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Abstract- In this paper, a new method for cluster number
optimization of Takagi & Sugeno models is proposed. Also, a
general identification methodology is described, including a
sensitivity analysis for input variable selection. The new
method is exemplified using a benchmark problem, i.e., Chen
series. After that, the fuzzy models of a combined cycle power
plant boiler, using the proposed methodology, are derived.

I. INTRODUCTION

OMBINED cycle power plants are of great interest for
many countries due to their high efficiencies and their

low investment costs [1].
Also, due to the highly non linear behavior of thermal

power plants boilers, non linear modeling is necessary to
represent the process operation. Particularly, the non linear
multivariable fuzzy models developed in this work will be
used for a future control design of supervisory controller in
order to economic optimize the plant performance [2].

Identification of fuzzy models is a complex problem
given by many steps. A relevant step is determining the
optimal number of clusters [3].

In that area there are some previous works. Reference [4]
propose the cluster validity measures based on the
performance of the obtained partition using criteria like the
within cluster distance, the partition density, the entropy,
etc. This approach implies a high computational effort as
clustering must be repeated several times.

Krishnapuram & Freg [5] describe a Compatible Cluster
Merging (CCM) for finding the number of linear or planar
clusters. The algorithm starts with a maximum number of
clusters, and then the number of clusters is reduced until
some threshold is reached and no more clusters can be
merged. Kaymak & Babuska,  [6] propose a modified CCM
algorithm based on less conservative criteria.
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In this work, we propose a new method for determining
the optimal number of the clusters. Also, a general method
for non linear systems based on fuzzy models is described,
including a benchmark example.

After that, a combined cycle power plant boiler is
described. Then, fuzzy models of a thermal power plant
boiler are developed from simulation data, using the
proposed method. Finally, the work conclusions are
presented.

II. NON LINEAR IDENTIFICATION METHODOLOGY BASED ON
FUZZY MODELS

A. Non linear multivariable fuzzy models
In this work, the use of the Non Linear Autoregressive

with eXogenous variable (NARX) models is considered,
where its structure is given by the following equation:
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where y(k) is a output vector of model, f is the non linear
function to be estimated and u(k) correspond to a vector of
manipulated variables.

The Takagi&Sugeno fuzzy model has the following f
non-linear function:
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where Ai
r  is the fuzzy set of variable i of rule r, gi

r  is
consequence parameter of rule r and yr is  the output of rule
r. The output of the fuzzy model is:
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where Nr is the rules number and wr is the activation
degree of rule r given by:
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with µ i
r  the membership degree of fuzzy set Ai
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where a i
r  and bi

r are membership parameters and xi is one
of the following input variables: ( ( ),y k −1  ... ,   y( ),k na−
u k nk( ),−  ...,  or u k nb nk( ))− − +1 .

B. Identification procedure
The main steps of the non linear identification

methodology are presented in Figure 1. For model
identification it is necessary to select real data from the
process. Those data must include enough information to
represent the different normal operation conditions of the
process. Next, the relevant input variables of the non linear
model are selected. After that, a structural optimization is
made. Then, non linear model parameters using only
relevant input variables and optimal structure are
calculated. Finally, the non linear model is validated. In the
next sections, the main steps of this method are described
in detail.

Data Selection 

Selection of 
Relevant Variables 

 Structural Optimization 

Model 
Validation 

Parameter Identification 

Fig. 1. Flow diagram

1) Data selection
Necessary data sets for non linear fuzzy modeling are:
Training set. From these data, the fuzzy model structure
and model parameters are obtained.
Test set. An additional test set is defined. This set is not
directly used in the training algorithm; however, it
allows to evaluate the model generalization capacity
given by the fuzzy model behavior under a new data
set.
Validation set. Necessary new data to evaluate the

appropriate behavior of adjusted model.

2) Selection of relevant input variables
For any process modeling, one of the most important

points is the appropriate selection of the relevant input
variables (xi : y k( ),−1  ... ,   y( ),k na−  u k nk( ),−  ...,
u k nb nk( ))− − +1  that must be included in the model. To
solve this problem the sensitivity analysis method is
considered [7].

The methodology consists in adjusting an initial model
with the maximum possible input variables, looking for
limiting the problem complexity. Then, the influences or
sensibilities for each input variable are determined. Finally,
the optimum model that uses only the input variables with
biggest associated sensibilities is obtained.

The input variable sensitivity ξi of the NARX model
(equation (1)) is defined by:
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where f is the non linear function and xi is an input
variable.

The sensibilities (ξi) depend on input variables xi, and
they are evaluated using training set. Then, it is necessary
to calculate the mean of sensibilities and after that, the
input variables with lower mean values are eliminated.

In this case, the input variable sensitivity of fuzzy model
(equations (2) to (5)) is given by the following equations
[2]):
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3) Parameters identification
In general, the parameters of the non-linear models are

obtained minimizing the training set mean squared error.
Sugeno & Yasukawa [8] proposed a method that

minimizes the number of rules making a partition of the
output variables universe that is projected to the input
universe finding the optimal fuzzy sets and rules. This
partition is based on a fuzzy clustering method. Using this



partition, the premise parameters are obtained. Next, the
consequence parameters are obtained using the Takagi &
Sugeno method based on least squares, described in [9].

4) Structural optimization
In general, the structural optimization of a non linear

multivariable model is a searching procedure consisting in
proposing different architectures, increasing complexity.
Then, for each proposed structure, the parametric
optimization is made minimizing the training set error and
evaluating the test set error. Finally, both optimizations
conclude when the test error is either increased or stabled.

Determining the optimal number of clusters.
In order to determine the optimal number of clusters, a

structural optimization of fuzzy models is proposed. Then,
the new method is based on a searching procedure
consisting in proposing different number of clusters,
increasing complexity. Then, for each cluster number
proposed, the parametric optimization is made minimizing
the training set error and evaluating the test set error.
Finally, both optimizations conclude when the test error is
either increased or stabled.

The root mean square error is considered as index error
for training and test data sets, given by:
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where y(i) is the system output, )i(ŷ  is the estimated
output by fuzzy model and N is the data number.

5) Model validation
The adjusted fuzzy model is evaluated using a validation

set. Then, if the adjusted model evaluation is appropriate,
the model identification procedure finishes; otherwise it is
convenient to review the previous steps.

C. Example: Chen series
This example of dynamic system identification was

presented by Chen in [10]. The example is given by the
following equation:
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where y(k) is the output variable, u(k) is the input variable
given by uniform distribution (µ σ= 0,  = 1) and )k(ε  is
white noise (µ σ= 0,  = 0.2 ).

250 training data, 250 test data and 250 validation data
are considered. Also, the premise and consequence
parameters are determined using the method described in

section 2.2.3.
For selection of significant input variables, the

sensitivity method, described in section 2.2.2, is used.

Determining the optimal number of clusters
For the selection of the optimal number of clusters, the
proposed method is considered. In Figure 2, the training
and test error for different number of clusters is shown. The
training error decrease, by increasing the cluster number.
Otherwise, the test error has a minimum before, in order to
generalize the system dynamic of  Chen series. Then, as
show Figure 2, the optimal number of clusters for the fuzzy
model is four.

Fig. 2. Training and test errors for Chen series

III. FUZZY MODELS OF A COMBINED CYCLE POWER PLANT
BOILER

A. Process description
The combined cycle power plants consist in a gas

turbine, a boiler and a steam turbine to generate electricity
[1].

In Figure 3, the boiler configuration is presented. The
feedwater is supplied to the drum, where the thermal
energy of combustion products is transferred to be
condensed. Then, the feedwater enters the risers, where the
furnace heat is used to increase the water temperature and
eventually it causes its evaporation. Thus, the circulation of
water, steam and water and steam mixture takes place in
the drum and risers. Steam generated in the risers is
separated in the drum, from where it flows through the
superheater to the high pressure turbine. Then, this steam is
recycled to the boiler in the reheater where its energy
content is increased.
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Fig. 3. Boiler configuration

The phenomenological simulator was developed for
boiler of a combined cycle power plant (50 MW). The
boiler simulator is based on the phenomenological
equations, and their parameters are determinated and
adapted from [1]. The simulator consists on 15 non linear
differential equations and 40 non linear algebraic equations
aprox.

B. Fuzzy modeling
As an example of fuzzy modeling proposed, a non linear

fuzzy multivariable model of superheated steam pressure
(ps) is developed, using fuel flow (wf) and feedwater flow
(we) as manipulated variables.

In Figure 4, the ps model identification data are
presented. The excitation signals (wf) and (we) are discrete
white noises.

For model adjusting and evaluation, the error index
(RMS), defined by equation (7), is considered.

Fig. 4. Identification data

1) Data selection
 One thousand data for training, test and validation sets,

using 30 second sampling period, are considered. Figure 5
presents the training, test and validation data sets for ps.

2) Parameter identification
The parameters of the fuzzy model proposed for ps are

determinate using the fuzzy clustering and least mean
square method. (see section II.B.3).

Fig.5. Training, test and validation data sets.

3) Selection of relevant input variables
Due to the computational requirement given by adjusting

an initial model with the highest order, the following initial
fuzzy model structure is proposed:
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Figure 6 presents the mean sensibilities graphic of the
proposed initial model, with 15 input variables. In the
graphic, the variables with the least statistical values of the
sensibilities are candidate to be eliminated. Then, it is
possible to conclude that these variables must not be
included in the process model. By this way, the following
optimal structure is obtained with only model relevant input
variables:
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Fig. 6. Sensitivity analysis

4) Structural Optimization: Determining the optimal
number of clusters.

In order to determine the optimal number of clusters,
fuzzy models with different number of clusters are
adjusted. As shown Figure 7, the training error decrease by
increasing the cluster number and the test error has a
minimum. Therefore, the optimal of cluster number is two
for the fuzzy model obtained in equation (11).

Fig.7. Training and test error for fuzzy model

5) Model Validation
Figure 8 presents the prediction of superheated steam

pressure ps using the fuzzy model defined by equation (11)
and the optimal number of cluster obtained in section
III.B.4.

Table 1 shows the RMS errors for the training, test and
validation data sets of a linear model, the initial fuzzy
model (equation (10)) and optimal fuzzy model (equation
(11) and 2 clusters). The least RMS error is obtained, using
the optimal fuzzy model, for test and validation sets.

Fig. 8. Prediction of ps using optimal fuzzy model.

TABLE 1. RMS ERRORS

Training Test Validatio
n

Linear Model 1807.50 1844.00 1740.30
Initial Fuzzy
Model

1503.42 1708.18 1589.35

Optimal fuzzy
model

1571.14 1699.73 1560.07

IV. CONCLUSIONS

This paper presents a new method for determining the
optimal number of clusters of fuzzy models.

Also, a complete identification methodology for non
linear fuzzy models is described, including a sensitivity
analysis. For the determining the optimal number of
clusters, a Chen series example is presented.

The proposed identification methodology was applied to
the modeling of a combined cycle power plant boiler.

The optimal fuzzy model for superheated steam pressure
was favorably compared versus an initial fuzzy model and
a linear model.

The non linear multivariable fuzzy models for a thermal
power plant developed in this work will be used for a
future control design of supervisory controller in order to
economic optimize the plant performance.
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