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Abstract— This paper discusses the problem of designing
fault tolerant compensators that stabilize a given system both
in the nominal situation, as well as in the situation where one
of the sensors or one of the actuators has failed. It is shown
that such compensators always exist, provided that the system
is detectable from each output and that it is stabilizable. The
proof of this result is constructive. A family of second order
systems is described that requires fault tolerant compensators
of arbitrarily high order.

I. I NTRODUCTION

The interest for using fault tolerant controllers is increas-
ing. A number of theoretical results as well as application
examples has now been described in the literature, see e.g.
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10] to mention some
of the relevant references in this area.

The approaches to fault tolerant control can be divided
into two main classes:Active fault tolerant control and
passive fault tolerant control. In active fault tolerant control,
the idea is to introduce a fault detection and isolation block
in the control system. Whenever a fault is detected and
isolated, a supervisory system takes action, and modifies
the structure and/or the parameters of the feedback control
system. In contrast, in the passive fault tolerant control ap-
proach, a fixed compensator is designed, that will maintain
(at least) stability if a fault occurs in the system.

This paper will only discuss the passive fault tolerant
control approach, also sometimes referred to asreliable
control. This approach has mainly two motivations. First,
designing a fixed compensator can be made in much simpler
hardware and software, and might thus be admissible in
more applications. Second, classical reliability theory states
that the reliability of a system decreases rapidly with
the complexity of the system. Hence, although an active
fault tolerant control system might in principle accomodate
specific faults very efficiently, the added complexity of the
overall system by the fault detection system and the su-
pervisory system itself, might in fact sometimes deteriorate
plant reliability.

In [11], a fault tolerant control problem has been ad-
dressed for systems, where specific sensors could potentially
fail such that the corresponding outputs were unavailable
for feedback, whereas other outputs were assumed to be
available at all times.

In [12, Sec. 5.5], the question of fault tolerant parallel
compensation has been discussed, i.e. whether it is possible
to design two compensators such that any of them alone
or both in parallel will internally stabilize the closed loop
system.

The existence results given in [11], [12] mentioned above,
can be considered to be special cases of the main results of
this paper.

In this paper, we shall consider systems for which any
sensor (or in the dual case any actuator) might fail, and we
wish to determine for which systems such (passive) fault
tolerant compensators exist. The main results state that the
only precondition for the existence of solutions to this fault
tolerant control problem is just stabilizability from each
input and detectability of the system from each output.

II. N OTATION

Throughout the paper,R P p×m shall denote the set of
proper, real-rational functions taking values inC p×m, and
R S P p×m shall denote the set of strictly proper, real-rational
functions taking values inC p×m. R H p×m

∞ shall denote the
set of stable, proper, real-rational functions taking values in
C p×m. The notation{s ∈ R+∞ : B(s) = 0} will be used as
shorthand for zeros ofB(·) on the positive real line. The set
includes the point at infinity if lims→∞ B(s)= 0. For matrices
A,B,C,D of compatible dimensions, the expression

G(s) =

(

A B
C D

)

will be used to denote the transfer functionG(s) = C(sI −
A)−1B+D. Real-rational functions will be indicated by their
dependency of a complex variables (as in G(s), K(s)),
although the dependency ofs will be suppressed in the



notation (as inG, K), where no misunderstanding should
be possible.

III. PROBLEM FORMULATION

Consider a system of the form:

ẋ = Ax + Bu
y1 = C1x
y2 = C2x

...
yp = Cpx

(1)

wherex ∈ R n, u ∈ R m, yi ∈ R , i = 1. . . , p andA, B, Ci, i =
1. . . , p are matrices of compatible dimensions. Each of the
p measurementsyi, i = 1, . . . , p, is the output of a sensor,
which can potentially fail.

In this paper, we will determine whether it is possible
to design a feedback compensator that is guaranteed to
stabilize a given system, in caseany sensor could potentially
fail. To be more precise, we are looking for a dynamic
compensatoru = K(s)y, K ∈ R P m×p, with the property, that
each of the following feedback laws:

u = K(s)
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(2)

are internally stabilizing, i.e. that both the nominal system
as well as each of the systems resulting from one of the
sensors failing are all stabilized byK(s).

It is obvious, that the answer to this question immediately
provides the answer to the corresponding dual question: i.e.
whether is is possible to design a compensator, that works
in the nominal situation, but also if any of the actuators
would fail.

IV. PRELIMINARIES

We remind the reader - see e.g. [13, Theorem 5.9,
Page 127] - that a doubly coprime factorization of a strictly
proper plant and a stabilizing compensator

G(s) = N(s)M−1(s) = M̃−1(s)Ñ(s)

K(s) = U(s)V−1(s) = Ṽ−1(s)Ũ(s)

where

G ∈ R S P p×m, N ∈ R H
p×m
∞ , M ∈ R H

m×m
∞ ,

M̃ ∈ R H
p×p
∞ , Ñ ∈ R H

p×m
∞ ,

K ∈ R P m×p, U ∈ R H
m×p
∞ , V ∈ R H

p×p
∞ ,

Ṽ ∈ R H
m×m
∞ , Ũ ∈ R H

m×p
∞

can be found from an observer based controller by the
formulae:

(

M U
N V

)

=





A+BF B −L
F I 0
C 0 I





(

Ṽ Ũ
Ñ M̃

)

=





A+LC B L
−F I 0
C 0 I





(3)

where A,B,C are parameters for a (minimal) state space
representation forG(s), i.e. matrices of smallest, compatible
dimensions such that

G(s) =

(

A B
C 0

)

F is an arbitrary stabilizing state feedback gain andL is an
arbitrary stabilizing observer gain, i.e.F andL are matrices
of compatible dimensions such that bothA+BF andA+LC
have characteristic polynomials which are Hurwitz.

The eight matrices defined by (3) satisfy the double
Bezout identity:

(

Ṽ −Ũ
−Ñ M̃

)(

M U
N V

)

=

(

M U
N V

)(

Ṽ −Ũ
−Ñ M̃

)

=

(

I 0
0 I

)

We also remind the reader, that aunit is an element of a
ring, which has an inverse in that ring. In particular, a unit
in the ring of stable proper rational functions, is simply a
stable proper function with a stable proper inverse.

We will need the following result (see [14, Theorem 5.2,
Page 106] or [12, Corollary 6, Page 118]) on the strong
stabilization problem, i.e. the problem of finding a stable
stabilizing compensator:

Lemma 1: Let A(s), B(s) be stable proper transfer func-
tions. Then there exists a stable proper transfer function
Q(s) such that the function

A(s)+B(s)Q(s)

is a unit in the ring of stable proper rational functions, if
and only if

A(zip)

has constant sign for allzip ∈ {s ∈ R+∞ : B(s) = 0}.



V. M AIN RESULTS

In this section we shall present our main results which
state that for systems with several outputs, it is always
possible to find a compensator, that both stabilizes the
nominal situation, as well as the situation where any of
the sensors fails. In a similar fashion, it is shown, that
it is always possible to design a fault tolerant feedback
compensator for a system with several actuators. The only
precondition to these results, is in the first case that all
unstable modes for the system are observable by each sensor
and in the second (dual) case, that all modes are controllable
by each actuator.

Theorem 1: Consider a system given by a state space
model of the form (1). Assume, that the pair(A,B) is
stabilizable, and that each of the pairs(Ci,A) , i = 1, . . . , p,
is detectable. Then, there exists a dynamic compensator
K(s) such that each of thep+1 control laws (2) internally
stabilizes the system (1).

The proof will be constructive, and we shall give some
comments on practical computations in the sequel of the
proof.

Proof: First, let us note that it suffices to prove the
result in the case wherem = 1 andp = 2. To see thatm = 1
can be assumed without loss of generality, one can just
consider the system

ẋ = Ax + B̄ū
y1 = C1x
y2 = C2x

...
yp = Cpx

(4)

where B̄ = Bv, v ∈ R m×1, ū ∈ R , and v is any vector such
that the pair (A, B̄) is also stabilizable. This is always
possible, see e.g. [15, Corollary 1.1, Page 43]. Thus, if
ū = K̄(s)y is a fault tolerant feedback law for (4), then
u = K(s)y is a fault tolerant feedback law for (1) with
K(s) = vK̄(s).

Next, if
K(s) =

(

K1(s) K2(s)
)

(5)

is a fault tolerant feedback compensator for this system:

ẋ = Ax + Bu
y1 = C1x
y2 = C2x

(6)

then
K(s) =

(

K1(s) K2(s) 0 . . . 0
)

(7)

is a fault tolerant feedback compensator for the system (1).
Indeed, in the nominal situation or if one of the sensors
corresponding toyi, i = 3, . . . , p fails, the control signal
generated by (7) will be the same as the control signal
generated by (5) in the nominal situation. Ifyi, i = 1,2 fails,
(7) will still generate the same control signal as (5) which is
known to stabilize the shared dynamics of the two systems.

Thus, without loss of generality, we will assume that the
system in consideration has the form

ẋ = Ax + Bu
y1 = C1x
y2 = C2x

(8)

where B is a single column matrix,Ci, i = 1,2 are single
row matrices,u,yi ∈ R , i = 1,2. Thus, it will be assumed
that the transfer functions fromu to each of the outputs are
scalar.

Define C =

(

C1

C2

)

and let K0(s) be an internally

stabilizing compensator for the system (8), which has the
transfer functionG(s) = C(sI −A)−1B. Introduce a doubly
coprime factorization ofG(s) and K0(s), i.e. stable proper
functionsM,N,Ṽ0,Ũ0:

G(s) = N(s)M−1(s) =

(

N1(s)
N2(s)

)

M−1(s)

K0(s) = Ṽ−1
0 (s)Ũ0(s) = Ṽ−1

0 (s)
(

Ũ0,1(s) Ũ0,2(s)
)

satisfying the Bezout identity

Ṽ0M−Ũ0N = Ṽ0M−Ũ0,1N1−Ũ0,2N2 = 1 (9)

This can always be done - explicit formulae are given by (3).
Next, we note that replacing in (9) the triplet

(

Ṽ0 Ũ0,1 Ũ0,2
)

by
(

Ṽ Ũ1 Ũ2
)

where

Ṽ = Ṽ0−Q2N1−Q3N2

Ũ1 = Ũ0,1−Q1N2−Q2M

Ũ2 = Ũ0,2 +Q1N1−Q3M

also provides a solution to (9), as this simple calculation
shows:

Ṽ M−Ũ1N1−Ũ2N2

=
(

Ṽ0−Q2N1−Q3N2
)

M−
(

Ũ0,1−Q1N2−Q2M
)

N1

−
(

Ũ0,2 +Q1N1−Q3M
)

N2

= Ṽ0M−Ũ0,1N1−Ũ0,2N2

= 1

Consequently, any transfer function of the form:

Ṽ−1
(

Ũ1 Ũ2
)

=
(

Ṽ0−Q2N1−Q3N2
)−1

×
(

Ũ0,1−Q1N2−Q2M Ũ0,2 +Q1N1−Q3M
)

(10)
whereQ1, Q2, Q3 are all stable proper rational functions, is
also a stabilizing compensator.

In the sequel, we shall demonstrate, thatQ1, Q2, Q3 can
be chosen such that̃V−1

(

Ũ1 Ũ2
)

stabilizes both the
nominal and the faulty systems.

If the sensor corresponding to one of the outputs fails,
the controllerṼ−1

(

Ũ1 Ũ2
)

has to stabilize a system of
the form:

G =

(

N1(s)
0

)

or G =

(

0
N2(s)

)



which means that stability is obtained if and only if the
compensator (10) satisfies the two equations:

(

Ṽ0−Q2N1−Q3N2
)

M

−
(

Ũ0,1−Q1N2−Q2M Ũ0,2 +Q1N1−Q3M
)

(

N1

0

)

= Ṽ0M−Q2N1M−Q3N2M

−Ũ0,1N1 +Q1N2N1 +Q2MN1

= Ṽ0M−Ũ0,1N1 +Q1N2N1−Q3N2M = u1 (11)

and
(

Ṽ0−Q2N1−Q3N2
)

M

−
(

Ũ0,1−Q1N2−Q2M Ũ0,2 +Q1N1−Q3M
)

(

0
N2

)

= Ṽ0M−Ũ0,2N2−Q1N1N2−Q2N1M = u2 (12)

whereu1, u2 are units in the ring of stable proper rational
functions.

Thus, the existence of a fault tolerant controller has
now been shown to be inferred from the existence of
stable proper rational functionsQ1, Q2, Q3, such thatu1, u2

become units. We will prove this existence by first choos-
ing Q1 appropriately. Subsequently, (11) and (12) will be
considered as equations forQ3 andQ2 which are no longer
coupled, and show that each has an admissible solution.

To that end, first note that it is possible to determine a
stable proper functionQ1, such that:

Q1(s)N1(s)N2(s)−Ũ0,1(s)N1(s)
∣

∣

∣

s=zip
=

1
2

(13)

for all positive real zeros ofM, zip ∈ {z ∈ R+∞ : M(z) = 0},
sinceN1(zip)N2(zip) can not be zero forM(zip) = 0 due to
coprimeness ofM and N1 and of M and N2. To determine
Q1 satisfying (13) in practice can be done by a standard
rational interpolation.

Now, for a fixed Q1, (11) can be recognized as a
strong stabilization problem in the variableQ3. It is known
from Lemma 1 that suchQ3 exists if and only if

Ṽ0M−Ũ0,1N1 +Q1N2N1

∣

∣

∣

s=zip

has constant sign for every value of

zip ∈ {z ∈ R+∞ : M(z) = 0 or N2(z) = 0}

For M(zip) = 0 we obtain:

Ṽ0(s)M(s)−Ũ0,1(s)N1(s)+Q1(s)N2(s)N1(s)
∣

∣

∣

s=zip

= −Ũ0,1(s)N1(s)+Q1(s)N2(s)N1(s)
∣

∣

∣

s=zip
=

1
2

(14)

from (13). ForN2(zip) = 0, we get:

Ṽ0(s)M(s)−Ũ0,1(s)N1(s)+Q1(s)N2(s)N1(s)
∣

∣

∣

s=zip

= Ṽ0(s)M(s)−Ũ0,1(s)N1(s)
∣

∣

∣

s=zip
= 1 (15)

where (9) has been applied. This proves the existence of
an admissible functionQ3. To determineQ3 in practice,
one approach is first to findu1 that interpolates the con-
straints (14) and (15), and subsequently to determineQ3

as a solution to (11). Ifu1 in addition is chosen to interpolate
all constraints arising from zeros ofM and N2 in the
right half plane (not just the positive half line),Q3 can be
computed by:

Q3 =
Ṽ0M−Ũ0,1N1 +Q1N2N1−u1

N2M
(16)

The proof of existence of an admissibleQ2 is completely
analogous to the proof of existence ofQ3. The interpolation
constraints for (12) corresponding toM(zip) = 0 amounts to:

Ṽ0(s)M(s)−Ũ0,2(s)N2(s)−Q1(s)N1(s)N2(s)
∣

∣

∣

s=zip

= −Ũ0,2(s)N2(s)−Q1(s)N1(s)N2(s)
∣

∣

∣

s=zip

= 1−Ṽ0(s)M(s)+Ũ0,1(s)N1(s)−Q1(s)N1(s)N2(s)
∣

∣

∣

s=zip

= 1−
1
2

=
1
2

(17)

where (9) and (13) has been exploited. ForN1(zip) = 0 we
obtain the constraints:

Ṽ0(s)M(s)−Ũ0,2(s)N2(s)
∣

∣

∣

s=zip

= Ṽ0(s)M(s)−Ũ0,2(s)N2(s)−Q1(s)N1(s)N2(s)
∣

∣

∣

s=zip

= 1 (18)

from (9). Q2 can now be found as a solution to (12),
and the resultingu2 will interpolate the conditions (17)
and (18). Again,Q2 might be computed by first finding
u2 interpolating all constraints arising from zeros ofM and
N1 in the right half plane (not just (17) and (18)), and then
computingQ2 as:

Q2 =
Ṽ0M−Ũ0,2N2−Q1N1N2−u2

N1M
(19)

Thus, one possible fault tolerant compensator is:

K =
(

Ṽ0−Q2N1−Q3N2
)−1

×
(

Ũ0,1−Q1N2−Q2M Ũ0,2 +Q1N1−Q3M
)

(20)

which stabilizes the system given by (8) in the nominal
case, as well as in the case, where one of the two sensors
fail.

We again stress that every step in the proof is construc-
tive. A worked example based on a procedure based on this
proof can be found in [16].

A corresponding result for actuator failures follows triv-
ially from Theorem 1 by duality:

Theorem 2: Consider a system given by a state space
model of the form:

ẋ = Ax + B1u1 + . . . + Bmum

y = Cx
(21)



where x ∈ R n, ui ∈ R , i = 1. . . ,m, y ∈ R p and A, Bi, i =
1. . . ,m, C are matrices of compatible dimensions. Assume,
that each of the pairs(A,Bi) , i = 1, . . . ,m, is stabilizable
and that the pair(C,A) is detectable. Then, there exists a
dynamic compensatorK(s) such that the nominal control
law:

u =











u1

u2
...

um











= K(s)y

as well as each of them control laws

u =











0
u2
...

um











, u =











u1

0
...

um











,

. . . , u =











u1

u2
...
0











internally stabilizes the system (21).
Proof: Follows by transposing the system and the

compensator.
It is interesting to note that it might be necessary to resort

to arbitrarily high controller orders even for a system of low
order. As an example, consider forε > 0:

Gε(s) =

(

s−1
(s−(1+ε))(s+1)

s−1
(s−(1+ε))(s+1)

)

(22)

with the following coprime factorization

Gε(s) = N(s)M(s)−1 =

(

s−1
(s+1)2

s−1
(s+1)2

)

(

s− (1+ ε)
s+1

)−1

for which the fault tolerant control problem is equivalent to
finding K(s) = Ṽ−1

(

Ũ1 Ũ2
)

such that

Ṽ s−(1+ε)
s+1 − Ũ1

s−1
(s+1)2 − Ũ2

s−1
(s+1)2 = u1

Ṽ s−(1+ε)
s+1 − 0 − Ũ2

s−1
(s+1)2 = u2

Ṽ s−(1+ε)
s+1 − Ũ1

s−1
(s+1)2 − 0 = u3

(23)

where u1, u2, u3 are all units in the ring of stable proper
functions.

Evaluating these equations ats = 1 at s = ∞, we notice
that

u1(1) = u2(1) = u3(1) and u1(∞) = u2(∞) = u3(∞)

On the other hand, we also have

u1(1+ ε) = u2(1+ ε)+u3(1+ ε)

Let us define the unitsv2 = u2/u1 andv3 = u3/u1. Then we
have:

v2(1) = v3(1) = 1, v2(∞) = v3(∞) = 1

and

v2(1+ ε)+ v3(1+ ε) = 1

From this last equation, we infer that eitherv2(1+ ε) ≤ 1
2

or v3(1+ ε) ≤ 1
2. Assume without loss of generality that

v2(1+ ε) ≤ 1
2. Thenv2 is a unit such that

v2(1) = 1, γ := v2(1+ ε) ≤
1
2

, and v2(∞) = 1

The constraint at infinity, means that we can assumev2 to
be of the form:

v2(s) =
sn +α1sn−1 + . . .+αn

sn +β1sn−1 + . . .+βn
(24)

for somen, which leads to the conditions:

1+α1 + . . .+αn = 1+β1 + . . .+βn (25)

and

(1+ ε)n +(1+ ε)n−1α1 + . . .+αn

= γ(1+ ε)n + γ(1+ ε)n−1β1 + . . .+ γβn (26)

Subtracting (25) from (26) gives:

(1+ ε)n −1+
(

(1+ ε)n−1−1
)

α1

+ . . .+((1+ ε)−1)αn−1

= (γ(1+ ε)n −1)+
(

γ(1+ ε)n−1−1
)

β1

+ . . .+(γ−1)βn

(27)

We remind the reader, that a necessary condition for (24)
to be a unit is thatαi > 0, βi > 0, i = 1, . . . ,n. Thus, all the
terms on the left hand side of (27) are positive. This means,
however, that (27) can only be true if

(1+ ε)n >
1
γ
≥ 2

or, equivalently

n >
log2

log(1+ ε)
→ ∞ for ε → 0+

From (23) we obtain:

v2 =
u2

u1
=

Ṽ s−(1+ε)
s+1 −Ũ2

s−1
(s+1)2

Ṽ s−(1+ε)
s+1 −Ũ1

s−1
(s+1)2 −Ũ2

s−1
(s+1)2

=
(s− (1+ ε))(s+1)− (s−1)Ṽ−1Ũ2

(s− (1+ ε))(s+1)− (s−1)Ṽ−1Ũ1− (s−1)Ṽ−1Ũ2

Since the order of the left hand side of this equation tends
to infinity as ε tends to zero, clearly also the order either
of Ṽ−1Ũ1 or of Ṽ−1Ũ2 has to tend to infinity.

Thus, the order of the resulting controller can be required
to be of arbitrarily high order even for this family of second
order systems.



VI. CONCLUSIONS

In this paper, we have proved the existence for any given
system of a fault tolerant compensator, which stabilizes the
system during its normal operating conditions, but also in
the case that one of the sensors or actuators would fail. Only
complete failures of sensors or actuators were considered,
i.e. the case where the signals of the failing sensor/actuator
become zero or at least uncorrelated with the expected
signal.

The proof given was constructive, and it was demon-
strated for a simple example that carrying out the steps
of the proofs can lead to a fault tolerant compensator. It
should be stated, however, that the design process is not
easy. Also, in practice, the issue of performance should be
addressed, which can, unfortunately, not easily be done in
the framework suggested here.

It was also shown that the dynamical order of any
fault tolerant compensator for some systems even of order
two might have to be considerably large, due to intrinsic
properties of the system.

A subject of future research is to clarify whether the
same results hold for systems in which several sensors and
actuators (but not all of either kind) can fail simultaneously.
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