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Abstract— We present a procedure for the approximate
verification of a class of adaptive control systems. In the
systems considered, the continuum state evolves according
to a differential equation that is jointly polynomial in states
and exogenous inputs. Our computational procedure for ap-
proximate verification consists of outer approximating reach
sets and checking behavioral inclusion. The main tool for
computing outer approximations is a result due to Handelman
on the representation of polynomials that are positive in a
polytope. It is a special case of Schmüdgen’s theorem which
is a central result in sum of squares (SOS) programming.
Using the result, a linear program for outer approximation is
derived. An extension to adaptive systems with state-dependent
switching is described. Some difficulties with our approach are
also discussed.

I. INTRODUCTION

In the past several years it has been widely recognized
that a crucial element in achieving the desired levels of
autonomy in Unmanned Aerial Vehicles (UAV) is on-line
adaptive identification and control. Real-time parameter
adjustment is used for a variety of tasks, including on-
line Failure Detection, Identification and Reconfiguration
(FDIR), adaptive disturbance rejection, real-time trajectory
generation, and on-line learning to improve the accuracy
of the vehicle’s models, particularly after failures, battle
damage or other sudden changes in the flight regime. It
has also been found that finding adaptive laws that will
improve a vehicle’s performance under a variety of external
and internal perturbations is a highly challenging objec-
tive, and that the resulting adaptive controllers are highly
complex, which makes their verification and validation
a formidable task. It is believed that many features of
adaptive control systems will necessitate the development
of new formal modeling and verification tools. Affordable
verification and validation (V&V) of intelligent and adaptive
control systems is by far the most important challenge in
the development and certification of unmanned air vehicles
(UAVs) faced by both commercial and military aerospace
industry [1].

This paper presents an approach to the verification of a
class of adaptive systems. Almost all interesting properties
of adaptive systems are not exactly verifiable in view of
the results of [2], [3], [4]. Our interest is in approximate
verification by which we mean an iterative process with the
following guarantee: If the iterations on the approximating
system terminate, then the original adaptive system satisfies
the requirements. It follows that the verifier will never
produce a false “error-free” certificate when the adaptive
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system contains errors, which is the most important require-
ment in V&Vof safety critical systems.

The verification process consists of:
1) Construction of an approximating automaton: We

extend the results of [5] to the class of adaptive
systems considered in this paper, using sum of squares
(SOS) programming techniques, to construct a finite
state automaton whose behaviors contain those of the
hybrid adaptive system and specification. The number
of automaton states depends on the refinement level
of the approximation of behaviors.

2) Emptiness-checking: The approximate verification
problem is to check if the language accepted by
the automaton is empty. This is done by depth-first
search. The major twist is that we need to solve a
SOS programming problem in order to determine if
there is an edge between two states.

3) Convergence and refinement: If there is no path from
initial states to unwanted states of the approximating
automaton, then specifications are guaranteed to be
met by the original hybrid system. Otherwise, we
conclude that the approximation is too coarse and
return to Step 1 for refinement.

Figure 1 shows the iterative process.
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Fig. 1. Overall structure of verifier

The states of the approximating automaton are subsets
of the state space of the closed loop adaptive system that
are potential initial condition sets. The transition function
of the approximating automaton computes an outer approxi-
mation of reach set originating from an automaton state and
checks if it intersects with other automaton states. So, the
underlying computational problem is that of finding good
outer approximations of reach sets originating from a given
set of initial conditions and evolving under the influence of
exogenous inputs. This problem, for the class of systems
considered, is equivalent to the problem of finding a poly-
nomial that is positive in a polytope. We show that recent
developments in sum of squares (SOS) programming [6],
[7], [8], [9], [10], [11], [12], [13] can therefore be used to



derive good computational procedures. Positive polynomials
have received great attention recently [7], [8], [9], [10], [13]
due to the fact that they provide a general scheme to obtain
convex approximations of intractable problems. The basic
idea is to seek representations of positive polynomials as
SOS of polynomials. We use a result due to Handelman
[6] to derive a linear program for outer approximation.
Handelman’s theorem is a special case of Schmüdgen’s
theorem [11], which is a central result in SOS programming,
obtained by considering polytopes.

Our approach to verification can be termed as behavior-
based explicit model checking [14]. Many well-known
model checkers for finite state machines, e.g. SPIN [15]
adopt a similar approach. In fact, by incorporating SOS
programming techniques into SPIN’s repertoire of capa-
bilities, we can use SPIN for implementing the verifier
for adaptive systems shown in Figure 1. Thus, at some
level, we are showing that existing tools can be modified to
obtain approximate verifiers for certain classes of adaptive
systems. Our use of SOS programming techniques is also
motivated by its close connection to algebraic geometry and
the possibility of symbolic computation [16], [17], [13].
So, a symbolic model checker of adaptive systems may be
feasible bringing in the advantages observed in finite state
machines [14], [18].

The paper is organized as follows. The next section
describes the class of adaptive control systems and spec-
ifications considered in this paper. For simplicity, switching
is not considered until Section V. Section III gives a
linear program for outer approximation of reach sets using
SOS programming techniques. An iterative procedure for
approximate verification is given in Section IV and its
extension to switching adaptive systems is discussed in
Section V. Finally, conclusions and some deficiencies in
our approach are presented in Section VI.

II. STATEMENT OF THE VERIFICATION PROBLEM

A verification problem is to check if a system model
satisfies a specification. This section defines the class of
systems and specifications considered.

A. Class of adaptive control systems

The adaptive system is composed of a plant, a reference
model, a state observer, a feedback control law and an
adaptive law. We describe these sub-systems and then write
down a general form for the closed loop system. The plant
is a linear time-invariant (LTI) system given by:

ẋ = Ax + Buu + Bdd (1)

where d is an external disturbance, u is the control input,
A ∈ IRn×n is unknown (but constant) and Bu ∈ IRn×n

is known. We assume that Bu is invertible and that the
disturbance input belongs to a set D of bounded L2

functions with norm less than 1. The reference model is
an LTI system:

ẋm = Amxm + Bmr (2)

where Am ∈ IRn×n has all its eigenvalues in the open left
half plane and r is a reference input. The reference input
belongs to the set of bounded continuous L2 functions with
norm less than 1. An observer for the plant state is chosen
as:

˙̂x = Âx + Buu − λ(x̂ − x) (3)

where x̂ is an estimate of x, Â is an estimate of A and
λ > 0. The adaptive law for adjusting Â is given by:

Φ̇A = −ΓAêx′ (4)

where ΦA = Â − A and ê = x̂ − x are the estimation
errors in A and x respectively and, ΓA ∈ IRn×n is a strictly
positive adaptive gain matrix.

The adaptive control problem is to find a state feedback
law so that:

(a) the closed loop system is asymptotically stable in a
neighborhood of the origin (when d = 0 and r = 0),

(b) the tracking error tends to zero asymptotically (with
d = 0), i.e, limt→∞ [x(t) − xm(t)] = 0 for all
reference inputs and all initial conditions, and

(c) the plant states and control inputs are within specified
bounds (that may depend on the reference input) for
all disturbance inputs in D and all initial conditions.

To this end, we choose the control law:

u = B−1
u (−Âx + Amx + Bmr), (5)

which has the form of an inverse dynamics law. We can
combine the sub-system equations into the closed loop
equations:

ẋ = ΦAx + Amx + Bmr + Bdd
˙̂e = −λe + ΦAx − Bdd

Φ̇A = −ΓAêx′ − δΦA (6)

whose right hand side is a vector-valued polynomial in
(x, ê, ΦA, r, d). It can be shown [19] that the closed loop
system meets the control objectives (a) and (b) for any
choice of the design variables λ > 0 and ΓA. The adap-
tive controller design problem thus becomes a problem of
finding λ and ΓA so that the remaining specification is also
met.

The adaptive control systems considered in this paper are
such that their resulting closed loop systems have the form:

ẋ = f(x, w), x(0) = x0 ∈ X 0 ⊂ IRnx (7)

where x(t) is the state vector, w(t) is the exogenous input
vector consisting of disturbance and reference inputs, f
is a vector-valued polynomial in z = (x′, w′)′, X 0 is a
polytope of initial conditions. We assume that w belongs
to the set BL2 of functions with L2-norm less than 1. It is
reasonable in practical applications to further suppose that
the exogenous inputs are (essentially) bounded in addition
to being in BL2.



B. Specification and the verification problem

We are primarily interested in the transient behavior of
the adaptive control system. The size of transients, in both
tracking error and parameter error, depends on the initial
mis-match between the true and estimated parameters as
well as the reference input. Further, in practical applications,
there are external disturbances that enter the plant (1)
additively or multiplicatively. These disturbances may also
cause unacceptable transients in the closed loop system.
Though transient behavior is a control objective, it is usually
neglected in the design stage which considers asymptotic
stability and tracking as done above. The design variables
are adjusted through simulation-based analysis in the hope
of bounding transient behavior within specified limits. This
approach cannot guarantee that transient requirements are
indeed satisfied.

Let T > 0 and {Qk}K
k=1 be polytopes in the closed loop

state space. We say that the kth transient specification is
satisfied if and only if all trajectories of the closed loop
system emanating from initial conditions in X 0 subject to
exogenous inputs stays within Qk during the time interval
[0, T ]. We refer to Qk as the kth specification satisfaction
set and its complement as the kth specification violation
set. The verification problem is to check if the K transient
specifications are satisfied.

III. OUTER APPROXIMATION OF REACH SET

Fix x0 ∈ X 0 and w ∈ BL2. Let φ(·; x0, w) denote the
solution of (7). For each t ≥ 0, define:

Rt =

{
x ∈ IRnx : x = φ(t; x0, w) for some
x0 ∈ X 0 and w ∈ BL2

}
(8)

which is the set of all states that can be reached at time
t starting from some initial condition in X 0 and evolving
under some exogenous input w in BL2. The set of all states
that can be reached within time T ≥ 0 (reachable set) is:

R =
⋃

0≤t≤T

Rt (9)

where, since T ≥ 0 is fixed throughout this section, we
do not explicitly show the dependence of reachable set on
T . Our aim in this section is to derive a computational
procedure to outer approximate R.

For bounded inputs and finite time T , we can show that
R is bounded using the fact that f is a polynomial and X 0 is
bounded. Furthermore, the specifications in V&V problems
generally constrain the admissible set of states to some
bounded set (so-called “safe set”) containing the initial
condition set. If R is unbounded, then the specifications are
violated. So, the interesting V&V problems involve reach
sets that are bounded. This is stated below as an assumption.

Assumption 3.1: Let n = nx + nw. There are known
strictly positive real numbers zmax

k , k = 1, · · · , n such that
the polytope:

X = {x ∈ IRnx : −zmax
i ≤ xi ≤ zmax

i , i = 1, · · · , nx}

contains the reach set and the safe set, and the polytope:

W = {w ∈ IRnw : −zmax
i ≤ wi ≤ zmax

i , i = nx + 1, · · · , n}

is the set of values taken by exogenous inputs.
With later developments in mind, define the bounding

linear polynomials:
λ1(z) = zmax

1 − z1, λ2(z) = zmax
1 + z1, (10)

λ3(z) = zmax
2 − z2, · · · , λ2n(z) = zmax

n + zn,

and the polytope:

Z = {z ∈ IRn : λi(z) ≥ 0 for i = 1, · · · , 2n} (11)

where n = nx + nw is as in Assumption 3.1. It can be
checked that Z = X ×W .

We will also assume that:
Assumption 3.2: f(x, w) = 0 in Z if and only if x = 0

and w = 0
which guarantees that x = 0 is the only equilibrium point

of the unforced (w = 0) closed loop system (7) in Z . For
computational purposes, it is enough to assume that f has
a finite number of zeros in Z .

A. Background material and notations

We denote the set of scalar-valued polynomials in n
variables by Pn, and the set of scalar-valued polynomials in
n variables of degree at most m by Pm

n . The latter is a finite
dimensional vector space, and we denote its dimension by
mn. .

Bases: We will use two different ordered collections
to represent polynomials. The standard basis Bm

n for Pm
n

consists of monomials with lex order:

Bm
n = {b1, b2, b3, · · · , bmn

} (12)

where bk’s are monomials and b1 = 1. The second col-
lection of interest Hm

n consists of Handelman functions
[6] which are defined relative to a polytope. Consider the
bounding linear polynomials in (10) and the polytope Z
defined in (11). The Handelman functions in n variables
are of the form:

λα = λα1

1 λα2

2 · · ·λαk

k

and may be ordered lexicographically as before with λ
replacing x. The degree of a Handelman function is |α|.
Let

Hm
n =

{
h1, h2, · · · , hm̂n

}
(13)

be lex ordered Handelman functions of degree at most m
with h1 = 1. Here, m̂n is the number of Handel functions
in n variables of degree at most m. It is easy to see that any
polynomial in Pm

n can be written as a linear combination
of Handelman functions in Hm

n , but Hm
n is not a basis.

Given a polynomial p in Pm
n , we write:

p =

mn∑

i=1

bic
p
i = [ b1 b2 · · · bmn

] [ cp
1 cp

2 · · · cp
mn

]′

∆
= Bm

n pb (14)



where pb ∈ IRmn is the coordinate of p in Bm
n . Similarly,

write:

p = [ h1 h2 · · · h
m̂n

]
[
dp
1 dp

2 · · · dp

m̂n

]′ ∆
= Hm

n ph

(15)
for the collection Hm

n . This representation, however, is not
unique. Define:

N h =
{
x ∈ IRm̂n : Hm

n x = 0
}

(16)

which is the subspace of IRm̂n that corresponds to the zero
polynomial. The orthogonal complement (with respect to
the standard inner product on IRm̂n ) of N h is denoted by
N⊥h . We have:

Proposition 3.1: Let p ∈ Pm
n be given. There exist

unique elements pb ∈ IRmn and ph ∈ N⊥h such that
p = Bm

n pb and p = Hm
n ph.

Throughout this paper, the linear invertible transforma-
tion that takes pb ∈ IRmn into ph ∈ N⊥h is denoted by
T nm

h←b. Thus, pb is the coordinate of p in the standard basis
if and only if T nm

h←bpb is such that p = Hm
n T nm

h←bpb.
Embedding: Let m and M be positive integers with m <

M . Then, Pm
n can be seen as a subspace of PM

n . There is
a permutation matrix AM

m ∈ IRMn×Mn with the following
property:

Bm
n pb = BM

n AM
m

[
pb

0

]

for all pb ∈ IRmn . That is, pb is the coordinate of p in

the standard basis on Pm
n if and only if AM

m

[
pb

0

]
is the

coordinate of p in the standard basis on PM
n .

The following is a slightly modified version of a result
due to Handelman [6] which is a special case of a more
recent theorem of Schmüdgen [11].

Theorem 3.1 (Handelman [6]): Let p ∈ Pn and Z be a
polytope as defined in (10-11). p is strictly positive in Z
if and only if there exist a positive integer M ≥ m and

ph ∈ IRM̂n such that p = HM
n ph, the first entry of ph is

strictly positive and all the remaining entries are positive
real numbers.

Handelman’s theorem in its original form states that any
polynomial which is strictly positive in Z can be expressed
as a positive linear combination of Handelman functions.
If p is strictly positive in Z , then γmin = min

z∈Z p(z) is
strictly positive due to compactness of Z , and the function
q = p − 1

2
γmin is also strictly positive in Z . So, by the

original form of Handelman’s theorem, q can be expressed
as q = HM

n qh, where qh ≥ 0. Define

ph = qh +

[
γmin/2

0

]

and note that ph satisfies all the requirements of Theo-
rem 3.1. The reverse implication given in Theorem 3.1 fol-
lows from the fact that non-constant Handelman functions
are strictly positive in the interior of Z .

Handling positivity: Handelman functions are strictly
positive in the interior of Z . As a consequence, a positive
linear combination of Handelman functions is zero at some
point in the interior of Z if and only if it is zero in Z .
Since we are interested in non-constant positive functions
in the next section, the span of Handelman functions is not
sufficiently large for our purpose. Therefore, we augment
Hm

n with the positive elements of Bm
n . Let

Bm+
n =

{
p1, p2, · · · , pm+

n
: pk ∈ Bm

n is positive
}

(17)

be the lex ordered positive polynomials in Bm
n and

Bm+
n = [ p1 p2 · · · pm

+
n

] (18)

be the matrix obtained by stacking the elements. There is a
full rank matrix E+

m whose entries are all zeros and ones,
no row or column has more than one non-zero entry and,
for any x in IRm+

n , we have:

Bm+
n x = Bm

n E+
mx (19)

i.e, if x is the coordinate of a polynomial in the basis Bm+
n ,

then E+
mx is the coordinate in Bm

n .

B. Reduction to a linear program

Suppose that v ∈ Pnx
satisfies:

w′w −
(

∂v
∂x

(x)
)′

f(x, w) ≥ 0 (20)

for all x ∈ IRnx and w ∈ IRnw . It is known that if x ∈ R,
then there exists x0 ∈ X 0 such that v(x) − v(x0) ≤ 1.
Hence, the set

R(v) = {x : v(x) − v(x0) ≤ 1 for some x0 ∈ X 0} (21)

is an outer approximation of R. So, the problem of finding
an outer approximation of R is equivalent to the problem of
finding a polynomial that satisfies the positivity condition
(20). We can improve upon the estimate given by R(v)
as shown in the proposition below. Note that, in (20), we
required the inequality to hold for all x and w. However, in
order for the inclusion R ⊂ R(v) to hold, we only need to
enforce the inequality of all x in R and all w ∈ W where
W is the polytope defined in Assumption 3.1.

Proposition 3.2: Let V = {vi}N
i=1 be a collection of

polynomials in Pnx
with the property:

w′w −
(

∂vi

∂x (x)
)′

f(x, w) ≥ 0 for all (x′, w′)′ ∈ Z

(22)
for i = 1, 2, · · · , N . Define

RV =
N⋂

i=1

R(vi) =
N⋂

i=1

{
x : vi(x) − vi(x0) ≤ 1
for some x0 ∈ X 0

}
(23)

Then, R ⊂ RV .
That is, better outer approximations of the reach set can

be obtained by taking intersections of sets of the form
R(v). The problem lies in finding non-zero polynomials
that satisfy the positivity constraint in (22). We consider this



problem in detail below by first examining a strict positivity
case and then generalizing to the positivity case.

Let l be a positive integer. Then, for each v ∈ P l
nx

,
the quantity on the left hand side of (20) is a polynomial
in x and w whose degree is smaller than some positive
integer m. Let z = (x′, w′) and v ∈ P l

nx
with representation

v = Bl
nx

vb where vb is the coordinate of v in the standard
basis Bl

nx
. After carrying out the partial differentiation and

multiplications in (20), the left hand side of the inequality
has the form:

mn∑

i=1

Li(vb)bi(z) = Bm
n (z)L(vb)

where Li is a linear functional and L : IRlnx → IRmn is a
linear operator. We are interested in the following:

Strict Positivity problem: Check if

S =

{
vb ∈ IRlnx :

mn∑

i=1

Li(vb)bi(z) > 0 for all z ∈ Z

}

=
{

vb ∈ IRlnx : Bm
n L(vb) is strictly positive in Z

}
(24)

is empty. If not empty, then find an element vb ∈ S.
The main result of this section is the following:
Theorem 3.2 (Linear feasibility program for strict positivity):

Recall the definitions of N h, T nm
h←b and AM

m from
Section III-A. The following statements are equivalent.

1) S is not empty.
2) There exist a positive integer M ≥ m, a strictly

positive real number ε, vb ∈ IRlnx and u ∈ N h such
that

u + T nM
h←bA

M
m

[
L(vb)

0

]
≥

[
ε
0

]

The proof is omitted due to space limitations.
The definition of S given in (24) requires strict positivity

in Z . This is overly restrictive in many control problems.
For example, candidate quadratic Lyapunov functions for
linear systems lead to the vanishing of the right hand side
of (20) at z = (x, w) = 0. In fact, Assumption 3.2 implies
that the left hand side of (20) at z = 0 is zero for any v.
Define:

Ŝ =
{
vb ∈ IRlnx : Bm

n L(vb) is positive in Z
}

(25)

and note that vb = 0 is in Ŝ. We are interested in checking
if Ŝ contains a coefficient that gives rise to a non-constant
v.

Theorem 3.3 (Linear feasibility program for positivity):
Suppose that there exists a positive integer M ≥ m such
that the infimal value of the optimization problem:

inf
ε,vb,u,pb

ε

subject to ε > 0, vb ∈ IRlnx , u ∈ N h, pb ∈ IRm+
n , pb > 0

and u + T nM
h←bA

M
m

[
L(vb) − E+

mpb

0

]
>

[
ε
0

]
(26)

is zero. For each ε > 0, let V ε
b be the set of all vb such that

(ε, vb, u, pb) is feasible for some u ∈ N h and pb > 0. Let

v0
b ∈

⋂

ε>0

V ε
b

Then, v0
b ∈ Ŝ and v = Bl

nx
v0

b solves the outer approxima-
tion problem.
The proof is omitted due to space limitations.

IV. COMPUTATIONAL PROCEDURE FOR APPROXIMATE

VERIFICATION

The satisfaction of specifications is checked as follows:
1) Fix positive integer l.
2) Fix positive integer M and solve the linear minimiza-

tion problem in Theorem 3.3.
3) If the infimal value is not zero, then increase M and

repeat the previous step.
4) If the infimal value is zero, then form v as in

Theorem 3.3 to obtain an outer approximation R(v)
for the reach set.

5) For each specification k, check if the intersection of
the complement of specification satisfaction set Qk

and R(v) is empty.
6) If so, specifications are satisfied. Otherwise, refine

outer approximation by increasing l and repeating the
steps above.

Note that in Step 5, we use:

R(v) ⊂ Qk ⇔ (Z \ Qk)
⋂

R(v) = ∅

Since Z and Qk are both polytopes, Z \ Qk is can be
written as the union of a finite number of polytopes. So,
the underlying computational problem in Step 5 is that of
checking if the intersection of a polytope and a set of the
form R(v) is empty. To formulate this problem, let X be
a polytope X = {x : a′ix ≤ bi, i = 1, · · · , L} where ai and
bi are given. Then, X

⋂
R(v) is not empty if and only if

the infimal value of
inf
x

a′ix

subject to x ∈ R(v)

is less than or equal to bi for all i.

V. EXTENSION TO ADAPTIVE SYSTEM WITH

STATE-DEPENDENT SWITCHING

We describe how to apply the computational procedure
presented in the previous sections to switching systems. Let
{1, 2, · · ·, N} be the set of discrete states. In the ith discrete
state, the continuum part of the system evolves according
to: ẋ = fi(x, w) (27)

provided that the state x(t) is not in any of the autonomous
jump sets {Ai→j}N

j=1. Here, fi is a polynomial in (x, w)
and Ai→j ⊂ IRnx . When x(t) enters Ai→j at some time
t, then the system jumps instantaneously from the discrete
state i to the discrete state j. In the process, the continuum
state x(t) is reset to a point in a jump destination set



Dj←i ⊂ IRnxj according to an autonomous jump transition
map Jj←i : Ai→j → Dj←i, that is,

x(t) = Jj←i (x(t)) (28)

(without loss of generality, we take the destination set to
be the image of the jump set under the jump transition
map). See figure 2 and [20] for a complete description of
these hybrid systems. A pair (i, x(t)), where i is the discrete
state and x(t) is the continuum state, will be referred to
as the hybrid state of the system at time t. As a matter
of convention, at a jump time t, the continuum part of the
hybrid state at time t is taken to be the continuum state after
jump transition. We assume that the jump and destination
sets are convex sets, jump sets are pairwise disjoint, and
the intersection between a jump set and a destination set
is empty. These assumptions are needed for computational
efficiency and to guarantee that any two consecutive jumps
times are separated by a strictly positive time interval.

Specification
Set

Specification set

1 2

Jump set

Fig. 2. A run of an example hybrid system with two discrete states and
reset map equal to 0

In [5], a procedure to approximate a hybrid system
with a finite state automaton is given. The approximation
has the property that if the automaton satisfies the spec-
ifications, then so does the hybrid system. The approxi-
mate verification problem becomes a language-emptiness
problem and can be solved using depth-first search [21],
[22]. This procedure will never produce an “error-free”
certificate when the actual system contains errors which
is an important requirement in V&V of safety critical
systems. The continuum dynamics considered in [5] is LTI,
but the construction of automaton can be modified with
the reach set computation procedures given in this paper.
Essentially, the automaton states are initial condition set,
specification sets, and partitions of jump destination sets,
and the transition function is defined in terms of outer
approximations of reach sets originating from the automaton
states subject to exogenous inputs.

VI. CONCLUSIONS

This paper presented a computational procedure for the
approximate verification of a class of adaptive control
systems. The continuum dynamics of the adaptive systems
considered are polynomial in both states and exogenous
inputs. The transient specifications are given in terms of safe
sets. Typical transient specifications that can be expressed

in this manner are bounds on tracking error and parame-
ter error, and control saturation limits. The computational
procedure consists of outer approximating reach sets and
checking behavioral inclusion. An extension to switching
adaptive systems is also discussed.

There are two main computational difficulties with the
outer approximation. The first difficulty stems from the use
of Handelman functions to represent positive polynomials
in a polytope. While we are able to give a necessary and
sufficient condition for strict positivity in a polytope as a
linear program, the number of terms required to represent a
positive polynomial using Handelman functions can be very
large. This means that very large linear programs will need
to be solved reliably in practical verification problems. We
have not been successful in finding an (useful) upper bound
on the number of terms required. The second difficulty is
in checking if the outer approximation R(v) is contained
in the specification sets. It is due to the non-convexity of
R(v). This difficulty can be alleviated by requiring that v
be strictly positive (and, hence, a Lyapunov function).
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