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Abstract— Over the last few years, there has been con-
siderable success with applying control theory to computing
systems. Our experience has been that there are several
commonly occurring control problems in computing systems—
translating between service oriented units (e.g., response times)
and effector (actuator) units (e.g., the maximum number of
connected users); optimizing resource usage; regulating service
levels to enforce service level agreements; and adapting to
disturbances such as changes in workloads. Developing control
systems that address these problems involves challenges related
to modeling the managed element (plant); handing sensor
data that are noisy, incomplete, and inconsistent; dealing
with effectors that have complex effects that often do not
correspond well to the control objectives; and designing control
systems (especially filters, the choice of measured outputs, and
time delays).

I. INTRODUCTION

The relentless decline in the price of computer hardware
and software has led to the widespread use of information
technology (IT). As a result, the dependence on and the
scale of computing systems has grown dramatically, making
it imperative to have stable well-behaved systems.

Despite this imperative, formal control methods are rarely
used in practice when developing new capabilities for
computing systems. For example, it is uncommon to do
system identification of the components to be controlled and
almost unheard of to analyze the response of the system to
disturbances.

Over the last three years, my colleagues and I at IBM
along with researchers elsewhere have had considerable
success with using classical control theory (mostly digital
control) to analyze and design closed loops in computing
systems. This work has resulted in IBM products that are
more robust to disturbances and, in some cases, consid-
erable improvements in their performance as well (e.g.,
lower response times). Further, our work has provided IBM
developers with new insights into design choices.

Based on our experience, we believe that control theory
has an important role to play in the development of new
computing systems, especially complex software systems.
This tutorial describes many of the challenges with applying
control theory to computing systems. Section II provides
an overview of enterprise computing systems. Section III
describes various control problems in computing systems.
Section IV details challenges in the development of closed
loop systems for computing systems. Section V contains a
survey of related work. Our conclusions are contained in
Section VI.

J.L. Hellerstein is a Research Staff Member at the IBM
Thomas J. Watson Research Center, Hawthorne, New York, U.S.A.
hellers@us.ibm.com
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Fig. 1. Example of a multi-tiered eCommerce system. Server tiers are
enclosed in dashed lines. The flow and density of requests and responses
are indicated by the arrows.

II. STRUCTURE OF COMPUTING SYSTEMS

This section introduces key concepts in computing sys-
tems. Our focus is enterprise level computing, especially
eCommerce Systems.

Figure 1 displays the general structure of an eCommerce
system such as those that provide on-line storefronts on the
Internet. End-to-end service levels (e.g., response times) de-
pend on the flow of requests across multiple tiers of servers,
each of which has its own complex structure. The system
is organized into multiple groups of servers, called tiers.
The first tier, the Edge Servers, accept in-coming requests
and routes them to the Hypertext Transfer Protocol (HTTP)
Servers (the second tier) where requests are interpreted.
Some fraction of these requests require more sophisticated
processing and so are forwarded to an Application Server
(the third tier). The programs that execute here may require
access to structured data in a Database Server (the fourth
tier).

Each software element (e.g., Edge Server, HTTP Server,
Application Server, Database Server) has a complex struc-
ture. For example, the Application Server has an operating
system (e.g., UNIXR1), a Java execution environment (the
Java Virtual Machine), a servlet container (an environment
in which special servlet programs execute), and one or
more servlets. These components of the Application Server
require various resources to do their work. Examples of
resources are memory, the central processing unit (CPU),
and operating system processes.

Contention for resources is a central concern in the design
of robust computing systems since the limited availability
of resources can result in performance and/or availability
problems. For example, too little memory allocated to

1UNIX is a registered trademark of The Open Group.
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Fig. 2. Staircase function of costs in a service level agreement as reported
in [1].

the Java Virtual Machine can result in excessive “garbage
collection” whereby data are moved in order to compact
unallocated storage to create larger blocks.

Resource contention arises in two ways. The first is a
result of competition between components of a system.
For example, the operating system may compete with the
Java Virtual Machine for memory. A second way in which
contention arises is a result of the resource requirements
of concurrent requests made to the computing system.
For example, a “check price” request made by one end-
user may compete with an “order status” request made by
another end-user for Java threads, memory, and database
connections.

Increasingly, service level objectives (SLOs) are used
to specify the desired response times, throughputs, and/or
other metrics desired for different requests to the computing
system (e.g., “order status”, “buy item”, “check price”). For
example, a bookstore that outsources its computing systems
might have the following SLO: “order status requests should
have a response time that is no greater than 1 second.”
The set of SLOs used by an installation is referred to as a
Service Level Agreement (SLA). SLAs may specify penal-
ties if the contracted service is not delivered. For example,
Figure 2 plots the penalty for excessive downtime (with a
reward, or negative cost, for greatly reducing downtime)
that is expressed in terms of the percent of the customer’s
monthly service charge [1]. One can view the provider of
computing services as assigning resources (e.g., servers) in
a way so as to minimize the sum of resource costs and SLA
penalties. Note that not all service requests are covered in
the SLA. Those requests that are not covered by the SLA
are served on a “best effort” basis. Further, since requests
may flow through many servers and components within the
server, it can be complicated to determine how to manage
resources in a way so that the SLOs are not violated.

One software structure for managing resources to achieve
SLOs is the autonomic computing framework [2]. As de-
picted in Figure 3, an autonomic manager accesses re-
sources through their sensors to obtain measurement data
and interacts with resource effectors (or actuators) to
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Fig. 3. Components of the Autonomic Computing Architecture.

change the behavior of the resource. The manager con-
tains components for monitoring, analysis, planning, and
execution. Common to all of these is knowledge of the
computing environment, service level agreements, and other
related considerations. The autonomic manager monitoring
component filters and correlates sensor data. The analysis
component processes these refined data to do forecasting
and problem determination, among other activities. Planning
constructs workflows that specify a partial order of actions
to accomplish a goal specified by the analysis component.
The execute component controls the execution of such
workflows.

III. CONTROL PROBLEMS

This section describes several control problems in com-
puting systems. Many of these problems arise from key
technology and business trends that are shaping the direc-
tion of computing. These trends are: (1) the rising cost of
operating computing systems; (2) the on-demand model for
acquiring IT products; (3) the increasing use of outsourcing
to satisfy the IT requirements of businesses; and (4) the
wide-spread use of the Internet to connect businesses with
their customers. While these trends have been on-going for
some time, only now is there emerging a realization of the
importance of control engineering in addressing them

We begin with the cost of operating computing systems.
For some time, it has been recognized that while hardware
and software prices have declined dramatically, the cost of
operating computing systems remains large and is increas-
ing. Included here is what is needed to ensure reliability,
security, and good performance. Industry analysts estimate
that these costs accounts for 60% to 90% of the total cost
of ownership (e.g., [3]), largely because of the amount of
human involvement required for system operation. One part
of the cost of operations is configuring software systems
(often consisting of multiple products), a task that often
involves adjusting internal characteristics such as buffer
pool sizes and number of concurrent threads. In essence,



these internal characteristics are the effectors by which the
system is controlled. Unfortunately, it is rare to have a
direct relationship between the settings of resource effectors
and the values of metrics related to SLOs (e.g., response
times). Thus, human experts are often needed to translate
between the units of resource effectors and SLO metrics.
Doing so requires people with considerable expertise and
hence increases the cost of delivering IT services. Control
technology can help by automating this translation so that
resource effectors operate in the units used in service level
objectives. For example, [4] describes a system in which
administrators specify service level objectives instead of
details of memory allocations, CPU priorities, and other
configuration parameters.

Another reason for the high cost of operating computing
systems is that since they are complex non-linear systems
it is difficult to optimize their performance. One of the
most common ways in which this optimization is done
is by load balancing, a technique whereby requests are
distributed across resources in a way that equalizes loads.
For example, the Edge Server in Figure 1 is responsible for
distributing incoming requests to HTTP Servers in a way
that balances the load on these servers. Load balancing tends
to reduce response times and increase throughputs since the
performance of computing systems is usually determined
by the most heavily loaded resource (often referred to as
the bottleneck resource). This is an optimization problem
for which the objective function is to minimize the differ-
ence in utilization of the resources. Control techniques are
particularly useful to address the dynamics of the system.
For example, [5] describes a system in which memory
resources are balanced in a database management system
with considerations for changes in the queries made to the
system.

A second trend is the interest of larger customers in a new
model for acquiring IT. Traditionally, customers purchase
computing capacity well in advance of its usage. This
provides little flexibility to add capacity if loads increase
unexpectedly or to save money by shedding unneeded
capacity. Recently, there has been much interest in providing
computing capabilities “on-demand” rather than purchasing
them outright. This could be done in the context of out-
sourcing whereby the outsourcer (sometimes referred to as
the computing utility) supplies the level of resource needed
and the customer is charged accordingly. Alternatively, it
could be that the equipment purchased by a customer
has metering capability that the seller reads to determine
monthly charges to the customer (much like a water or elec-
trical meter). Implementing an on-demand system requires
a capability to provision resources dynamically to satisfy
new demands as well as an ability to de-provision resources
dynamically if they are no longer needed (e.g., [6]). As with
load balancing, this is an optimization problem. However,
it has very different characteristics from load balancing in
two ways: (a) a business level optimization is employed in
terms of minimizing the sum of the cost of holding costs of

TABLE I
SUMMARY OF THE CONTROL PROBLEMS IN COMPUTING SYSTEMS

DISCUSSED IN THIS ARTICLE.

Control Problem Description
Translate effector units Translate between SLO metrics

and the units used by effectors
of computing systems.

Optimize resources Balance loads to minimize bottlenecks
and provision to minimize costs.

Regulate service Adjust resource usage so that service levels
are consistent with SLOs.

Reject disturbances Regulate in the presence of large
changes in loads and resource failures.

servers and penalties for violating SLOs in an SLA; and (b)
often provisioning and de-provisioning have dead-times, a
characteristic that complicates controller design.

A third trend is IT outsourcing. Because specialized skills
are required to operate complex computing environments,
many customers are choosing to outsource their IT needs.
Outsourcing means that an organization such as EDS or
IBM provide the IT equipment and skilled professionals
to operate these equipment. This requires that the out-
sourced customer specify a service level agreement (SLA)
that quantifies the service expected from the outsourcing
organization. Thus, the outsourcer needs a way to enforce
SLAs so that customers who pay for higher grades of
service (e.g., lower response times) receive their expected
level of service. That is, there must be a way to regulate
the level of service delivered. In control terms, this is a
regulation problem.

The last trend is that businesses have a presence on
the Internet, both to supply information about the com-
panies goods and services and to sell these goods and
services. While the broad reach of the Internet has great
appeal for both of these goals, it creates challenges as
well. In particular, web sites are subject to flash-crowds,
a phenomena whereby loads grow dramatically (e.g., as
a result of political or weather events) [6]. Thus, it has
become essential for IT systems to deal with loads that can
increase (or decrease) within seconds or minutes while still
complying with SLAs. In control terms, this is a disturbance
rejection problem.

Our characterization of control problems in summarized
in Table I.

IV. CONTROL ANALYSIS AND DESIGN

The design and analysis of control systems for computing
systems requires models of the resource operation, appro-
priate sensors and effectors, and considerations for the full
set of elements in the control loop (e.g., controller, filter,
parameter estimator). This section addresses each of these
topics.
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Fig. 4. Predictions of CPU and memory utilizations using two SISO
models.
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Fig. 5. Predictions of CPU and memory utilizations using a single MIMO
model.

A. Modeling the Managed Element

The construction of system models remains a significant
challenge in the successful application of control theory to
computing systems. Four approaches are used in practice.
The first is a purely empirical approach that employs curve
fitting to construct models; these models do not address
dynamics. This has been very effective in IBM’s mainframe
systems [4]. Its application to systems such as Figure 1 is
being investigated.

The second approach to modeling is a black box method-
ology that has been applied to SISO and MIMO (multiple
input multiple output) systems (e.g., [7], [8]). This approach
requires: choosing an operating point, designing appropriate
experiments, and developing empirical models. Typically,
ARX models are used such as y(k) = a1y(k − 1) + · · · +
any(k−n)+b1u(k−1)+ · · ·+bmu(k−m), where m ≤ n.
For example, in the Apache HTTP Server, there are two
control inputs, the maximum number of clients (denoted
by MaxClients) that controls the level of concurrency,
and the keep alive timeout (denoted by KeepAlive) that
specifies how long a connection to the server persists after
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Fig. 6. M/M/m/K/M queueing model. The think time of the M
customers is exponentially distributed with the rate λ. The service times
of the m servers is exponentially distributed with the rate µ.
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Fig. 7. Fit of M/M/3/140/140 model to data from a three server
testbed running an eCommerce workload.

the completing of the last request on that connection. We
consider two measured outputs, the utilization of the CPU
(denoted by CPU) and the utilization of memory (denoted by
MEM). One way to model the effect of MaxClients and
KeepAlive on CPU and MEM is to construct two SISO
models. While MaxClients affects both CPU and MEM
KeepAlive only affects CPU. Thus, we use the models

yCPU (k) = aCPUyCPU (k − 1) + bCPUKA(k − 1)

yMEM (k) = aMEMyMEM (k − 1) + bMEMMC(k − 1)

Figure 4 shows the results. We see that the fit for MEM
is quite good. However, the model of CPU is poor as
MaxClients is changed from its operating point. An
alternative is the MIMO model

y(k) = Ay(k − 1) + Bu(k − 1)

where yT =
[

CPU MEM
]

, A is a 2× 2 matrix, B is a
1×2 matrix, and uT =

[

KA MC
]

. Figure 5 displays the
results of the MIMO model. We see that the MIMO model is
considerably more accurate than the multiple SISO model.

A third approach to modeling is based on stochastic
processes, especially queueing theory. By making assump-
tions about the distribution of inter-arrival times and service
times, queueing theory provides a way to calculate the effect
of control inputs such as buffer size, number of servers,
and service rates on measured outputs such as response
times and throughputs. Figure 6 depicts an M/M/m/K/M
queueing system in which there are M customers, a buffer
of length K −m, and m servers. The M customers think



for an exponentially distributed period of time with rate
λ, at which point they submit a request. The request is
assigned to an idle server, if one exists, and service takes
an exponentially distributed time with rate µ. If there is no
idle server, the request is placed at the end of the queue
where it waits until those requests in front of it have been
served. If the queue is full, the request is discarded and the
customer waits for another exponentially distributed time
with mean 1

λ
.

We assessed the adequacy of this model in the context of
the HotRod system for an eCommerce workload [6]. The
intensity of the workload is measured in business operations
per second (BOPS), and service quality is quantified in
terms of response time. Figure 7 compares the measured
response times obtained from the HotRod system with
those estimated by an M/M/m/K/M queueing system,
where m = 3 and M = 140. (With first-come-first-
served scheduling, it is straightforward to estimate response
times from the Markov state model of M/M/m/K/M .)
The dots are measured response times, and the squares
are the response times estimated by the model. The fit is
quite good in that the model accounts for over 90% of
the variability in the data. Further, it is relatively easy to
model transient behavior using the Markov chain, which
has appeal for characterizing the effects of control actions.
A shortcoming of the model is that it is not closed form
in that its solution requires constructing and analyzing a
Markov chain. Simpler open queueing models that assume
an infinite number of customers (i.e., M = ∞) often have
a closed form solution. Unfortunately, these models have a
poor fit to the HotRod data.

A fourth approach to modeling is to develop special
purpose representations of specific systems. An example of
this is the first principles analysis done for adaptive queue
management in network routers [9]. This approach involves
a detailed understanding of the TCP/IP protocol and the
development of differential equations to estimate a transfer
function.

B. Sensors

A significant focus in the management of computing
systems is the choice of sensors, especially standardizing
interfaces to sensors. The most widely used protocol for
accessing sensor data in computing systems is the Simple
Network Management Protocol (SNMP) [10]. While this
allows for programmatic access, it has not addressed various
issues that are of particular concern for control purposes.
Among these are the following:

1) Typically, there are multiple measurement sources
(even on a single server) that produce both interval
and event data. Unfortunately, the intervals are often
not synchronized (e.g., 10 second vs. 1 minute vs.
1 hour), and missing data are common. Even worse,
data from different servers often come from clocks
that are unsynchronized (or worse still, are synchro-
nized via some complex protocol that converges over

a longer window).
2) Often, the metric that it is desirable to regulate is not

available. For example, end-to-end response times are
notoriously difficult and expensive to obtain. Thus,
surrogate metrics are often used such as CPU queue
length. Hence, it may well be that the surrogate is
well regulated but the desired metric is not.

3) There can be substantial overheads associated with
metric collection. For example, it can be quite in-
formative to collect information about the resource
consumption of individual requests to a web server.
However doing so may consume a substantial fraction
of the server CPU. This results in another kind of
control problem—determining which measurements
to collect and at what frequency.

4) Often, the measurement system has built-in delays.
For example, response times cannot be reported until
the work unit completes. Sometimes, the mean re-
sponse time is about the same as the control interval,
which can lead to instabilities. Unpredictable delays
are common as well since measurement collection is
typically the lowest priority task and so is delayed
when high priority work arrives (which can be a
critical time for the controller).

5) An on-going challenge for developers of instrumen-
tation for computing systems is that there is a wide
variation in the semantics of supposedly standard
metrics. For example, the metric “paging rate” could
mean any of the following: (a) the rate at which pages
are written to disk; (b) the rate at which pages are
read from disk; and (c) the rate at which page-ins
are requested (not all of which result in accessing
secondary storage). Because of these disparities, an
attempt has been made to standardize the definition of
metrics [11]. However, this effort is limited to UNIX
Operating Systems since they have a similar structure
and hence similar metrics.

C. Effectors

One of the more challenging problems in the control
engineering of computing systems is that the set of avail-
able effectors (actuators) often has a somewhat complex
relationship with the measured output, especially in terms
of dynamics. We illustrate this problem by giving several
examples.

Consider the IBM Lotus Domino Server, an email server.
One objective of considerable interest to administrators is
to control internal queueing, both for reasons of relia-
bility (e.g., so that certain load-dependent exceptions do
not occur) and performance. That is, administrators want
to limit the number of users whose requests are being
processed concurrently. We refer to this as the number of
concurrent users. Commonly, administrators use the effector
MaxUsers, a parameter that limits the maximum number
of users that are connected to the system. However, the
number of connected users is not the same as the number



of concurrent users. For example, during lunch time, there
may be many connected users, very few of whom submit
requests. Under these circumstances, MaxUsers could be
much larger than the number of concurrent users. On the
other hand, during busy periods (e.g., close to an end-
of-month deadline), almost all connected users may have
submitted requests. In this case, MaxUsers may be very
close to the number of concurrent users. In essence, the gain
associated with this effector is load dependent.

There is still another complication with MaxUsers. The
mechanism employed does not maintain a queue of waiting
requests to connect to the server. That is, if MaxUsers is
increased, there is no effect until the next request arrives. If
requests are of short duration and are made quickly, there
is little delay. However, if requests occur at a lower rate,
then this effector introduces a dead time that makes control
more challenging.

Another example of a complex effector is the nice
command used in UNIX systems. nice provides a way to
adjust the priority of a process, something that is especially
important if there is a mixture of CPU intensive and non-
CPU intensive work in the system. In theory, nice can
be used to enforce SLOs dealing with the fraction of the
CPU that a process receives. However, this turns out to be
complicated to do in practice because of the way nice affects
priorities. As shown in [12], this is non-linear relationship
that depends on the number of processes competing for
the CPU as well as the range of priority numbers used.
Recognizing the limitations of using nice, special purpose
schedulers have been developed (e.g., [13]). In essence,
these approaches create a new, more rational set of effectors.

A final example is the start-time fair queueing (SFQ)
algorithm. This resource management algorithm controls
the service delivered by a resource by controlling the
priority assigned to incoming requests [14]. Specifically,
SFQ operates by tagging incoming work by class, and
the tags determine the priority by which the request is
processed. Unfortunately, this mechanism has some subtle,
load-dependent characteristics that create challenges for
designing control systems. In particular, changing the tag
assigned to a new request has no effect until the requests
ahead of it have been processed. If load is light, there will be
few such requests, and so little dead time. However, if loads
are heavy, dead times could be substantial. If dead times
can be predicted, then compensation might be possible.
Otherwise, the control performance of this effector can be
impaired, possibility even resulting in stability problems.

D. Control Systems

This section describes issues often encountered in the
design of closed loops for computing systems.

We begin by observing that where control theory has been
applied to computing systems very simple controllers have
been used. For example, a PI controller is used in [15], [16],
and [17]. An even simpler integral controller is used in [7].

R(z) Y(z)zKI
z −1

E(z) U(z)

Notes

+

−

Server

0.47
z −0.43

Fig. 8. Block diagram for integral control of the IBM Lotus Domino
Server.

In almost all cases, the closed loop system is single input
single output (SISO).

A natural way to apply control theory is to a regula-
tion problem, such as maintaining service level objectives
(SLOs). For example, an eCommerce site such as Figure 1
may provide different SLOs for response time depending
on the type of interaction (e.g., “buy” versus “browse”). A
first thought is to regulate response times directly. However,
there is an issue here. If load is light, the eCommerce site
can provide service that is much better than the SLO. And,
if load is heavy, then it may be that none of the SLOs can
be satisfied.

One way to avoid this conundrum is to regulate the
relative performance of the different kinds of requests. That
is, non-negative fractions H1, · · · , Hn are selected for each
kind of request, so that H1 + · · ·+Hn = 1. The regulation
problem is to make Di/(D1 + · · ·+Dn) = Hi, where Di is
the delay incurred by the i− th kind of request. This idea
is developed in [18] and applied to differentiated caching
services. Such an approach works best in overload situations
(which is where control is most important). This being the
case and assuming that service times are small compared
to delays, it can be a reasonable approach for regulating
relative response times as well.

The remainder of this section describes two examples
of designing closed loop systems for computing systems.
The first example relates to the nature of measurement
sensors. The dynamics of the measurement system are
almost never considered in queueing analyses of computing
systems, in large part because the focus is on steady state.
However, these dynamics can be play a major role in control
performance.

To illustrate the foregoing, consider the IBM Lotus
Domino Server. The control problem we address is reg-
ulating the number of concurrent users by manipulating
the MaxUsers effector (which controls the number of
connected users). System identification of the IBM Lotus
Domino Server determined that the transfer function from
MaxUsers to concurrent users is

N(z) =
0.47

z − 0.43

(See [7] for details.) Figure 8 displays the control system
considered in which integral control is used. The transfer
function from the reference input to the measured output is

F (z) =
Y (z)

R(z)
=

zKI(0.47)

(z − 1)(z − 0.43) + zKI(0.47)
(1)



0 2000 4000 6000 8000 10000
0

50

100
 R

IS
(k

), 
 r(

k)

0 2000 4000 6000 8000 10000
0

100

200

 k

 M
ax

U
se

rs
(k

)

Fig. 9. Step response of testbed for the control system for the IBM Lotus
Domino Serverdescribed in Figure 8.
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Fig. 10. Block diagram of integral control of the IBM Lotus Domino
Server that explicitly models the sensor.

How well does this control model describe the behavior
of the real system? To answer this question, a testbed was
developed and experiments were conducted to assess the
step response to a change in the reference input. Figure 9
displays the step response to a change in the reference input
that occurs around time 3800 for KI = 0.1. The figure
contains two plots, one for the number of concurrent users
(denoted by RIS(k)) and a second plot that shows the
associated value of MaxUsers(k). While the stochastics
of the system make it difficult to estimate settling times
precisely, it seems that the settling time is about 300.
However, if KI = 0.1 the dominant pole of Equation (1) is
0.91. Using a first order approximation of Equation (1) and
defining steady state as being within 2% of the final value
of the step response, then the settling time of Equation (1)
is 43. This is almost a factor of ten difference from the
actual settling time.

Why is the foregoing estimate so inaccurate? The answer
lies in the fact that we did not consider the complete control
system. In particular, we did not model the sensor. Figure 10
extends Figure 8 to include the effect of the sensor. The
transfer function from the reference input to the measured
output of this system is

G(z) =
Y (z)

R(z)
=
zKI(0.47)(0.17z − 0.11)

D(z)
(2)

where

D(z) = (z−1)(z−0.43)(z−0.64)+zKI(0.47)(0.17z−0.11)

At KI = 0.1, the dominant pole is 0.99. Again using a first
order approximation, this corresponds to a settling time of
287, a result that is consistent with Figure 9.

Our second example of a control system addresses the
use of filters as described in [19]. Figure 11 displays
a block diagram of an adaptive control scheme for the
Apache HTTP Server. A filter with Z-transform 1−α

z−α
is

inserted after the server to smooth the stochastics of the

+

−

ServerController Filter

Parameter Estimator

Reference
Input

Measured
Output

Fig. 11. Block diagram of an adaptive controller for the Apache HTTP
Server.

+

−

ServerController

Filter 1

Estimator

Reference
Input

Measured
Output

Filter 2
Parameter

Fig. 12. Block diagram of an adaptive controller for the Apache HTTP
Server in which separate filters are used for the parameter estimator and
the calculation of the control error.

system. There are two reasons for this. The first is to
avoid having the controller respond to noise. The second is
that adaptation provided by the parameter estimator should
based on long-term changes in the measured output, not
short-term transients.

However, there is a problem with this design. If we use
a moderate value of α, say α = 0.5, then settling time
is long, 3.5 minutes. Reducing α to 0.3 reduces settling
time considerably, but it also increases the variability of
the measured output due to excessively rapid adaptation of
parameters. The issue is that the controller needs to operate
in seconds or minutes, which requires a smaller α. However,
the time constant of the parameter estimator should be in
tens of minutes, which demands a larger α. The result is
that we either end up with very long settling times or highly
variable parameter estimates.

These considerations led to the design in Figure 12 in
which separate filters are used for the controller and the
parameter estimator. Filter 1, which is used to smooth
controller output, has α = 0.3. Filter 2, which is used
for parameter estimation, has α = 0.5. The new design
reduces settling times without a substantial change in output
variability.

V. RELATED WORK

Since the early 1990s, there has been broad interest in
the application of control theory to computing systems,
especially in the areas of data networks operating systems,
middleware (e.g., web servers, database servers), multi-
media, and power management. Below, we summarize these



efforts.
In the area of data network, there has been considerable

interest in applying control theory to problems of flow
control. One of the first, [20], develops the concept of a Rate
Allocating Server that regulates the flow of packets through
queues. Others have applied control theory to short-term
rate variations in TCP (e.g., [21]) and some have consider
stochastic control [22]. More recently, there have been
detailed models of TCP developed in continuous time (using
fluid flow approximations) that have produced interesting
insights into the operation of buffer management schemes
in routers (see [17], [9]). The area of Asynchronous Transfer
Mode (ATM) Networks has been an area of intensive
exploitation of control theory in the 1990s (e.g., [23], [24],
[25], [26], [27], [28]). However, the limited success of
ATM technology and the use of continuous time and/or
advanced control techniques (e.g., stochastic control), meant
that there was little adoption of control theory by computing
practitioners.

Although not nearly as prodigious, there has been con-
siderable interest in applying control techniques to oper-
ating systems as well. [4] describes the details of control
techniques widely used in IBM’s Multiple Virtual Storage
(MVS) operating system to achieve several kinds of service
level objectives. The foregoing is primarily based on de-
tailed knowledge of the operating system’s control inputs
and measured outputs. Others have proposed approaches
that require little knowledge of details, relying instead on
learning algorithms (e.g., [29]).

One of the most recent areas in which control theory has
been applied is to middleware. Middleware are software
systems that facilitate the development of robust, enterprise
level applications. Examples include application servers
(e.g., the Apache HTTP Server), database management
systems (e.g., IBM’s Universal Database Server), and email
servers (e.g., the IBM Lotus Domino Server). There are
three types of control problems that are typically addressed.
The first is to provide a capability for enforcing service
level agreements in that customers receive the service levels
for which they contracted. Often referred to as service
differentiation, this is achieved by enforcing relative delays
[15], preferential caching of data [18], or in special cases
modifying application codes to insert effectors (e.g., [30]).
A second problem is to regulate resource utilizations so that
they are not excessive, either because of reliability consider-
ations (e.g., some software systems become fragile at heavy
loads) or because of system design (e.g., to allow spare
capacity for fail overs). Examples here include a mixture
of queueing and control theory used to regulate the Apache
HTTP Server [31], regulation of the IBM Lotus Domino
Server [7], and multiple-input, multiple-output control of
the Apache HTTP Server (e.g., simultaneous regulation of
CPU and memory resources) [8]. The third problem that
is often addressed is to optimize the system configuration,
such as to minimize response times [32].

Management of multi-media streams has also been an

area of focus for applying control theory to computing
systems. The challenge here is that end-user performance
is related to receiving an regular flow of correlated streams
of data (e.g., voice and video) whereas the underlying
systems operate more on a contention basis (e.g., execution
priority). One solution to this is to regulate process priorities
in accordance with the desired service levels (e.g., [33]).
Another approach is to develop a control framework in
which to build the capabilities for providing these service
levels (e.g., [34]).

There is one last area we mention in passing—dynamic
power management. The expense and engineering compli-
cations associated with supplying power to computational
elements has motivated intensive investigations into how
power can be managed within computing elements. Con-
siderations here include addressing nonstationary service
requests [35], the success of which largely depends on
being able to model dynamics. More extensive discussions
of power-aware computing can be found in [36] and related
articles in the same issue.

There is a vast literature on load balancing, including
its use in multiple source routing [37], implementations
for L4 switches [38], techniques for balancing loads in
data warehouses [39], and redirection algorithms for web-
server systems [40]. There have also been studies that
analyze general strategies, especially static load balancing
(which makes use of long-term trends) versus dynamic load
balancing (which exploits current changes in state) [41].

We close this discussion by pointing to an overview of
the application of control techniques to computing in [42]
and related articles in the same issue.

VI. CONCLUSIONS

There are several commonly occurring control problems
in computing systems—translating between service oriented
units (e.g., response times) and effector units (e.g., the max-
imum number of connected users), optimizing resources,
regulating service levels, and rejecting disturbances (e.g.,
variations in workloads). Developing control systems to
address these problems involves a number of challenges.
Modeling the managed element (plant) requires dealing
with stochastics and non-linearities. Our experience (which
is consistent with many other researchers) is that simpler
models work better in that they are easier to construct and
tend to be more robust. A second challenge is that sensor
data is noisy, incomplete, and inconsistent. In practice,
we find that substantial effort is often required to change
sensors to correct these shortcomings. Third, effectors have
complex effects that often do not correspond well to the
control objectives. Again, our experience is that these
behaviors must be changed, which often results in product
modifications. Last, the computer science community is
often naive about what constitutes a control system in that
the focus is entirely on the controller. That little attention
is paid to filters, the choice of measured outputs, and time



delays can lead to poor control performance, especially long
settling times and/or significant oscillations.

Over the last two years, we have had considerable success
in IBM with applying control theory to computing systems,
often resulting in systems that operate more consistently
and avoiding extreme behaviors such as limit cycles. This
success has motivated us to evangelize the application of
control theory to computing systems through tutorials (e.g.,
[43] and [44]), a book on control theory for computer
scientists [45], and a class we are teaching at Columbia
University on control theory for computer scientists (CS
6998-4). Our experience to date has been that some radical
revisions are needed in the way control theory is taught
in order to make it accessible to the computer science
community. Beyond using examples drawn from computing
systems, we work entirely in discrete time, do no frequency
analysis, and almost exclusively use pole placement design.
Further, we include material on system identification since
this is one of the most challenging aspects of applying
control theory in practice. Thus far, the response to this
approach has been quite good. We find that students with
only a modest mathematical background quickly grasp the
key concepts and are able to apply control theory to design
problems in computing systems.
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