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Abstract— In this paper, three theorems regarding stability
of switched stochastic systems are stated and proved. Lya-
punov techniques are used to derive sufficient conditions for
stability in probability of the overall system and we distinguish
between the cases of a common Lyapunov function and
multiple Lyapunov functions. An application to distributed
Air Traffic Management is discussed as a future goal.

I. I NTRODUCTION

In the past few years the introduction of randomness
in the hybrid system formalism has led to the concept of
stochastic hybrid and switched systems. Many models of
stochastic hybrid systems have been proposed (see [13] for
an overview). The most important difference between these
models lies in where to introduce the randomness. A first
choice is to add a stochastic component to the deterministic
continuous control law that governs each discrete state
so that the dynamics at each mode are now described
by a stochastic differential equation. This approach was
adopted in [10], for example. Another choice is to replace
the deterministic transitions between discrete states by
stochastic ones, governed by some prescribed probabilistic
rule. This approach was adopted in [3]. More general
models can be proposed by mixing the above approaches
and keeping in mind the application in hand. In this paper,
we adopt the first approach.

The extension of Lyapunov stability theory to deterministic
switched and hybrid systems has been studied in detail
by many authors during the last past years (see [1],[12]
and [4] for an overall review of the topic). A common
feature in the various Lyapunov-like theorems that were
presented was that the decrease of the energy function
at the switching instants-or at each time a subsystem is
activated- is a sufficient condition for the stability of the
hybrid system. On the other hand, there exists a solid
theory on stability in probability of stochastic differential
equations and the corresponding Lyapunov theorems (see
[2],[7],[9] and the references therein). It is therefore natural
and appealing to extend the Lyapunov-like theorems for
stochastic differential equations to the case of switched
stochastic systems.

In this paper, three theorems regarding stability in
probability of switched stochastic systems are stated and
proved. We combine the formulation of [1] with the
Lyapunov theory for stochastic differential equations of
[9] to obtain the aforementioned results. The motivation of
our work comes from the field of Decentralized Air Traffic
Management,the formulation of which is a system that
combines continuous, discrete and stochastic dynamics. A
preliminary discussion on this application is included in
section IV.

The rest of the paper is organized as follows: In section II
we recall some definitions and results regarding Lyapunov
stability of stochastic differential equations. In section III
the system model is defined, three theorems that guarantee
stability in probability are presented and we make some
remarks on the aforementioned theorems. In section IV
we discuss some examples. Section V summarizes the
conclusions and indicates our current research.

II. STOCHASTIC STABILITY IN LYAPUNOV’ S VEIN

We consider the followingstochastic system

dX(t) = b(X(t))dt + G(X(t))dξ(t)
X(0) = X0

(1)

where X(t) a n-dimensional random pro-
cess, b(X(t)), G(X(t)) a vector and a matrix valued
second order random process respectively of appropriate
dimensions,ξ(t) a standardn-dimensional Wiener process,
and X0 a second order random vector independent of
the σ-algebra F (ξ(τ), τ ≥ t). We assume that the
processes b(X(t)), G(X(t)) are non-anticipating, so
that the corresponding Itô integrals are well defined.
The stochastic differential equation (1) admits a unique
solution X(t) if there exist constantsK1,K2 > 0 such
that ∀x ∈ Rn and∀ t ≥ 0, the following hold [11]:

|b(x1)− b(x2)|+ |G(x1)−G(x2)| ≤ K1|x1 − x2|
|b(x)|+ |G(x)| ≤ K2(1 + |x|) (2)

We examine the stability of the trivial solutionX(t) = 0 of
equation (1), therefore we make the following assumption:
b(0) = 0, G(0) = 0.



Definition 1 [9]: The solutionX(t) of equation (1) is said
to be stable in probability fort ≥ 0 if for any s ≥ 0 and
ε > 0

lim
x→0

P{sup
t>s

| Xs,x(t) |> ε} = 0 (3)

Here, Xs,x(t) denotes the sample path of the solution of
equation (1) starting from a pointx at time s. Intuitively,
the definition implies that for a stable stochastic system,
the probability of escape from a spherical region around
the origin should be small for a small deviation from
equilibrium state.

Many Lyapunov-like sufficient conditions for the stability
in probability of equation (1) have been proposed in
literature. Here, we adopt the approach of Hasminskii
[2],[7],[9] which is summarized in the following theorem:

Theorem 1: Let U ⊂ Rn be a domain which contains
the origin, and assume that there exists a positive definite
function V : U → R+, twice continuously differentiable
everywhere except possibly at the origin, that satisfies for
all x ∈ U \ {0}:

LV (x) =
n∑

i=1

bi(x)
∂V

∂xi
+

1
2

n∑

i,j=1

αij(x)
∂2V

∂xi∂xj
≤ 0 (4)

in whichαij = [GG∗]ij , where * denotes the complex con-
jugate transformation. Then the trivial solution of equation
(1) is stable in probability.

III. SWITCHED STOCHASTIC SYSTEMS

In this paper, we examine stability properties of switched
stochastic systems of the form:

dX(t) = bi(X(t))dt + Gi(X(t))dξ(t)
X(0) = x0

(5)

wherei ∈ Q = { 1, . . . , N}, the set of indices of each mode
of the switched system. For simplicity we considerx0 to
be a constant vector. A closed-loop stochastic controller has
been designed for each mode of the system, and we wish to
find suitable switching conditions which ensure some de-
sired performance for the overall system. We considerarbi-
trary switching, i.e. there are noguardsthat enforce switch-
ing between different modes, and the switching is state-
independent, unlike most models of stochastic switched and
hybrid systems found in literature [3],[8],[10]. Furthermore,
two different switching situations are encountered : (i) there
are noreset mapsat each switching instant, and the state
jumps to an arbitrary new value whenever a switch between
two different modes occurs and (ii) continuity is preserved
at each switching instant, i.e. the reset map is the identity
operator in this case. Case (i) is dealt with in Theorems
3,4 and case (ii) in Theorem 2. In section 2.1 we make
the assumption that a common Lyapunov function exists
as a measure for the energy of each subsystem, while
in section 2.2 we consider different Lyapunov functions

for each mode. Finally, there are only finite switches in
finite time, i.e. the switched system does not exhibitZeno
behavior.

A. Common Lyapunov Function

We make the following assumptions for each subsystem:
bi(0) = 0, Gi(0) = 0, ∀ i ∈ Q. A Common Lyapunov Func-
tion for the system (5) is a functionV : Rn → R+, twice
continuously differentiable everywhere except possibly at
the origin, that is positive definite, i.e.V (x) > 0∀x 6= 0
and V (0) = 0, and proper, i.e.lim|x|→∞ V (x) = ∞ such
that

LV (x) =
n∑

j=1

bi
j(x)

∂V

∂xj
+

+
1
2

n∑

j,k=1

αi
jk(x)

∂2V

∂xj∂xk
≤ 0 ∀t,∀i ∈ Q (6)

in which αi
jk =

[
GiGi∗]

jk
.

Suppose switchings occur at the time instants:
t0, t1, ..., t0 < t1 < . . . and that continuity in mean
square of the state is maintained at the switching instants,
i.e.

lim
h→0

E‖x(ti + h)− x(t−i )‖2 = 0,∀i (7)

We have the following theorem:

Theorem 2: If there is a Common Lyapunov Function
for the system (5) and all the previous assumptions hold,
then the system (5) is stable in probability according to
definition (3).

Proof: For each tj ∈ {t0, t1, ...} Ito’s formula results
in:

V (tj) = V (tj−1) +
∫ tj

tj−1

LV (x(s))ds +

+
∫ tj

tj−1

n∑

k,l=1

∂V

∂xk
Gq

kldξl(s)

where q is the subsystem which is active in the interval
[tj−1, tj). The expectation of the second integral in this
equation is zero. Hence taking the expectation of both sides
and using (6),(7) we haveEV (tj) ≤ EV (tj−1) ≤ . . . ≤
EV (0) = V (x0). We make use of the fundamental remark
of [9] that the processV (x) is a supermartingale. By the
supermartingale inequality we have

P{ sup
tj≤t≤tj+1

V (t) ≥ ε} ≤ 1
ε
[EV (tj) + EV −(tj+1)]

where V −(a) = max{−V (a), 0} = 0 ∀a since V is
positive definite. Hence the last inequality becomes

P{ sup
tj≤t≤tj+1

V (t) ≥ ε} ≤ 1
ε
EV (tj)



Using the fact thatEV (tj) ≤ EV (tj−1) ≤ . . . ≤ EV (0) =
V (x0) we finally get

P{sup
t≥0

V (t) ≥ ε} ≤ 1
ε
V (x0) ∀ε > 0.

The properness ofV implies that ∀ε1 > 0∃ε > 0 s.t.
V (x) ≥ ε whenever‖x‖ ≥ ε1. The positive definiteness and
continuity ofV imply that∀ε2 > 0∃δ > 0 s.t. 1

εV (x0) ≤ ε2

whenever‖x0‖ ≤ δ. So the last equation is equivalent to

P{sup
t≥0

‖x(t)‖ ≥ ε1} ≤ ε2∀x0 : ‖x0‖ ≤ δ.

Letting x0 tend to zero we derive the desired result.♦
B. Multiple Lyapunov Functions

In this section, we present some extensions of the
stability theorems for deterministic switched systems
([1],[12]) to the stochastic case. Specifically, we present
and prove two theorems that guarantee stability in
probability of the switched stochastic system with arbitrary
switches. The conditions imposed on these theorems are
somewhat stronger than those of the deterministic case,
however they have the advantage that the state of the
system need not be continuous at the switching instants.
Theorem 3 is more general than Theorem 4, but as in the
deterministic case, the first theorem requires knowledge of
the trajectory of the system. Theorem 4 on the other hand
requires only local analysis where the switches occur and
hence is more applicable.

We make the following assumptions for each
subsystem: (a)bi(0) = 0, Gi(0) = 0,∀ i ∈ Q, (b) ∀ i ∈ Q,
there exists a functionV i : Rn →R+, twice continuously
differentiable everywhere except possibly at the origin,
that is positive definite, i.e.V i(x) > 0 ∀x 6= 0 and
V i(0) = 0,and proper, i.e.lim|x|→∞ V (x) = ∞ and (c)
∀ i ∈ Q,bi and Gi satisfy the existence and uniqueness
conditions (2). The state evolution is described by the
following switching sequenceS = x0; (i0, t0), (i1, t1), . . .,
where (ij , tj) means that the state evolves according
to dX(t) = bij (X(t))dt + Gij (X(t))dξ(t) for
tj ≤ t < tj+1. Define S | i = τ i

0, τ
i
1,. . . the endpoints of

the intervals in which theith subsystem is active, and
I(S | i) =

⋃
j∈N [τ i

2j , τ
i
2j+1] the set of intervals in which

the ith subsystem is active.

Theorem 3: Suppose that assumptions (a),(b),(c) hold
for each subsystem. LetS denote the set of all switching
sequences related to the system. If∀S ∈ S and∀i ∈ Q the
following conditions are satisfied:

LV i(x) =
n∑

j=1

bi
j(x)

∂V i

∂xj
+

+
1
2

n∑

j,k=1

αi
jk(x)

∂2V i

∂xj∂xk
≤ 0 ∀t ∈ I(S | i) (8)

EV i(x(τ i
2j)) ≥ EV i(x(τ i

2j+2)) ∀j ∈ N (9)

EV i(x(τ i
0)) ≤ EV i0(x(τ i0

0 )) = V i0(x0) (10)

whereαi
jk = [GiGi∗]jk then the trivial solutionX(t) ≡ 0

is stable in probability, according to definition (3) .

Proof: By the supermartingale inequality we have

P{ sup
τ i
2j
≤t≤τ i

2j+1

V i(t) ≥ εi} ≤ 1
εi

EV i(τ i
2j) ∀i, ∀εi > 0

(9),(10) imply that

P{ sup
τ i
2j
≤t≤τ i

2j+1

V i(t) ≥ εi} ≤ 1
εi

EV i(τ i
0) ≤

≤ 1
εi

V i0(x0) ∀i, ∀εi > 0, ∀j ∈ N

so that

P{ sup
t∈I(S|i)

V i(t) ≥ εi} ≤ 1
εi

V i0(x0)∀i, ∀εi > 0,∀j ∈ N

Pick ε > 0 arbitrary. The properness ofV i implies that
∀i there areεi(ε) > 0 such thatV i(t) ≥ εi is implied by
‖x(t)‖ ≥ ε so that

P{ sup
t∈I(S|i)

‖x(t)‖ ≥ ε} ≤ 1
εi

V i0(x0)

or
P{sup

t≥0
‖x(t)‖ ≥ ε} ≤ max

i
{ 1
εi

V i0(x0)}

The positive definiteness and continuity of eachV i imply
that for eachε2 > 0 there is aδ(ε2) > 0 such that
maxi{ 1

εi
V i0(x0)} ≤ ε2 is implied by ‖x0‖ ≤ δ. Letting

x0 tend to zero we derive the desired result.♦

We now present a restricted version of the above
theorem.

Theorem 4: Suppose that assumptions (a),(b),(c)
hold for each subsystem. LetS denote the set of
all switching sequences related to the system. If
∀S ∈ S,S = x0; (i0, t0), (i1, t1), . . . and ∀i ∈ Q
the following conditions are satisfied:

LV i(x) =
n∑

j=1

bi
j(x)∂V i

∂xj
+

1
2

n∑
j,k=1

αi
jk(x) ∂2V i

∂xj∂xk
≤ 0 ∀t ∈ I(S|i)

(11)

EV ij+1(x(tj+1)) ≤ EV ij (x(t−j+1))∀j ∈ N (12)

then the trivial solutionX(t) ≡ 0 is stable in probability,
according to definition (3).

Proof:From the proof of Theorem 2 we have that
EV ij (x(t)) ≤ EV ij (x(tj)) ∀i, j ∈ N , ∀t ∈ [tj , tj+1].
Hence, equation (12) yieldsEV ij (x(t)) ≤ EV ij (x(tj))



≤ EV ij−1(x(t−j )) ≤ . . . ≤ EV i0(x(t0)) = V i0(x0)∀i, j ∈
N , ∀t. Similar to the proof of theorem 3 we have

P{ sup
t∈I(S|i)

V i(t) ≥ εi} ≤ 1
εi

V i0(x0)∀i,∀εi > 0,∀j ∈ N

and the rest of the proof is the same.♦
C. Remarks on the Theorems

The following remarks are in order.

• Theorem 3 lacks in applicability compared to theo-
rems 2,4, mainly because one has to know the global
behavior of the trajectory, in order to check whether
equations (9),(10) are satisfied or not. The stricter
Theorem 4 is more applicable because it requires only
local knowledge of the trajectory whenever switchings
take place.

• The above theorems do not hold whenever the set of
modesQ is infinite. The reason is that in this case a
switch to a mode never before activated can always
be made, so that conditions of the theorems still hold,
although the system is unstable.

• If the Lyapunov functions in the above theorems are
defined only in a sphere around the origin, then the
results have only local validity.

• So far we haven’t discussed asymptotic stability in
probability, i.e. the case when the origin is stable in
probability and the following relation holds for any
s ≥ 0 andε > 0

lim
x→0

P{ lim
t→∞

Xs,x(t) = 0} = 1 (13)

It is possible to strengthen the conditions of theo-
rems 2,3,4 in order to achieve asymptotic stability.
For example, if there are finite switches and the
last subsystem activated is asymptotically stable in
probability, then it is obvious that so is the whole
system. Furthermore, if there are infinite switches
and the energy strictly decreases at the switching
times(strict inequality at equations (9),(12)) then the
system can be proven to be asymptotically stable in
probability. The proofs have the same structure of the
corresponding theorems for one mode [9]. Since we
deal with autonomous subsystems, we could also use
another result of Hasminskii who has shown that ifG
in (5) satisfiesyT GT (x)G(x)y ≥ m(x)‖y‖2 for all
x, y, ‖x‖ < r,for somer > 0,wherem(x) is positive
definite and bounded away from 0, then stochastic
stability implies stochastic asymptotic stability.

IV. EXAMPLES

A. Example:Linear Subsystems

A variety of results regarding stability of deterministic
switched linear systems can be found in literature. Sufficient
conditions have been derived in the form of Linear Matrix
Inequalities(LMI’s) [12]. In this section we derive analo-
gous results for the case where the subsystems of system

(5) are linear, i.e. for switched stochastic systems of the
form:

dX(t) = BiX(t)dt + GiX(t)dξ(t) (14)

where Bi, Gin × n matrices andξ(t) a standard1-
dimensional Wiener process. We shall make use of theorem
4. A common way to begin is to choose quadratic Lyapunov
functions for each subsystem:V i(x) = xT P ix whereP i a
positive definite real symmetric matrix. In the case when
continuity in mean square is preserved at the switching
instants it is easy to see that from equations (11),(12) we
derive the following sufficient conditions for the system
(13):

xT
(
P iBi +

(
Bi

)T
P i

)
x+tr

{
xT

(
Gi

)T
P iGix

}
≤ 0 ⇒

⇒ P iBi + (Bi)T P i + (Gi)T P iGi ≤ 0 ∀i (15)

P ij+1 − P ij ≤ 0∀j ∈ N (16)

wheretr(M) denotes the trace of then×n matrix M and
M ≤ 0 denotes that the square matrixM is negative semi-
definite. Equation (16) is stricter than the corresponding
condition in [12]. This is because we haven’t imposed
conditions on subsets of the state space where switchings
occur. If that were the case, then (16) could be rewritten in
the form of a LMI.

B. Application to Decentralized Air Traffic Management

The motivation for this work has its origins in the domain
of decentralized motion planning. In previous work [5], we
derived control laws for decentralized navigation of multiple
agents in a closed-loop fashion. Each agent was assumed to
have perfect knowledge of the positions of the other agents
and the overall system model was purely deterministic.
However this is not the case when one has to deal with
distributed air traffic management systems. Each aircraft
can only have knowledge of an estimate of the current
positions of the other aircraft in a neighborhood of its
center of a certain radius, namely itsprotected zone(Fig.1).
The primary reason of uncertainty is the wind. Hence
the dynamics of such a system include both stochastic
and discrete dynamics(whenever a new aircraft enters the
protected zone of another).

R

i

Fig. 1. Aircraft i and its protected zone of radiusR.



Our approach will be based on [6]. Whenever the protected
zone of aircrafti is empty the dynamics of the aircraft are
purely deterministic, namely a potential function driving
i towards its destination. Whenever an aircraft enters the
protected zone of aircrafti, the control law is switched in or-
der to meet both specifications:destination convergence(DC)
and collision avoidance(CA). Hence the switching control
strategy is given by:

q̇i = { DC if N(i) = 0
DC ∧ CA if N(i) 6= 0 (17)

where qi the configuration of i, N(i) ∆=
{#j : ‖qi − qj‖ ≤ dC} is the number of aircraft in
the protected zone ofi anddC is the separation minimum
between two aircraft which corresponds to the radius of the
protected zone. In this equationDC denotes the control
imposed oni in order to meet the destination convergence
goal whereasDC ∧ CA denotes the control imposed
on i in order to meet the destination convergence and
collision avoidance goals simultaneously whenever there
are intruding aircraft ini’s neighborhood. The switching
control strategy is shown in Figure 2.

N(i)=0

N(i)>0

DC DC and CA

Fig. 2. Switching control strategy according to eq.(17).

It is our current goal to produce closed-loop decentralized
control laws for each mode of (17) in the spirit of
[5]. Each agent treats the movement of the other
agents as a stochastic differential equation. For
example let the dynamics of aircrafti be given by
dqi(t) = bi(q(t))dt and the dynamics of an intruding
aircraftj be given by:dqj(t) = bj(q(t))dt+Gj(q(t))dξ(t),
where q(t) = [qi(t), qj(t)]T . Then the relative
position of aircraft i with respect to j is given by:
dqij(t) = (bi(q(t)) − bj(q(t)))dt − Gj(q(t))dξ(t). A
possible interpretation of the two performance objectives
(DC andCA) could then have the form:

DC:Designbi(q) so that

P{sup
t≥0

‖qi − qdi‖ > ε} ≤ N(ε) > 0,∀ε > 0

CA:Designbi(q) so that

P{inf
t≥0

‖qij‖ ≤ dC} ≤ M,M suff. small

whereqdi denotes the desired destination ofi.

It is obvious that the system (17) is of the form (5).
Hence the satisfaction of one of the theorems 2,3 or 4 is
crucial for system (17) in order to achieve (asymptotic)
stability in probability to the desired destination point.

V. CONCLUSIONS

In this paper we proved three theorems on stability of
switched stochastic systems. These theorems are extensions
of existing results of the past decade on stability of
deterministic switched systems. The motivation comes
from the field of distributed air traffic management where
the dynamics encountered include discrete and stochastic
components. The theorems proved in this work provide
sufficient conditions for the stability of the stochastic
hybrid system.

Current research aims at improving the results presented
in an application-wise fashion as well as producing
a satisfactory statement and solution of the stochastic
decentralized problem discussed in section IV.B.
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