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Abstract— In (passive) fault tolerant control design, the
objective is to find a fixed compensator, which will maintain a
suitable performance - or at least stability - in the event that a
fault should occur. A major theoretical obstacle to obtain this
objective, is that even if the system models corresponding to the
occurrence of various faults are simultaneously stabilizable by
a linear, time-invariant compensator, this compensator might
have to be of very high order, as shown in a recent publication.
In this paper, we propose a design procedure for a time-
varying compensator, which overcomes the obstacle for any
finite number of faults with a controller order of no more
than the plant order. The performance of this compensator
might be poor, but a heuristic procedure for improving the
performance is also shown, and an example demonstrates that
this improvement can be truly significant.

I. I NTRODUCTION

The interest for using fault tolerant controllers is increas-
ing. A number of theoretical results as well as application
examples has now been described in the literature, see e.g.
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10] to mention some
of the relevant references in this area.

The approaches to fault tolerant control can be divided
into two main classes:Active fault tolerant control and
passive fault tolerant control. In active fault tolerant control,
the idea is to introduce a fault detection and isolation block
in the control system. Whenever a fault is detected and
isolated, a supervisory system takes action, and modifies
the structure and/or the parameters of the feedback control
system. In contrast, in the passive fault tolerant control
approach, a fixed compensator is designed, that will main-
tain (at least) stability if a fault occurs in the system in
consideration.

This paper will only discuss the passive fault tolerant
control approach, also sometimes referred to asreliable
control. This approach has mainly two motivations. First,
designing a fixed compensator can be made in much simpler
hardware and software, and might thus be admissible in
more applications. Second, classical reliability theory states
that the reliability of a system decreases rapidly with
the complexity of the system. Hence, although an active

fault tolerant control system might in principle accomodate
specific faults very efficiently, the added complexity of the
overall system by the fault detection system and the su-
pervisory system itself, might in fact sometimes deteriorate
plant reliability.

In [11], a fault tolerant control problem has been ad-
dressed for systems, where specific sensors could potentially
fail such that the corresponding outputs were unavailable
for feedback, whereas other outputs were assumed to be
available at all times.

In [12, Sec. 5.5], the question of fault tolerant parallel
compensation has been discussed, i.e. whether it is possible
to design two compensators such that any of them alone
or both in parallel will internally stabilize the closed loop
system.

In a recent paper [13], it was shown that on one hand,
under mild conditions (stabilizability, detectability),a linear
time-invariant (LTI) finite-dimensional controller always
exists which stabilizes the system both in the nominal
situation, as well as in case any one sensor should fail (a
dual result is given for actuator faults). On the other hand,it
was also shown in [13] that even for a second order system,
the required controller order to achieve this simultaneous
stabilization can be unbounded.

Since very high controllers orders are often unacceptable
for a number of good reasons, we propose in this paper
instead to use a lineartime-varying (LTV) fault tolerant
compensator, and show that this type of compensator - in
contrast to the time-invariant case - can be designed with
a controller order of at most the same as the plant. The
approach is based on the ability of LTV compensators to
achieve simultaneous stabilization of several systems. A
seminal paper in this context was [14], where the authors
showed that for every finite set of plants, a linear time-
varying controller can be designed which provides closed
loop stability. For further literature regarding LTV con-
trollers - see the references in [14].



II. PROBLEM FORMULATION

In the sequel, we shall consider systems of the form:

Σ0 :

{
x(k +1) = Ap,0x(k) + Bp,0u(k)

y(k) = Cp,0x(k)
(1)

Thus, we shall restrict attention to discrete time systems.
The proposed methodology, however, carries over to con-
tinuous time systems with only minor modifications.

It is assumed that the system (1) might fail in one of
several a priori known ways. The faults could be actuator
faults, sensor faults, or internal faults, which change the
dynamics of the system. In either case, the faulty system
will be described by a model of the form:

Σi :

{
x(k +1) = Ap,ix(k) + Bp,iu(k)

y(k) = Cp,ix(k)
, i = 1, . . . ,q

(2)
The fault tolerant problem considered in this paper is

to find a linear (but not necessary time-invariant) feedback
compensator, which stabilizes the nominal system (1), but
which also preserves stability if any one of the faults
described by the models of faulty system (2) occurs.

III. M AIN RESULT

Theorem 1: Consider annpth order faulty systemΣ with
a nominal model of the form (1). Assume that the system
can fail in one amongq possible ways, each giving rise to
a modelΣi, i = 1, . . . ,q of the form (2). Further, we assume
that theq+1 modelsΣi, i = 0, . . . ,q are all stabilizable and
detectable. Then, there exists a time-varying compensatorof
order at mostnp, such that the closed loop system remains
stable even if one of theq faults should occur at one time
instance.

Proof: Since there is no infinite switching between
models going on, the stability condition reduces to asymp-
totic stability for each of theq + 1 individual closed loop
systems formed by the compensator and either the nominal
or one of the faulty systems. Hence, Theorem 1 can be
reduced to a simultaneous (or multi-model) stabilization
problem, for which it is actually well-known in the control
community, that annth order linear, time-varying compen-
sator always suffices. We shall, however, repeat the proof
here since it is simple, and more importantly, since it is
constructive and will be used in the sequel.

To that end, we shall without loss of generality assume
that the models both of the nominal and of the faulty
systems are minimal. LetK0,K1, . . . ,Kq be linear, time-
invariant compensators with a minimal model of the form:

ΣKi :

{
ξ(k +1) = Ac,iξ(k) + Bc,iy(k)

u(k) = Cc,iξ(k)
(3)

such thatK0 is a dead-beat controller (can be achieved due
to minimality) for the nominal system,

x(k +1) = Ap,0x(k) + Bp,0u(k)
y(k +1) = Cp,0x(k)

and such that fori = 1, . . . ,q, Ki is a dead-beat controller
for Σi

x(k +1) = Ap,ix(k) + Bp,iu(k)
y(k +1) = Cp,ix(k)

Thus, each of theq + 1 models and corresponding con-
trollers generates a closed loop system of the form

(
x(k +1)
ξ(k +1)

)

= Acl,i

(
x(k)
ξ(k)

)

where

Acl,i =

(
Ap,i Bp,iCc,i

Bc,iCp,i Ac,i

)

has the property:

A
np+nc
cl,i = 0, i = 0, . . . ,q (4)

where nc is the (largest) order of theq + 1 time-invariant
compensators.

We now introduce the following time-varying compen-
sator:

ΣKTV :

{
ξ(k +1) = Ac(k)ξ(k) + Bc(k)y(k)

u(k) = Cc(k)ξ(k)
(5)

where

Ac(k) = Ac, j(k)

Bc(k) = Bc, j(k)

Cc(k) = Cc, j(k)

j(k) =

(
k−(k mod(np+nc))

np+nc
modq+1

)

(6)

Thus, as described in (6), each controller is repeatednp+nc

times in a cycle through allq+1 controllers.
Now, it is easy to see, that the closed loop system

resulting from joiningKTV and the nominal system or either
of the faulty systems:

(
x(k +1)
ξ(k +1)

)

=

(
Ap,i Bp,iCc(k)

Bc(k)Cp,i Ac(k)

)(
x(k)
ξ(k)

)

must converge to the origin in finite time from any initial
state, since

(
x(q(np +nc)+1)
ξ(q(np +nc)+1)

)

=
q(np+nc)

∏
k=0

(
Ap,i Bp,iCc(k)

Bc(k)Cp,i Ac(k)

)(
x(0)
ξ(0)

)

will contain at least one of the sequences (4), and therefore
(

x(q(np +nc)+1)
ξ(q(np +nc)+1)

)

= 0

Thus, KTV is fault tolerant compensator, which stabilizes
the system in the nominal situation, and preserves stability
in the event that any of theq faults occur.

We shall use this constructive proof in the design pro-
cedure described below. As a consequence, the design will
be based on a number of LTI dead-beat controllers, each



acting in a certain time interval. However, it is well-known
that dead-beat controllers are not always robust, and that
they may shown violent transients if the plant is not very
well known. It is therefore worthwhile observing that the
dead-beat property is convenient in the proof above but not
strictly necessary. In practice, it is only necessary to make
the poles ’sufficiently small’. To be more specific, stability
can be guaranteed, if the product of the largest singular
values of possible sequences all are bounded by 1.

The continuous time case can be handled in much the
same manner, although an equivalent to the dead-beat
controller is lacking. Instead, the stability argument canbe
established by considering state transition matrices of the
form

Φi = exp(Acl,iTi)

whereAcl,i is the closed loop system matrix in theith time
interval, andTi is the duration of that time interval. Just like
in the discrete time case, the product of the largest singular
values of theΦi’s for all possible sequences then must be
bounded by 1.

IV. D ESIGN PROCEDURE

The specific LTV compensator proposed in the proof
of Theorem 1, which is described by (5) and (6), is only
guaranteed to stabilize the faulty system. It might, however,
be rather poor in terms of performance. The reason for
this is, that the nominal compensator is only in operation
in a fraction of the time which is1

q . Thus, if the LTI
compensators designed for the faulty situations are highly
suboptimal in the nominal situation, then also the perfor-
mance of the LTV compensator will be rather suboptimal.
In this section, we shall approach the performance problem
by means of time-scheduling.

The LTV fault tolerant scheme suggested in this paper
will inevitably introduce a trade-off between performances
in the nominal and the faulty situations. One way to
overcome part of this dilemma is to make a multi-model
design in the first case, rather than designing theq+1 LTI
controllers entirely independent. A description of the large
number of methods for multi-model design falls outside the
scope of this paper, and in the sequel we shall assume that
the q+1 LTI compensators are given and fixed.

An entirely different handle, however, to improve per-
formance of the LTV fault tolerant compensator suggested
above, is to modify the number of samples, each of the
individual LTI compensators is applied in each cycle.

To that end, we propose a heuristic (re-)design procedure,
which is an iterative scheme, based on a quantification on
how poorly each LTI compensator is performing in the
loops, for which it wasnot designed.

In particular, we shall study the following square matrix:

T =








∥
∥
∥Ar0

cl,00

∥
∥
∥ · · ·

∥
∥
∥A

rq
cl,0q

∥
∥
∥

...
. ..

...
∥
∥
∥Ar0

cl,q0

∥
∥
∥ · · ·

∥
∥
∥A

rq
cl,qq

∥
∥
∥








(7)

whereAcl,i j denotes the state transition matrix for the closed
loop system achieved by joining theith system (see (1)
and (2)) with the jth LTI compensator (see (3)), and the
design parametersr0, . . . ,rq are integer powers. Eachri

indicates the number of repetitions of controllerKi in each
cycle. To be more specific, the controller proposed has the
form:

ΣKTV :

{
ξ(k +1) = Ac(k)ξ(k) + Bc(k)y(k)

u(k) = Cc(k)ξ(k)
(8)

where 





Ac(k) = Ac, j(k)

Bc(k) = Bc, j(k)

Cc(k) = Cc, j(k)






(9)

and

j(·) =

first cycle
︷ ︸︸ ︷

0, . . . ,0
︸ ︷︷ ︸

r0 times

,1, . . . ,1
︸ ︷︷ ︸

r1 times

, . . . ,q, . . . ,q
︸ ︷︷ ︸

rq times

,0, . . . ,0
︸ ︷︷ ︸

r0 times

, . . .

and whereAc, j, Bc, j, andCc, j are the controller parameters
introduced in (3).

The following algorithm iterates on the duration of each
LTI controller by evaluatingT as defined in (7).

Algorithm 1 (Time-scheduling):

1) Choose a minimal and a maximal duration,rmin and
rmax, resp., for the LTI controllers

2) Choose a set of initial values for the durations
r0, . . . ,rq

3) ComputeT as defined in (7)
4) Find the largest value inT and note the corresponding

indices(imax, jmax)
5) Find the column inT with the property that its largest

value is smallest among all the columns and note the
corresponding indexjmin

6) Decreaser jmax and/or increaser jmin, if r jmax > rmin and
r jmin < rmax. If the latter is not the case, Steps 4 and 5
are repeated with the corresponding columns removed

7) Repeat from Step 3 unless indices did not change in
past iteration

It should be noted that the algorithm is heuristic, based
on the assumption, that it will help to reduce the influence
of the LTI controllers that performs poorer on other systems
than they were designed for. The algorithm does not guar-
antee optimality and in some cases, the resulting controller
might not even be stabilizing. Stability, however, can be
guaranteed if the following two measures are taken:

1) Each LTI controller is choosen as a dead-beat con-
troller

2) rmin is chosen at least as large asnp +nc

With these two precautions, stability can be proved among
the same lines as Theorem 1.

V. EXAMPLE

The example in this section is chosen to illustrate the
following points:



• The LTV scheme in this paper can be used for stabiliz-
ing a system for which the alternative LTI compensator
might be of high order

• Performance might not be excellent, if the individual
LTI controllers are not chosen to satisfy some reason-
able cross-performance

• Performance can be improved by the algorithm de-
scribed in Section IV

Thus, the example should not be seen as an ideal and
realistic design study.

The system in consideration is the following:

x(k +1) =

(
2 0
−1 1

2

)

x(k) +

(
1
0

)

u(k)
(

y1

y2

)

=

(
1 1
1 2

)

x(k)

with the following transfer matrix:

1
z2
−2.5z+1

(
z− 3

2
z− 5

2

)

For this system, it is assumed that the two sensors corre-
sponding to the two outputs can both fail. Notice, that the
system degrades to an unstable, non-minimum phase system
in either of the two faulty situations. In [13] it is shown
that systems of this type might require LTI controllers of
arbitrarily high order just to achieve (fault-tolerant) stability.
In the sequel, we shall demonstrate a systematic design of
an LTV controller of order at mostnp.

First, we design three LTI compensators for each of the
three situations:

K0 = 1
z+2.5

(
−10.63
5.375

)

K1 = 1
z2+2.5z−16.13

(
−21.37z+10.75

0

)

K2 = 1
z2+2.5z+26.56

(
0

21.31z−10.62

)

which are dead-beat compensators for the nominal situation,
the situation where only the sensor corresponding toy1

functions, and the situation where only the sensor corre-
sponding toy2 functions, respectively.

Starting Algorithm 1 with the following values:

r0 = r1 = r2 = 6

gives the following matrix of norms of powers:

T =





6.2373e−015 0 0
1.4326e+003 0 8.1391e+004
4.0792e+003 4.8727e+004 0





A simulation with 180.000 samples and gaussian noise on
both plant states shows the following variances on the first
output variable (its ’real’ value - whether the sensor shows
it or not):

Variance for nominal system: 4.2537e−007
Variance if only first sensor functions: 1.3058e+007
Variance if only second sensor functions: 1.1956e+010

It can be seen that although stability in theory is obtained,
the variances are so large that the system in practice most
likely will be unstable.

After some iterations, the algorithm stops at the following
values:

r0 = 0, r1 = 4, r2 = 4

giving the following matrix of norms of powers

T =





1.0000e+000 0 0
1.0000e+000 0 2.7330e+003
1.0000e+000 1.6108e+003 0





A simulation with 80.000 samples and state noise as above
gives the following variances:

Variance for nominal system: 8.9325e−007
Variance if only first sensor functions: 1.9303e+000
Variance if only second sensor functions: 2.4521e+000

It can be seen that now that the output variances are 7−

10 orders of magnitude smaller. The price, however, is a
doubling of the output variance in the nominal case.

Figure 1 shows a simulation for the same system and with
the same controllers, but with the time scheduling parame-
ters set as:r0 = 2, r1 = 4, r2 = 4. The excitation is sinusoidal
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Fig. 1. Simulation with sinusoidal excitation. Note the highly different
scales in the three cases. The significant transients are caused by the
aggressive nature of the dead-beat controllers.



and thus smooth. Nevertheless, significant transients occur
which are due to switching between dead-beat controllers. A
less aggressive design would have given slower responses,
but less over-shoot. The overall conclusion, however, is that
the fault tolerant control scheme functions as predicted.

VI. CONCLUSIONS

In this paper, we have demonstrated the existence of fault
tolerant LTV controllers, which can be designed to be of
low order. The LTV controller is a periodic compensator,
which cycles between a number of LTI controllers. Each LTI
controller is designed for one situation - either the nominal
situation or one of the faulty situations. To obtain a good
overall performance, however, these controllers should be
designed to give a reasonable cross-performance.

A time-scheduling algorithm was proposed, that usu-
ally is able to improve the performance significantly, as
compared to a parsimonious LTV controller, which allo-
cates equal time slots to each LTI controller. It should
be emphasized, though, that the proposed time-scheduling
optimization is entirely heuristic, and will not lead to
optimality in all circumstances.

To improve the time-scheduling, a cumbersome approach
is to go through the process of comparing all possible
combinations by applying a lifting technique to compute
the norms of the corresponding periodic systems. An alter-
native, kindly suggested by one of the anonymous reviewers
of this paper, would be to use genetic algorithms (GA) to
improve the performance, where the GA could be set up to
find the number of samples. The matrix (7) could then be
used as a performance index.
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