becomes
smaller and smaller as the controller keeps on learning.
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Fig. 5. Control of pH in acidic wastewater using the adaptive fuzzy
controller: setpoint tracking problem. Top: Reference trajectory and the
controlled outputs of the process. Bottom: Control actions.

IV. CONCLUSION

An adaptive fuzzy control scheme has been developed in
this paper for neutralization process control. The process

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0
4

5

6

7

8

9

1 0
C o n tr o l r e s u l ts  o f  p H

T im e  s te p

y r ( t )

y ( t )

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0
0 .1

0 .1 0 5

0 .1 1

0 .1 1 5

0 .1 2

0 .1 2 5

T im e  s te p

u ( t )

Fig. 6. Control of pH in acidic wastewater using the adaptive fuzzy
controller: disturbance rejection problem. Top: Reference trajectory and
the controlled outputs of the process. Bottom: Control actions.

is modeled by a standard Mamdani fuzzy system, and the
fuzzy system parameters are adjusted using the least square
algorithm with dead to tune. The control action is computed
by making use of the special internal properties of the
fuzzy system, which globally minimizes the cost function
comprising the errors between the predicted outputs of the
process and the reference trajectory. Performance analyses
and simulation results in control of an industrial wastewater
treatment system show the effectiveness of the proposed
scheme.
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