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Abstract— A direct hybrid adaptive control framework for
nonlinear uncertain hybrid dynamical systems is developed.
The proposed hybrid adaptive control framework guarantees
attraction of the closed-loop system states associated with
the hybrid plant states in the face of parametric system
uncertainty. A numerical example is provided to demonstrate
the efficacy of the proposed approach.

I. I NTRODUCTION

The complexity of modern controlled uncertain nonlinear
dynamical systems is often exacerbated by the use of hier-
archical abstract decision-making units performing logical
checks that identify system mode operation and specify a
subcontroller within the feedback control architecture to
be activated. These multiechelon systems are classified as
hybrid systems (see [1], [2] and the numerous references
therein) and involve aninteracting countable collection
of dynamical systems possessing a hierarchical structure
characterized by continuous-time dynamics at the lower-
level units and logical decision-making units at the higher-
level of the hierarchy. The mathematical description of
many of these systems can be characterized by impulsive
differential equations [3], [4].

Even though adaptive control algorithms have been ex-
tensively developed in the literature for both continuous-
time and discrete-time systems, hybrid adaptive control
algorithms for hybrid dynamical systems are nonexistent.
In this paper we develop a direct hybrid adaptive control
framework for nonlinear uncertain impulsive dynamical
systems. In particular, using the hybrid invariance principle
given in [4], [5] a hybrid adaptive control framework
is developed that guarantees attraction of the closed-loop
system states associated with the hybrid plant dynamics.
Furthermore, the remainder of the state associated with the
hybrid adaptive controller gains is shown to be bounded. In
the case where the nonlinear hybrid system is represented
in a hybrid normal form, the nonlinear hybrid adaptive
controllers are constructedwithout requiring knowledge of
the hybrid system dynamics.

II. M ATHEMATICAL PRELIMINARIES

In this section we establish definitions, notation, and re-
view some basic concepts on impulsive dynamical systems
[3]–[5]. Let R denote the set of real numbers,Rn denote
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the set ofn×1 real column vectors,(·)T denote transpose,
(·)† denote the Moore-Penrose generalized inverse,λmin(·)
denote the minimum eigenvalue of a Hermitian matrix,
N denote the set of nonnegative integers,Nn (resp.,Pn)
denote the set ofn×n nonnegative (resp., positive) definite
matrices, and letIn denote then × n identity matrix.
Furthermore, we writeV ′(x) for the Fŕechet derivative ofV
at x anddist(p,M) for the smallest distance from a point
p to any point in the setM.

In this paper, we consider controlledstate-dependent[4]
impulsive dynamical systemsG of the form

ẋ(t) = fc(x(t)) + Gc(x(t))uc(t), x(0) = x0,

x(t) 6∈ Zx, (1)
∆x(t) = fd(x(t)) + Gd(x(t))ud(t), x(t) ∈ Zx, (2)

where t ≥ 0, x(t) ∈ D ⊆ Rn, D is an open set with
0 ∈ D, ∆x(t) , x(t+)−x(t), uc(t) ∈ Uc ⊆ Rmc , ud(tk) ∈
Ud ⊆ Rmd , tk denotes thekth instant of time at whichx(t)
intersectsZx for a particular trajectoryx(t), fc : D → Rn

is Lipschitz continuous and satisfiesfc(0) = 0, Gc : D →
Rn×mc , fd : Zx → Rn is continuous,Gd : Zx → Rn×md

is such thatrank Gd(x) = md, x ∈ Zx, and Zx ⊂ D
is the resetting set. Here, we assume thatuc(·) and ud(·)
are restricted to the class ofadmissibleinputs consisting of
measurable functions such that(uc(t), ud(tk)) ∈ Uc × Ud

for all t ≥ 0 andk ∈ N[0,t) , {k : 0 ≤ tk < t}, where the
constrained setUc×Ud is given with(0, 0) ∈ Uc×Ud. We
refer to the differential equation (1) as thecontinuous-time
dynamics, and we refer to the difference equation (2) as the
resetting law. In this paper we assume that Assumptions
A1 and A2 established in [4] hold for allud(·) ∈ Ud; that
is, the resetting set is such that resetting removesx(tk)
from the resetting set and no trajectory can intersect the
interior of Zx. Hence, as shown in [4], the resetting times
are well defined and distinct. Since the resetting times are
well defined and distinct and since the solution to (1) exists
and is unique it follows that the solution of the impulsive
dynamical system (1), (2) also exists and is unique over a
forward time interval.

Next, we provide a key result from [4], [5] involving an
invariant set stability theorem for hybrid dynamical systems.
Specifically, consider the impulsive dynamical system (1),
(2) with hybrid adaptive feedback controllersuc(·) and
ud(·) so that the closed-loop hybrid system̃G has the form

˙̃x(t) = f̃c(x̃(t)), x̃(0) = x̃0, x̃(t) 6∈ Zx̃, (3)

∆x̃(t) = f̃d(x̃(t)), x̃(t) ∈ Zx̃, (4)



where t ≥ 0, x̃(t) ∈ D̃ ⊆ Rñ, x̃(t) denotes the closed-
loop state involving the system state and the adaptive gains,
f̃c : D̃ → Rñ and f̃d : D̃ → Rñ denote the closed-
loop continuous-time and resetting dynamics, respectively,
with f̃c(x̃e) = 0, where x̃e ∈ D̃\Zx denotes the closed-
loop equilibrium point, and̃n denotes the dimension of the
closed-loop system state. For the statement of the next result
the following key assumption is needed.

Assumption 2.1 ( [4], [5]): Let s(t, x̃0), t ≥ 0, denote
the solution of (3), (4) with initial conditioñx0 ∈ D̃. Then
for every x̃0 ∈ D̃, there exists a dense subsetTx̃0 ⊆ [0,∞)
such that[0,∞)\Tx̃0 is (finitely or infinitely) countable and
for every ε > 0 and t ∈ Tx̃0 , there existsδ(ε, x̃0, t) > 0
such that if‖x̃0− y‖ < δ(ε, x̃0, t), y ∈ D̃, then‖s(t, x̃0)−
s(t, y)‖ < ε.

Assumption 2.1 is a generalization of the standard con-
tinuous dependence property for dynamical systems with
continuous flows to dynamical systems with left-continuous
flows. Specifically, by lettingTx̃0 = T x̃0 = [0,∞), where
T x̃0 denotes the closure of the setTx̃0 , Assumption 2.1
specializes to the classical continuous dependence of so-
lutions of a given dynamical system with respect to the
system’s initial conditions̃x0 ∈ D̃ [6]. Since solutions of
impulsive dynamical systems arenot continuous in time and
arenot continuous functions of the system initial conditions,
Assumption 2.1 is needed to apply the hybrid invariance
principle developed in [4], [5] to hybrid adaptive systems.
Henceforth, we assume that the hybrid adaptive feedback
controllersuc(·) and ud(·) are such that closed-loop hy-
brid system (3), (4) satisfies Assumption 2.1. Necessary
and sufficient conditions that guarantee that the nonlinear
impulsive dynamical system̃G satisfies Assumption 2.1 are
given in [5]. A sufficient condition that guarantees that the
trajectories of the closed-loop nonlinear impulsive dynam-
ical system (3), (4) satisfy Assumption 2.1 are Lipschitz
continuity of f̃c(·) and the existence of a continuously
differentiable functionX : D̃ → R such that the resetting
set is given byZx̃ = {x̃ ∈ D̃ : X (x̃) = 0}, where
X ′(x̃) 6= 0, x̃ ∈ Zx̃, andX ′(x̃)f̃c(x̃) 6= 0, x̃ ∈ Zx̃. The
last condition above ensures that the solution of the closed-
loop hybrid system is not tangent to the resetting setZx̃

for all initial conditionsx̃0 ∈ D̃. For further discussion on
Assumption 2.1 see [4], [5].

The following theorem proven in [4], [5] is needed to
develop the main results of this paper.

Theorem 2.1 ( [4], [5]): Consider the nonlinear impul-
sive dynamical system̃G given by (3), (4), assumẽDc ⊂ D̃
is a compact positively invariant set with respect to (3), (4),
and assume that there exists a continuously differentiable
function V : D̃c → R such that

V ′(x̃)f̃c(x̃) ≤ 0, x̃ ∈ D̃c, x̃ /∈ Zx̃, (5)

V (x̃ + f̃d(x̃)) ≤ V (x̃), x̃ ∈ D̃c, x̃ ∈ Zx̃. (6)

Let R , {x̃ ∈ D̃c : x̃ /∈ Zx̃, V ′(x̃)f̃c(x̃) = 0} ∪ {x̃ ∈
D̃c : x̃ ∈ Zx̃, V (x̃ + f̃d(x̃)) = V (x̃)} and letM denote
the largest invariant set contained inR. If x̃0 ∈ D̃c, then
x̃(t) →M as t →∞. Finally, if D̃ = Rñ andV (x̃) →∞
as‖x̃‖ → ∞, then x̃(t) →M as t →∞ for all x̃0 ∈ Rñ.

III. H YBRID ADAPTIVE CONTROLLERS FOR

NONLINEAR HYBRID DYNAMICAL SYSTEMS

In this section we consider the problem of character-
izing hybrid adaptive controllers for nonlinear uncertain
hybrid systems. Specifically, we consider the controlled
state-dependent impulsive dynamical system (1), (2) with
D = Rn, Uc = Rmc , andUd = Rmd .

Theorem 3.1:Consider the nonlinear uncertain hybrid
dynamical systemG given by (1), (2). Assume there exist
a matrix Kcg ∈ Rmc×sc , a continuously differentiable
function Vs : Rn → R, and continuous functionŝGc :
Rn → Rmc×mc , Fc : Rn → Rsc , and `c : Rn → Rpc

such thatVs(·) is positive definite, radially unbounded,
Vs(0) = 0, `c(0) = 0, Fc(0) = 0, and, for allx ∈ Rn\Zx,

0 = V ′
s (x)fcs(x) + `Tc (x)`c(x), (7)

where

fcs(x) , fc(x) + Gc(x)Ĝc(x)KcgFc(x). (8)

Furthermore, assume there exist a matrixKdg ∈ Rmd×sd

and continuous functionŝGd : Zx → Rmd×md and Fd :
Zx → Rsd such thatĜd(x), x ∈ Zx, is invertible and, for
all x ∈ Zx,

0 > Vs(x + fds(x))− Vs(x), (9)

where

fds(x) , fd(x) + Gd(x)Ĝd(x)KdgFd(x). (10)

Finally, let c > 0, Qc ∈ Pmc , Qd ∈ Pmd , Y ∈ Psc , and
λmax(Qd) < 2. Then the hybrid adaptive feedback control
law

uc(t) = Ĝc(x(t))Kc(t)Fc(x(t)), x(t) 6∈ Zx, (11)

ud(t) = Ĝd(x(t))Kd(t)Fd(x(t)), x(t) ∈ Zx, (12)

where Kc(t) ∈ Rmc×sc , t ≥ 0, and Kd(t) ∈ Rmd×sd ,
t ≥ 0, with update laws

K̇c(t)
= − 1

2QcĜ
T
c (x(t))GT

c (x(t))V ′
s
T(x(t))FT

c (x(t))Y,

Kc(0) = Kc0, x(t) /∈ Zx, (13)
∆Kc(t) = 0, x(t) ∈ Zx, (14)

K̇d(t) = 0, Kd(0) = Kd0, x(t) /∈ Zx, (15)

∆Kd(t) = − 1
c+FT

d (x(t))Fd(x(t))
QdĜ−1

d (x(t))G†d(x(t))

·[∆x(t)− fds(x(t))]FT
d (x(t)), x(t) ∈ Zx, (16)

where∆Kc(t) , Kc(t+)−Kc(t) and∆Kd(t) , Kd(t+)−
Kd(t), guarantees that the solution(x(t),Kc(t),Kd(t)),
t ≥ 0, of the closed-loop hybrid system given by (1), (2),
(11)–(16) satisfies̀c(x(t)) → 0 as t → 0 for all x0 ∈ Rn.
If, in addition, `Tc (x)`c(x) > 0, x ∈ Rn\Zx, x 6= 0, then
x(t) → 0 as t →∞ for all x0 ∈ Rn.

Proof. First, defineK̃d(t) , Kd(t) − Kdg and w̃(t) ,
Gd(x(t))Ĝd(x(t))K̃d(t)Fd(x(t)). Note that withuc(t), t ≥
0, andud(tk), k ∈ N , given by (11) and (12), respectively,
it follows that the closed-loop hybrid system (1), (2) is given
by

ẋ(t) = fc(x(t)) + Gc(x(t))Ĝc(x(t))Kc(t)Fc(x(t)),
x(0) = x0, x(t) 6∈ Zx, (17)

∆x(t) = fd(x(t)) + Gd(x(t))Ĝd(x(t))Kd(t)Fd(x(t)),
x(t) ∈ Zx, (18)



or, equivalently, using (8) and (10),

ẋ(t) = fcs(x(t)) + Gc(x(t))Ĝc(x(t))(Kc(t)−Kcg)
·Fc(x(t)), x(0) = x0, x(t) 6∈ Zx, (19)

∆x(t) = fds(x(t)) + Gd(x(t))Ĝd(x(t))(Kd(t)−Kdg)
·Fd(x(t))

= fds(x(t)) + w̃(t), x(t) ∈ Zx. (20)

Furthermore, note that adding and subtractingKdg to and
from (16) and using (20) it follows that

K̃d(t+) = K̃d(t)
− 1

c+FT
d (x(t))Fd(x(t))

QdĜ−1
d (x(t))G†d(x(t))

·[Gd(x(t))Ĝd(x(t))K̃d(t)Fd(x(t))]FT
d (x(t))

= K̃d(t)− 1
c+FT

d (x(t))Fd(x(t))
QdK̃d(t)Fd(x(t))

·FT
d (x(t)), x(t) ∈ Zx. (21)

To show convergence of the plant states for the closed-
loop hybrid system (13)–(15) and (19)–(21) consider the
Lyapunov-like function

V (x,Kc,Kd) = Vs(x)
+trQ−1

c (Kc −Kcg)Y −1(Kc −Kcg)T

+tr(Kd −Kdg)TQ−1
d (Kd −Kdg). (22)

Note thatV (0,Kcg,Kdg) = 0 and, sinceVs(·), Qc, Qd,
and Y are positive definite,V (x,Kc, Kd) > 0 for all
(x,Kc, Kd) 6= (0,Kcg,Kdg). In addition, V (x, Kc,Kd)
is radially unbounded. Now, using (7), (13), and (15), it
follows that the time derivative ofV (x,Kc, Kd) along
the closed-loop system trajectories over the time interval
t ∈ (tk, tk+1], k ∈ N , is given by

V̇ (x(t),Kc(t),Kd(t))

= V ′
s (x(t))

[
fcs(x(t)) + Gc(x(t))Ĝc(x(t))(Kc(t)−Kcg)

·Fc(x(t))
]

+ 2trQ−1
c (Kc(t)−Kcg)Y −1K̇T

c (t)

= −`Tc (x(t))`c(x(t))

+tr
[
(Kc(t)−Kcg)Fc(x(t))V ′

s (x(t))Gc(x(t))Ĝc(x(t))
]

−tr
[
(Kc(t)−Kcg)Fc(x(t))V ′

s (x(t))Gc(x(t))Ĝc(x(t))
]

= −`Tc (x(t))`c(x(t))
≤ 0, tk < t ≤ tk+1. (23)

Now, suppose there existskmax > 0 such thatk ≤ kmax;
that is, the closed-loop system trajectoryx(t), t ≥ 0,
intersects the resetting setZx a finite number of times.
In this case, the closed-loop hybrid system possesses a
continuous flow for allt > tkmax and hence it follows
from Theorem 2 of [7] that̀ c(x(t)) → 0 as t → ∞.
If, in addition, `Tc (x)`c(x) > 0, x ∈ Rn\Zx, x 6= 0,
then x(t) → 0 as t → ∞ for all x0 ∈ Rn. Alternatively,
suppose a trajectoryx(t), t ≥ 0, intersects the resetting set
Zx infinitely many times. In this case, consider the partial
Lyapunov-like function

VKd(Kd) = tr(Kd −Kdg)TQ−1
d (Kd −Kdg). (24)

Note that sinceQd is positive definite,VKd(Kd) > 0, Kd ∈
Rmd×sd , Kd 6= Kdg. Now, using (21), the difference of

VKd(Kd) along the closed-loop system trajectories at the
resetting timestk, k ∈ N , is given by

∆VKd(x(tk),Kd(tk))
, VKd(x(t+k ),Kd(t+k ))− VKd(x(tk), Kd(tk))

= tr
(
K̃d(tk)− 1

c+FT
d (x(tk))Fd(x(tk))

QdK̃d(tk)Fd(x(tk))

·FT
d (x(tk))

)T

Q−1
d

(
K̃d(tk)− 1

c+FT
d (x(tk))Fd(x(tk))

Qd

·K̃d(tk)Fd(x(tk))FT
d (x(tk))

)
− tr K̃T

d (tk)Q−1
d K̃d(tk)

= tr K̃T
d (tk)Q−1

d K̃d(tk)− 2
c+FT

d (x(tk))Fd(x(tk))
tr

[
K̃T

d (tk)

·K̃d(tk)Fd(x(tk))FT
d (x(tk))

]
+ 1

(c+FT
d (x(tk))Fd(x(tk)))2

·trFd(x(tk))FT
d (x(tk))K̃T

d (tk)QdK̃d(tk)
·Fd(x(tk))FT

d (x(tk))− tr K̃T
d (tk)Q−1

d K̃d(tk)
≤ − 1

c+FT
d (x(tk))Fd(x(tk))

FT
d (x(tk))K̃T

d (tk)(2Imd −Qd)

·K̃d(tk)Fd(x(tk))
≤ 0, k ∈ N , (25)

where in (25) we used FT
d (x)Fd(x)

c+FT
d (x)Fd(x)

< 1 and 2Imd −
Qd > 0, since by assumptionλmax(Qd) < 2. Hence,
VKd(x(tk),K(tk)), k ∈ N , is a nonincreasing and
bounded function ofk. Thus, it follows from the mono-
tone convergence theorem (see Theorem 8.6 of [8]) that
limk→∞VKd(x(tk), Kd(tk)) exists which implies that
∆VKd(x(tk),Kd(tk)) → 0 as k → ∞. Now, it follows
from (25) thatK̃d(tk)Fd(x(tk)) → 0 ask →∞ and hence
w̃(tk) → 0 as k → ∞. Next, to show thatx(t) → 0 as
t →∞, note that, sincẽw(tk) → 0 ask →∞, there exists
k∗ ≥ 0 such that for allk ≥ k∗,

0 ≥ Vs(x(tk) + fds(x(tk)) + w̃(tk))− Vs(x(tk)) (26)

holds and hence there exist̂Zx ⊂ Zx andKd ⊂ Rmd×sd

such that

0 ≥ Vs(x + fds(x) + Gd(x)Ĝd(x)K̃dFd(x))− Vs(x),
(x,Kd) ∈ Ẑx ×Kd ⊂ Zx × Rmd×sd , (27)

and dist(x(tk), Ẑx) → 0 as k → ∞ and
dist(K̃d(tk),Kd) → 0 as k → ∞. Hence, it follows
that the difference ofV (x,Kc,Kd) along the closed-loop
system trajectories at the resetting timestk, k ≥ k∗, is
given by

∆V (x(tk), Kc(tk),Kd(tk))
, V (x(t+k ),Kc(t+k ),Kd(t+k ))

−V (x(tk),Kc(tk),Kd(tk))
= Vs(x(tk) + fds(x(tk)) + w̃(tk))− Vs(x(tk))

+∆VKd(x(tk),Kd(tk))
≤ 0, k ≥ k∗. (28)

Next, for t ≥ tk∗ , define the translated closed-loop hybrid
system

˙̂x(τ) = fc(x̂(τ)) + Gc(x̂(τ))Ĝc(x̂(τ))K̂c(τ)Fc(x̂(τ)),
x̂(0) = x(t+k∗), x̂(τ) 6∈ Zx, (29)

∆x̂(τ) = fd(x̂(τ)) + Gd(x̂(τ))Ĝd(x̂(τ))K̂d(τ)Fd(x̂(τ)),
x̂(τ) ∈ Zx, (30)



˙̂
Kc(τ) = − 1

2QcĜ
T
c (x̂(τ))GT

c (x̂(τ))V ′
s
T(x̂(τ))

·FT
c (x̂(τ))Y, K̂c(0) = Kc(t+k∗), x̂(τ) /∈ Zx, (31)

∆K̂c(τ) = 0, x̂(τ) ∈ Zx, (32)
˙̂
Kd(τ) = 0, K̂d(0) = Kd(t+k∗), x̂(τ) /∈ Zx, (33)

∆K̂d(τ) = − 1
c+FT

d (x̂(τ))Fd(x̂(τ))
QdĜ−1

d (x̂(τ))G†d(x̂(τ))

·[∆x̂(τ)− fds(x̂(τ))]FT
d (x̂(τ)), x̂(τ) ∈ Zx, (34)

where τ , t − tk∗ ≥ 0, x̂(τ) , x(t − tk∗), K̂c(τ) ,
Kc(t − tk∗), and K̂d(τ) , Kd(t − tk∗). Furthermore,
defineRc , {(x̂, K̂c, K̂d) ∈ Rn × Rmc×sc × Rmd×sd :
x̂ 6∈ Zx, V̇ (x̂, K̂c, K̂d) = 0} = {(x̂, K̂c, K̂d) ∈ Rn ×
Rmc×sc × Rmd×sd : x̂ 6∈ Zx, `Tc (x̂)`c(x̂) = 0} and
Rd , {(x̂, K̂c, K̂d) ∈ Rn × Rmc×sc × Rmd×sd : x̂ ∈
Zx, ∆V (x̂, K̂c, K̂d) = 0}. Now, letM denote the largest
invariant set contained inR , Rc∪Rd and note that since
w̃(tk) → 0 as k → ∞ it follows that for (x̂, K̂c, K̂d) ∈
M ∩ (Ẑx × Rmc×sc × Kd), Gd(x̂)Ĝd(x̂)K̃dFd(x̂) = 0,
K̃dFd(x̂) = 0, and Vs(x̂ + fds(x̂)) − Vs(x̂) = 0. How-
ever, since (27) holds for allx ∈ Zx, M = Rc ∪ Ø
and hence it follows from Theorem 2.1 that the solu-
tion (x̂(τ), K̂c(τ), K̂d(τ)), τ ≥ 0, to (29)–(34) satisfies
`c(x̂(τ)) → 0 as τ → ∞ and hencè c(x(t)) → 0 as
t → ∞. Furthermore, if`Tc (x)`c(x) > 0, x ∈ Rn\Zx,
x 6= 0, thenx(t) → 0 as t →∞ for all x0 ∈ Rn. ¤

Remark 3.1:Note that in the case where`Tc (x)`c(x) > 0,
x ∈ Rn\Zx, x 6= 0, the conditions in Theorem 3.1 imply
that x(t) → 0 as t → ∞ and hence it follows from
(13) that (x(t),Kc(t),Kd(t)) → M , {(x,Kc,Kd) ∈
Rn × Rmc×sc × Rmd×sd : x = 0, K̇c = 0} as t → ∞.
Furthermore, ifx(t), t ≥ 0, intersectsZx infinitely many
times, then(x(t),Kc(t),Kd(t)) → M , {(x, Kc,Kd) ∈
Rn × Rmc×sc × Rmd×sd : x = 0, K̇c = 0, Kd(t+) =
Kd(t)} as t →∞.

Remark 3.2:In the case whereud(t) ≡ 0, Condition (9)
can be replaced by

0 ≥ Vs(x + fd(x))− Vs(x). (35)

Furthermore, takingFd(x) = 0, x ∈ Zx, and Kd(t) ≡
0, (26) holds for all k ∈ N . In this case, since
V (x(t),Kc(t), Kd(t)) is nonincreasing for allt ≥ 0,
V (x,Kc,Kd) is a Lyapunov function and hence the closed-
loop hybrid system (13)–(15) and (19)–(21) is Lyapunov
stable andx(t) → 0 as t →∞. For further details see [9].

It is important to note that the hybrid adaptive control
law (11)–(16) doesnot require explicit knowledge of the
gain matricesKcg and Kdg; even though Theorem 3.1
requires the existence ofKcg, Kdg, Fc(x), Fd(x), Ĝc(x),
Ĝd(x), andVs(x) such that (7) and (9) hold. Furthermore,
no specific structure on the nonlinear dynamicsfc(x) and
fd(x) is required to apply Theorem 3.1. However, if (1) and
(2) are such that

fc(x) = Ãcx + f̃cu(x), Gc(x) =
[
0(n−mc)×mc

Gcs(x)

]
, (36)

fd(x) = (Ãd − In)x + f̃du(x), Gd(x) =
[
0(n−md)×md

Gds(x)

]
,

(37)

where

Ãc =
[

Ac0

0mc×n

]
, f̃cu(x) =

[
0(n−mc)×1

fcu(x)

]
, (38)

Ãd =
[

Ad0

0md×n

]
, f̃du(x) =

[
0(n−md)×1

fdu(x)

]
, (39)

Ac0 ∈ R(n−mc)×n and Ad0 ∈ R(n−md)×n are known
matrices of zeros and ones capturing a multivariable control-
lable canonical form representation [10],fcu : Rn → Rmc

andfdu : Rn → Rmd are unknown functions,Gcs : Rn →
Rmc×mc , andGds : Rn → Rmd×md , then we can always
construct functionsFc : Rn → Rsc and Fd : Rn → Rsd ,
with Fc(0) = 0, such that the zero solutionx(t) ≡ 0
to (8) and (10) is globally asymptotically stablewithout
requiring knowledge of the hybrid system dynamics. To
see this assume thatfcu(x) and fdu(x) are unknown and
are parameterized asfcu(x) = Θcfcn(x) and fdu(x) =
Θdfdn(x), wherefcn : Rn → Rqc and fdn : Rn → Rqd

with fcn(0) = 0, andΘc ∈ Rmc×qc andΘd ∈ Rmd×qd are
matrices of uncertain constant parameters.

Next, to apply Theorem 3.1 to the uncertain nonlinear
hybrid system (1) and (2) withfc(x), fd(x), Gc(x), and
Gd(x) given by (36) and (37), letKcg ∈ Rmc×sc andKdg ∈
Rmd×sd , wheresc = qc + rc and sd = qd + rd, be given
by

Kcg = [Θcn−Θc, Φcn ], Kdg = [ Θdn−Θd, Φdn ], (40)

whereΘcn ∈ Rmc×qc , Θdn ∈ Rmd×qd , Φcn ∈ Rmc×rc , and
Φdn ∈ Rmd×rd are known matrices, and let

Fc(x) =
[

fcn(x)
f̂cn(x)

]
, Fd(x) =

[
fdn(x)
f̂dn(x)

]
, (41)

where f̂cn : Rn → Rrc and f̂dn : Rn → Rrd , satisfying
f̂cn(0) = 0, are arbitrary functions. In this case, it follows
that, with Ĝc(x) = G−1

cs (x) and Ĝd(x) = G−1
ds (x),

fcs(x) = fc(x) + Gc(x)Ĝc(x)KcgFc(x)

= Ãcx +
[

0(n−mc)×1

Θcnfcn(x) + Φcnf̂cn(x)

]
(42)

and
fds(x) = fd(x) + Gd(x)Ĝd(x)KdgFd(x)

= (Ãd − In)x +
[

0(n−md)×1

Θdnfdn(x) + Φdnf̂dn(x)

]
. (43)

Now, since Θcn ∈ Rmc×qc , Θdn ∈ Rmd×qd , Φcn ∈
Rmc×rc , andΦdn ∈ Rmd×rd are arbitrary constant matrices
and f̂cn : Rn → Rrc and f̂dn : Rn → Rrd are arbitrary
functions we can always constructKcg, Kdg, Fc(x), and
Fd(x) without knowledge offc(x) andfd(x) such that (7)
and (9) are satisfied. In particular, choosingΘcnfcn(x) +
Φcnf̂cn(x) = Âcx and Θdnfdn(x) + Φdnf̂dn(x) = Âdx,
where Âc ∈ Rmc×n and Âd ∈ Rmd×n, it follows that
(42) and (43) have the formfcs(x) = Acx and fds(x) =

(Ad − In)x, respectively, whereAc =
[
AT

0 , ÂT
c

]T

and

Ad =
[
AT

0 , ÂT
d

]T

are in multivariable controllable canoni-

cal form. Hence, we can choosêAc andÂd such thatAc is
Hurwitz and Ad is Schur. Now, it follows from standard



converse Lyapunov theory that there exists a positive-
definite matrixP satisfying the Lyapunov equation

0 = AT
c P + PAc + Rc, (44)

whereRc is positive definite. If, in addition,P satisfies

0 = AT
d PAd − P + Rd, (45)

whereRd is positive definite, then (9) holds withVs(x) =
xTPx. Hence, the hybrid adaptive feedback controller (11)
and (12) with update laws (13), or, equivalently,

K̇c(t) = −QcĜ
T
c (x(t))GT

c (x(t))Px(t)FT
c (x(t))Y, (46)

and (14)–(16) guarantees global attraction of thenonlinear
hybrid uncertain dynamical system (1) and (2) wherefc(x),
fd(x), Gc(x), andGd(x) are given by (36) and (37). Note
that sinceRc and Rd are arbitrary, (44) and (45) can
be cast as a linear matrix inequality feasibility problem
involving P > 0, AT

c P + PAc < 0, andAT
d PAd −P < 0.

Finally, as mentioned above, it is important to note that it
is not necessary to utilize a feedback linearizing function
Fc(x) and Fd(x) to produce a linearfcs(x) and fds(x).
However, as shown above, when the hybrid system is in
a hybrid normal formgiven by (36), (37), the feedback
linearizing functionsFc(x) andFd(x) provide considerable
simplification in constructingVs(x) necessary in computing
the hybrid update law (13).

Note that by choosingΘdn = Φdn = 0 considerable
simplification occurs in the update law (16). Specifically, in
this case it follows that

G†d(x)fds(x) =
[

0m×(n−m), G−1
ds (x)

] [
A0

0m×n

]
x

= 0, (47)

and hence the update law (16) can be simplified as

∆Kd(t) = 1
c+FT

d (x(t))Fd(x(t))
QdĜ−1

d (x(t))G†d(x(t))

·∆x(t)FT
d (x(t)), x(t) ∈ Zx. (48)

Next, we consider the case wherefc(x), fd(x), Gc(x),
and Gd(x) are uncertain. Specifically, we assume that
Gc(x) and Gd(x) are such thatGcs(x) and Gds(x) are
unknown and are parameterized asGcs(x) = BcuGcn(x)
and Gds(x) = BduGdn(x), whereGcn : Rn → Rmc×mc

and Gdn : Rn → Rmd×md are known and satisfy
det Gcn(x) 6= 0, x ∈ Rn\Zx, detGdn(x) 6= 0, x ∈
Zx, and Bcu ∈ Rmc×mc and Bdu ∈ Rmd×md , with
det Bcu 6= 0 and det Bdu 6= 0, are unknown symmetric
sign-definite matrices but a boundα for the maximum
singular value ofBdu is known and the sign definite-
ness ofBcu and Bdu are known. For the statement of
the next result defineBc0 ,

[
0mc×(n−mc), Imc

]T
for

Bcu > 0, Bc0 ,
[
0mc×(n−mc), −Imc

]T
for Bcu < 0,

Bd0 ,
[
0md×(n−md), Imd

]T
for Bdu > 0, and Bd0 ,[

0md×(n−md), −Imd

]T
for Bdu < 0.

Corollary 3.1: Consider the nonlinear uncertain hybrid
dynamical systemG given by (1) and (2) withfc(x), fd(x),
Gc(x), and Gd(x) given by (36), (37), andGcs(x) =
BcuGcn(x) and Gds(x) = BduGdn(x), where Bcu ∈
Rmc×mc and Bdu ∈ Rmd×md are unknown symmetric
matrices and the sign definiteness ofBcu and Bdu are
known andσmax(Bdu) < α, α > 0. Assume there exist
a matrix Kcg ∈ Rmc×sc , a continuously differentiable

function Vs : Rn → R, and continuous functionŝGc :
Rn → Rmc×mc , Fc : Rn → Rsc , and `c : Rn → Rpc

such thatVs(·) is positive definite, radially unbounded,
Vs(0) = 0, `c(0) = 0, Fc(0) = 0, and, for allx ∈ Rn\Zx,
(7) holds with fcs(x) given by (8). Furthermore, assume
that there exist a matrixKdg ∈ Rmd×sd and continuous
functionsĜd : Zx → Rmd×md and Fd : Zx → Rsd such
that Ĝd(x), x ∈ Zx, is invertible and, for allx ∈ Zx, (9)
holds with fds(x) given by (10). Finally, letc > 0 and
Y ∈ Psc . Then the hybrid adaptive feedback control law

uc(t) = G−1
cn (x(t))Kc(t)Fc(x(t)), x(t) 6∈ Zx, (49)

ud(t) = α̂−1G−1
dn (x(t))Kd(k)Fd(x(t)), x(t) ∈ Zx, (50)

whereKc(t) ∈ Rm×sc , t ≥ 0, Kd(t) ∈ Rm×sd , t ≥ 0, and
α̂ ≥ α/2, with update laws

K̇c(t) = −Bc
T
0V

′
s
T(x(t))FT

c (x(t))Y,

Kc(0) = Kc0, x(t) /∈ Zx, (51)
∆Kc(t) = 0, x(t) ∈ Zx, (52)

K̇d(t) = 0, Kd(0) = Kd0, x(t) /∈ Zx, (53)

∆Kd(t) = − 1
c+FT

d (x(t))Fd(x(t))
Bd

T
0[∆x(t)− fds(x(t))]

·FT
d (x(t)), x(t) ∈ Zx, (54)

guarantees that the solution(x(t),Kc(t),Kd(t)) of the
closed-loop hybrid system given by (1), (2), (49)–(54) sat-
isfies`c(x(t)) → 0 ast →∞. If, in addition,`Tc (x)`c(x) >
0, x ∈ Rn\Zx, x 6= 0, then x(t) → 0 as t → ∞ for all
x0 ∈ Rn.

Proof. The result is a direct consequence of Theo-
rem 3.1. First, let Ĝc(x) = G−1

cn (x) and Ĝd(x) =
α̂−1G−1

dn (x) so that Gc(x)Ĝcn(x) = [0m×(n−m), Bcu]T

and Gd(x)Ĝdn(x) = [0m×(n−m), α̂
−1Bdu]T, and let

Kcg = B−1
cu [Θcn − Θc, Φcn] and Kdg = α̂B−1

du [Θdn −
Θd, Φdn]. Next, sinceQc and Qd are arbitrary positive-
definite matrices withλmax(Qd) < 2, Qc in (13) andQd in
(16) can be replaced byqc|Bcu|−1 andα̂−1|Bdu|−1, respec-
tively, whereqc is a positive constant,|Bcu| = (B2

cu)
1
2 , and

|Bdu| = (B2
du)

1
2 , where(·) 1

2 denotes the (unique) positive-
definite square root. Now, sinceBcu andBdu are symmetric
and sign definite it follows from the Schur decomposition
that Bcu = UcDBcuUT

c and Bdu = UdDBduUT
d , whereUc

andUd are orthogonal andDBcu andDBdu are real diagonal.
Hence,|Bcu|−1ĜT

c (x)GT
c (x) = [0mc×(n−mc), Imc ] = Bc

T
0

and α̂−1|Bdu|−1ĜT
d (x)GT

d (x) = [0md×(n−md), Imd ] =
Bd

T
0 , whereImc = Imc for Bcu > 0, Imc = −Imc for

Bcu < 0, Imd = Imd for Bdu > 0, and Imd = Imd
for Bdu < 0. Now, (13) and (16) imply (51) and (54),
respectively. ¤

IV. I LLUSTRATIVE NUMERICAL EXAMPLE

In this section we present a numerical example to demon-
strate the utility of the proposed hybrid adaptive control
framework for hybrid adaptive stabilization. Specifically,
consider the nonlinear uncertain controlled hybrid system



given by (1), (2) withn = 2, x = [x1, x2]T,

fc(x) =
[

x2

−βx1 − µ(x2
1 − α)x2

]
, Gc(x) =

[
0
bc

]
,

fd(x) =

[ −x1 + x2

−x2 − a1x
2
1 − a2

x3
2

1+x2
2
− a3x

3
2

]
,

Gd(x) = [0, bd]T,

whereµ, α, β, a1, a2, a3, bc, bd ∈ R are unknown. Further-
more, we assume that the resetting setZx is given by

Zx = {x ∈ R2 : X (x) = 0, x2 > 0}, (55)

where X : R2 → R is a continuously differentiable
function given byX (x) = x1. It can be easily verified
that the resetting setZx satisfies Assumptions A1 and
A2 given in [4]. Furthermore,X ′(x) 6= 0, x ∈ Zx,
and for the closed-loop hybrid system corresponding to
the continuous-time dynamics given by (1) and (11),
X ′(x)ẋ = x2 6= 0, x ∈ Zx, and hence the closed-loop
hybrid system satisfies Assumption 2.1. Here, we assume
thatfc(x) andfd(x) are unknown and can be parameterized
as fc(x) = [x2, θc1x1 + θc2x2 + θc3x

2
1x2]T and fd(x) =[

−x1 + x2, −x2 + θd1x
2
1 + θd2

x3
2

1+x2
2

+ θd3x
3
2

]T

, where
θc1, θc2, θc3, θd1, θd2, and θd3 are unknown constants.
Furthermore, we assume thatsign bc andsign bd are known
and |bd| < 2. Next, let Ĝc(x) = 1, Ĝd(x) = 1, Fc(x) =[
x1, x2, x

2
1x2

]T
, Fd(x) =

[
x2

1,
x3
2

1+x2
2
, x3

2, x1, x2

]T

,

Kcg = 1
bc

[θcn1 − θc1, θcn2 − θc2,−θc3] , and
Kdg = 1

bd
[−θd1,−θd2,−θd3, φdn1 , φdn2 ], where θn1 ,

θn2 , φdn1 , φdn2 are arbitrary scalars, so that

fcs(x) = fc(x) +
[

0
bc

]
1
bc

· [ θcn1 − θc1, θcn2 − θc2,−θc3

]
Fc(x)

=
[

0 1
θcn1 θcn2

]
x (56)

and

x + fds(x) = x + fd(x) +
[

0
bd

]
1
bd

· [ −θd1,−θd2,−θd3, φdn1 , φdn2

]
Fd(x)

=
[

0 1
φdn1 φdn2

]
x. (57)

Now, with the proper choice ofθcn1 , θcn2 , φdn1 , andφdn2 , it
follows from Corollary 3.1 that the hybrid adaptive feedback
controller (49) and (50) guarantees thatx(t) → 0 as t →
∞. Specifically, here we chooseθcn1 = −1, θcn2 = −2,
φdn1 = −0.1, φdn2 = −0.1, so that (7) and (9) are satisfied
with

Vs(x) = xTPx, P =
[

1 1
1 3

]
, `c(x) =

[
1 1
1 3

]
x.

With µ = 2, α = 1, β = 1, a1 = −5, a2 = −2, a3 = 3,
γ = 1, bc = 3, bd = 1.4, α̂ = 1, Y = 0.1I3, and initial
conditionsx(0) = [1, 1]T, Kc(0) = [0, 0, 0], andKd(0) =
01×5, Figure 1 shows the phase portraits of the uncontrolled
and controlled hybrid system. Figures 2 and 3 show the state
trajectories versus time and the control signals versus time,
respectively.
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Fig. 1. Phase portraits of uncontrolled and controlled hybrid system
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Fig. 2. State trajectories versus time
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Fig. 3. Control signals versus time

V. CONCLUSION

A direct hybrid adaptive nonlinear control framework for
hybrid nonlinear uncertain systems was developed. Using
the the hybrid invariance principle given in [4], [5] the
proposed framework was shown to guarantee attraction of
the closed-loop system states associated with the hybrid
plant dynamics. Furthermore, in the case where the nonlin-
ear hybrid system is represented in a hybrid normal form,
the nonlinear hybrid adaptive controllers were constructed
without knowledge of the system dynamics. Finally, a
numerical example was presented to show the utility of the
proposed hybrid adaptive stabilization scheme.
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