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Abstract— We describe the use of a Recursive Least-
Squares approach for calibration of the characteristic
frequency of an optical tweezer. Unlike commonly used
off-line calibration methods, the RLS algorithm does not
require data averaging to reduce the effects of Brownian
motion. We use computer simulations to demonstrate that
the RLS algorithm can be used to efficiently calibrate the
characteristic frequency of a trapped, 10-micron diameter
polystyrene bead. However, experimental results suggest
that applying the RLS method to an actual optical tweezer
system is more difficult because of measurement errors and
laboratory noise.

I. I NTRODUCTION

The optical tweezer is a device that uses a focused
laser beam to trap and manipulate individual dielectric
particles in an aqueous medium. The laser beam is sent
through a high numerical aperture (highly converging)
microscope objective that is used for both trapping
and viewing particles of interest. For small enough
displacements from the center of the trap, the optical
tweezer behaves like a Hookeian spring, characterized
by a fixed trap-stiffness.

Fig. 1. Optical Tweezer. A single laser beam is focused to a
diffraction-limited spot using a high numerical aperture microscope
objective. Dielectric particles are trapped near the laser focus.

Several milliwatts of laser power at the focus can
generate trapping forces on the order of piconewtons.
While tiny by conventional standards, this level of
force is well suited for biomolecular studies. Although
biological molecules are too small to be trapped at room
temperature, a molecule can be grasped once a trappable
‘handle’, such as a polystyrene bead, is (biochemically)
attached to that molecule [1].

The optical tweezer is a controllableactuator at
the piconewtons scale. In experiments that investigate

the forces that arise due to various (usually biolog-
ical) interactions, the trapping forces must be accu-
rately quantified. Since strongest trapping occurs when
trapped particles are roughly the same size as the laser
wavelength, most biological experiments are performed
in this size regime [2]. However, the absence of an
accurate theoretical model for trapping behavior in this
regime means that the capability of an optical tweezer is
almost always quantified empirically [3]. The trapping
capability of an optical tweezer can be quantified by its
characteristic frequencyωc which is defined as the ratio
of trap stiffness to viscous damping.

Although calibration can be performed off-line us-
ing either step response data or power spectrum data,
such methods are inherently slow because they require
averaging to reduce the effects of Brownian (thermal)
motion [3], [4]. Attempts to calibrate using a Normalized
Gradient (NG) algorithm are also severely hampered by
thermal noise [3].

In the remaining sections of this paper, we use a well-
known Recursive Least Squares (RLS) algorithm, which
does not require averaging, to obtain significantly faster
calibration of the characteristic frequency. Computer
simulations and experimental results are included.

II. EQUATION OF MOTION

The equation of motion along the lateralx-axis for a
trapped bead of massm and lateral positionx is given
by

mẍ = FT (xr) + FD(ẋ) + FL(t) + FE(t), (1)

whereFT (·) is the optical trapping force,FD(·) is the
viscous drag,FL(·) is a Langevin (random thermal)
force, andFE(·) is an external driving force. The relative
displacementxr is defined asxr := x−xT , in whichxT

is trap position. Within the linear radius of|xr| < Rl, the
trap stiffness is approximately constant and the trapping
force is linear with respect to relative displacement:

FT = −αxr. (2)

For a 1-µm diameter polysyrene bead,Rl ≈ 0.2 µm
[5]. The linear radius increases with bead size. The drag
force can be expressed as

FD = −βẋ, (3)



whereβ > 0 is the viscous damping factor from Stoke’s
equation,β = 6πηr, in which r is the bead radius andη
is the fluid viscosity. For a 10-µm diameter polystyrene
bead in water at20◦C, m = 5.2 × 10−7 mg and
β ≈ 0.1 pNs

µm . The Langevin force has an average value
of zero, E{FL(t)} = 0, and constant power spectrum
SL(f) (i.e., ideal white noise force) given by

SL(f) = 4βkBT, (4)

in which kB is Boltzmann’s constant andT is the
absolute temperature [6]. At biological temperatures,
kBT is approximately4 × 10−3 pNµm [6]. Therefore,
for a 10-µm diameter polystyrene bead,SL(f) ≈ 1.6×
10−3 pN2

Hz . The nature of the external forceFE(t)
will depend on experimental conditions. For example,
in biological experiments, the external force will arise
due to the interaction between the trapped bead and
biological particles.

Assuming the particle mass is negligible compared to
the viscous drag, (1),(2), and (3) can be combined to
obtain the noninertial equation of motion for a trapped
particle in the linear trapping region:

0 = −αxr − βẋ + FL(t) + FE(t). (5)

The characteristic frequency of the trap (in radians
per second) is defined as

ωc :=
α

β
. (6)

A. Transfer Functions

Defining trap position as the control input,u := xT ,
and using (6), (5) can be written in state space form as

ẋ = −ωcx + ωcu +
1
β

FL +
1
β

FE

y = x. (7)

Defining Langevin disturbancedL := FL, and external
disturbancedE := FE , and assuming zero initial con-
ditions, (7) can be expressed using Laplace transforms
as:

X(s) = Gyu(s)U(s) + Gyd(s) [DL(s) + DE(s)] , (8)

in which the first order transfer functions are given by

Gyu(s) =
ωc

s + ωc
(9)

and

Gyd(s) =
1
β

s + ωc
. (10)

A schematic block diagram of the linear plantP is
shown in Figure 2.

Fig. 2. Linear plant block diagram, in whichu := xT , dL := FL,
dE := FE , andn is measurement noise.

B. Zero-Order-Hold Representations

A continuous-time (CT) scalar system of the form

ẋ = −ax + bu

y = x (11)

with corresponding transfer function

G(s) =
b

s + a
(12)

can be zero-order hold sampled with sampling timeh
to obtain the discrete-time (DT) system

x(kh + h) = −a1x(kh) + b1u(kh)
y(kh) = x(kh), (13)

wherek is a positive integer and

a1 = −e−ah

b1 =
b

a

(
1− e−ah

)
(14)

[7]. The sampled-system can also be represented by the
difference equationy(kh) = H(q)u(kh), whereH(q)
is the pulse transfer operator given by

H(q) =
b1

q + a1
, (15)

in which q is the forward shift operator [7]. From (14),
if we use a DT identification algorithm to obtain DT
parameter estimateŝa1 and b̂1, the corresponding CT
parameter estimateŝa and b̂ are given by

â = − 1
h

ln(−â1)

b̂ = −

(
b̂1

1 + â1

)
1
h

ln(−â1). (16)

From (14) and (15), the zero-order hold equivalent of
Gyu(s) in (9) is given by

Hyu(q) =
1− e−ωch

q − e−ωch
. (17)



For example, forh = 0.001 s, ωc = 78 rad/s gives
Gyu(s) = 78

s+78 and thereforeHyu(q) = 0.07504
q−0.9250 ,

whereasωc = 65 rad/s givesGyu(s) = 65
s+65 and

Hyu(q) = 0.07653
q−0.9242 . Note that the DT parametersa1 and

b1 are relatively insensitive to variations in the continous
parametersωc. In particular, from (15) and (17), we
obtain

da1

dωc
=

db1

dωc
= he−ωch, (18)

which is just under 0.001 for the values chosen above.

III. R ECURSIVELEAST SQUARESALGORITHM

In this section, we will use the sampling timeh as
the unit of time. We would like to compute the DT
parameter estimatêθ(k) := [â1 b̂1]T at samplek that
minimizes the weighted least-squares criterion:

θ̂(k) =
min

θ

k∑
n=1

w(k, n)[y(n)− φT (n)θ]2, (19)

whereφ(k) := [−y(k− 1) u(k− 1)]T is the regression
vector that contains the input and output data, and
w(k, n) is a weighting sequence with the property,

w(k, n) = λ(k)w(k − 1, n), 0 ≤ n ≤ k − 1
w(k, k) = 1, (20)

in which λ(k) is the forgetting factor [4]. The RLS
algorithm is given by

θ̂(k) = θ̂(k − 1) +

L(k)
[
y(k)− φT (k)θ̂(k − 1)

]
(21)

L(k) =
P (k − 1)φ(k)

λ(k) + φT (k)P (k − 1)φ(k)
(22)

P (k) =
1

λ(k)
[P (k − 1)−

P (k − 1)φ(k)φT (k)P (k − 1)
λ(k) + φT (k)P (k − 1)φ(k)

]
, (23)

where

P (k) :=

[
k∑

n=1

w(k, n)φ(n)φT (n)

]−1

(24)

is the scaled covariance matrix of the parameters at
samplek. The initial parameter vector is denoted as
θ̂(0) = θ0 and the initial covariance matrix is denoted
as P (0) = P0. In other words,θ0 is what we guess
the parameter vector to be before seeing the data, and
P0 reflects our confidence in this guess [4]. The initial
regression vector is specified asφ(0) = [0 0]T . The
forgetting factorλ is constant for a slowly changing
system and can be chosen according to

λ = 1− 1
K

, (25)

where K is the memory time constant. Data older
than K samples are weighted by a factore−1 ≈ 36%

compared to the most recent data [4]. For an LTI system,
it is natural to require that all data be given equal weight,
which implies that no data is discounted. By setting
K →∞ in (25), we obtainλ = 1.

IV. COMPUTERSIMULATIONS

The CT system described by (8) was simulated using
Simulink with a simulation sampling time ofTs =
0.1 ms, corresponding to 10 kilosamples per second
(kS/s). The Langevin disturbance was modeled as band-
limited white noise with bandwidth 10 kHz and constant
power SL(f) = 1.6 × 10−3 pN2

Hz . As mentioned in
Section II, this represents the Langevin force that acts
on a 10-µm diameter polystyrene bead at biological
temperatures. To facilitate comparison with experimental
results in Section V, the actual characteristic frequency
of the simulated system is chosen asωc = 78 rad/s.
According to Section II-B, for RLS sampling timeh =
1 ms, the actual parameters are given by

a = b = 78 (26)

and

θ =
[

a1

b1

]
=
[
−0.925
0.07504

]
. (27)

To enable quantitative comparisons with the results from
[3], we assume an initial characteristic frequency guess
of ω̂c(0) = 65 rad/s, which corresponds to an error
of 20% (13 rad/s). According to Section II-B, the initial
parameter conditions are given by

â(0) = b̂(0) = 65 (28)

and

θ0 =
[

â1(0)
b̂1(0)

]
=
[
−0.9242
0.07653

]
. (29)

For invertibility, we assume the initial covariance matrix
is of the form

P0 =
[

p 0
0 p

]
,

in which p > 0. In the simulations that follow, we
will denote the input signal amplitude byA and input
frequency byf .

Figure 3 shows results for an input square wave with
A = 0.2 µm andf = 10 Hz. The top plot shows the
input and output (I/O) signals, the middle plot shows
the DT parameter estimates, and the bottom plot shows
the CT parameter estimates. For comparison, the DT
estimates are plotted as1 + â1 and b̂1, since, according
to (14), we would like these two quantities to converge
to the same value (= b1).

After fluctuating wildly at the onset, both the DT and
CT parameter estimates eventually converge close to the
correct values ofb1 andωc, respectively. The simulation
is shown on an expanded time scale in Figure 4, in which
the ωc ± 5% and ωc ± 2% limits are included in the
bottom plot.
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Fig. 3. Simulation of RLS forh = 1 ms, λ = 1, p = 104; square
wave input,A = 0.2 µm andf = 10 Hz.

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

 I/
O

 (µ
 m

) u
y

0 5 10 15 20

0.075

0.08

 D
T

1+a∧
1

b∧
1

b
1

0 5 10 15 20
70

75

80

85

t (s)

 C
T 

(r
ad

/s
)

a∧

b∧

ω
c

Fig. 4. Simulation of RLS forh = 1 ms, λ = 1, p = 104; square
wave input,A = 0.2 µm andf = 10 Hz. Dash-dotted lines on the
bottom plot showωc ± 5% andωc ± 2% limits.

Although the parameter estimates display small fluc-
tuations that do not disappear with time, the CT pa-
rameter estimates settle to within 5% ofωc in under
0.6 s and to within 2% in under 8 seconds. The direct
correspondence between the DT and CT estimates can
be seen from the similar shape of their plots. As shown
in (18), fluctuations in the DT estimates will amplify the
CT estimates by a factor of over 1000. The reason for
the paramater fluctuations is the Langevin disturbance.
This is demonstrated by Figure 5, which is a hypothetical
simulation for zero Langevin disturbance.

No oscillations are observed and the CT parameter
estimates settle to within 5% ofωc in under 3 ms (3
iterations) and to within 2% in under 4 ms (4 iterations).

A. Effect of Input Signal Parameters

1) Input Frequency:We found that bothf = 2 Hz
and f = 20 Hz resulted in slower parameter conver-
gence. The value off = 10 Hz was used because it
gave the fastest convergence for the chosen value of
ωc. This is consistent with the practical recommendation
that input power be selected at frequency bands in
which a “good model is particularly important”, or
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Fig. 5. HypotheticalFL = 0 simulation of RLS forh = 1 ms,
λ = 1, p = 104; square wave input,A = 0.2 µm andf = 10 Hz.

more formally, frequencies at which the “Bode plot is
sensitive to parameter variations” [4]. The optimal input
frequency forωc = 78 rad/s isf ≈ 12 Hz, which is
close to 10 Hz.

2) Input Shape:We found that a square wave pro-
vides faster convergence than both a sinusoidal input
(f = 10 Hz) and a random input. Furthermore, we found
that random input signals yield erroneous paramater
estimates. The superiority of the square wave can be
explained using the crest factorCr, which should be
minimized to reduce the covariance of the parameter
estimates [4]. For a discrete input sequence{u(k)}, the
crest factor is given by

C2
r =

maxk u2(k)

limN→∞
1
N

∑N
k=1 u2(k)

, (30)

which is clearly at its theoretical lower bound for binary,
symmetric signals such as a square wave [4].

B. Effect of RLS Algorithm Parameters

1) Forgetting Factor: According to (25), a forgetting
factor of λ = 0.9999 corresponds to a memory time
constant ofK = 10000 samples, which is equivalent
to t = 10 s for h = 1 ms. Figure 6 shows simulation
results forλ = 0.9999.

The CT parameter estimates settle to within 5% of
ωc in under 0.6 s, but they do not settle within the 2%
limit. Clearly, the parameter estimates fluctuate more for
the λ = 0.9999 case than for theλ = 1 case shown in
Figure 4. Intuitively, since the past data is exponentially
discounted with time, there is less smoothing of the past
data. Therefore, the identification algorithm is more sen-
sitive to the Langevin disturbance and the convergence
properties are diminished.

2) Initial Covariance Matrix: By decreasing initial
covariance matrix gain fromp = 104 to p = 1, we can
specify greater confidence in our initial parameter guess.
Figure 7 shows simulation results forp = 1.
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Fig. 6. Simulation of RLS forh = 1 ms, λ = 0.9999, p = 104;
square wave input,A = 0.2 µm andf = 10 Hz.
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Fig. 7. Simulation of RLS forh = 1 ms, λ = 1, p = 1; square
wave input,A = 0.2 µm andf = 10 Hz.

Comparing with Figure 3, we see that the smaller
value of p results in significantly smaller initial fluc-
tuations in the parameter estimates. Further simulations
show that, forp = 1, the CT parameter estimates settle
to within 5% of ωc in under 0.3 s and to within 2% in
under 8.5 s, which are similar to the settling times for
p = 104.

It should be mentioned that, since the RLS algorithm
is implemented using a PC, the input and output position
amplitudes can be scaled if necessary (within computa-
tion limits), but this does not affect convergence times
for the RLS algorithm, so the data was not scaled.

V. EXPERIMENTAL RESULTS

A schematic diagram of our single-axis optical
tweezer system is shown in Figure 8 [3].

Since the RLS algorithm does not require real-time
feedback control, we were able to investigate its per-
formance by collecting input and output data from our
system usingLabVIEW data acquisition software and
hardware and then processing the data usingMatlab [3].
Data was sampled at a rate of 2 kS/s with an analog
lowpass filter at the Nyquist frequency. Figure 9 shows

Fig. 8. Schematic diagram of single-axis optical tweezer system.
PBSC = Polarizing Beam Splitting Cube, KM = Kinematic Mirror,
AOD = Acousto-Optic Deflector, PSD = Position Sensing Detector,
CCD = CCD Camera, DM = Dichroic Mirror.

results for an input square wave withA = 0.2 µm and
f = 10 Hz.
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Fig. 9. Implementation of RLS for experimental data withh = 1 ms,
λ = 1, p = 104; square wave input,A = 0.2 µm andf = 10 Hz.

After initial fluctuations, the parameter estimates ap-
pear to reach steady values within 9 seconds. The values
of the CT estimates after 10 s arêa = 88 rad/s and
b̂ = 86 rad/s. The slight disparity between these two
estimates is likely due to attenuation from the lowpass
filter. The parameter convergence values for different
input frequencies are shown in Table I, including the two
off-line methods. The RLS results are for 10 seconds of
data, while the off-line results are for the average of 30
seconds of data [3]. The RLS parameter estimates are not
consistent with the results for off-line calibration meth-
ods such as the power spectrum and step response [3].
Further implementation shows that for lower frequencies
(f = 2 Hz and f = 5 Hz), the RLS algorithm does
not converge to steady values within 10 s. As shown in
Section IV, this is almost certainly due to the mismatch
in input frequency and the characteristic frequency of
the system. The result is slower convergence for lower
input frequencies.

The inconsistencies can be due to several factors.
For example, even slight misalignments in the position



Calibration method â b̂ Convergence after 10 s
RLS (f = 2 Hz) 85 82 Unsteady
RLS (f = 5 Hz) 89 85 Unsteady
RLS (f = 10 Hz) 88 86 Steady
Power Spectrum 75 75
Step Response 78 78

TABLE I

PARAMETER ESTIMATES FOR EXPERIMENTAL DATA.

detection system and fluctuations in the dynamic laser
pointing system (the AOD) can cause systematic errors
that distort the RLS calibration results. The power
spectrum method, in particular, is robust with respect to
such factors [6], [8]. Additional sources of measurement
noise, such as low-frequency drift and other types of
electronic bias, high frequency amplifier noise, mechan-
ical vibrations, and extraneous background light can
also contribute to erroneous estimates. Such problems
are inherent in any practical position detection system.
The presence of an analog RC lowpass filter can also
distort the RLS calibration results. However computer
simulations show that the typical effect of the lowpass
filter is to reduce the parameter estimates, not increase
them. Therefore, it is unlikely that the lowpass filter
caused the disparities in Table I.

In light of the disparities between the results shown
in Table I, more analysis and experimental work needs
to be done before we can make definitive quantitative
claims about the convergence of the RLS algorithm
when applied to typical experimental data.

VI. CONCLUSION

This paper describes the calibration of the charac-
teristic frequency of an optical tweezer using a well-
known recursive least-squares approach. For a system
with characteristic frequency of approximately 12 Hz,
we use computer simulations to show that a square wave
input with frequency 10 Hz can be used to estimate
the parameters to within 5% accuracy in under 1 s
and to within 2% accuracy in under 10 s. We also
demonstrate that initial parameter fluctuations can be
significantly decreased by reducing the initial covariance
matrix, but this does not appear to improve steady state
convergence times. We find that convergence properties
are diminished for forgetting factors less than 1.

For a system–such as an optical tweezer–that is sub-
ject to a large stochastic disturbance, the RLS method
is, in theory, superior to an on-line identification method
such as the NG algorithm, which is not designed to
handle large disturbances. In fact, computer simulations
show that the RLS algorithm is at least one order of
magnitude faster than the NG algorithm [3]. In prac-
tice, the characteristic frequency of an optical trap can
vary due to laser fluctuations, local heating, and cross-
contamination. Methods that depend on purely off-line

data analysis do not account for these effects and may
suggest an erroneous value for the characteristic fre-
quency. Therefore, in a laboratory environment in which
experimental conditions are not entirely constant, the
RLS algorithm could potentially provide a more reliable
(up-to-date) measure of characteristic frequency than the
off-line methods that are widely in use. Furthermore,
since the RLS algorithm is specifically designed for on-
line identification, it is easy to implement using a PC.

Our experimental results are not consistent with pre-
vious, off-line calibration results. Although the RLS
parameter estimates converge for an input frequency of
10 Hz, the estimates are about12% greater than the off-
line values. Further analysis is needed before the RLS
method can be recommended for accurate calibration of
experimental results. In light of the effectiveness of the
RLS method when applied to computer generated data,
it is very likely that the experimental difficulties can be
overcome by reducing laboratory noise and increasing
the accuracy of our position detection system.

Also, the results of this paper pertain specifically to
a 10-µm diameter polystyrene bead trapped in water at
biological temperature. The characteristic frequency for
a 1-µm bead will be at least 10 times larger, whereas
the Langevin noise power will be one-tenth. In future
work, we will investigate the performance of the RLS
algorithm for a 1-µm bead, which is widely used in
biophysics.

It should be pointed out that this paper only considers
calibration of the characteristic frequencyωc. If specific
information about stiffnessα and dragβ are sought,
the off-line power spectrum method is unrivalled in
many aspects [6]. However, due to its speed and ease
of implementation, we believe that the RLS algorithm
described here will prove to be a useful tool for users
of optical tweezers.
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