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Abstract— After a brief overview of the problem of finding
the extremal (minimum or maximum) rank positive semidef-
inite matrix subject to matrix inequalities, we identify a few
new classes of such problems that can be efficiently solved. We
then proceed to present an algorithm for solving the general
class of rank minimization problems.

Index Terms— Rank minimization under LMI constraints,
semidefinite programming, nonconvex quadratically con-
strained quadratic programs

I. INTRODUCTION

We consider the problem of minimizing or maximizing
the rank of a positive semidefinite matrix over a set defined
by linear matrix inequalities; we will refer to this class of
problems as the rank minimization (or maximization) prob-
lem and denote them collectively by RMP. As a satisfactory
characterization of the solution set of the general RMP
is currently not available, and more to the point, that the
RMP is NP-hard, we first restrict our attention to particular
instances of the RMP in this paper. Specifically, our attempt
will be on deriving sufficient conditions that guarantee
the rank feasibility of a system of matrix inequalities-
followed by the reduction of a class of RMPs to semidefinite
programs (SDP). We then proceed to propose an algorithm
to solve general RMPs with a guaranteed convergence
behavior- albeit possibly a running time that is exponential
in the dimension of the problem.

A. Motivation

It has now been recognized that in spite of the many
successes of linear matrix inequalities and semidefinite
programming in resolving system and control problems,
that there an many instances where the approach has
sever limitations. Some important examples of such LMI-
impaired instances include control system design in face
of structural constraints, such as a fixed order or a block
diagonal structure (e.g., decentralized control) [9]. In a
different context, although the linear algebraic approach in
combinatorics has led to many elegant solution strategies for
graph theoretic and combinatorial problems, there are many
instances where the corresponding matrix equalities and
inequalities have to be accompanied by a rank qualification
on the solution set (see §IV). The purpose of the present
paper is three-fold: providing a brief overview of the RMP
related research, identifying few new classes of RMPs
that can be efficiently solved or characterized, and then
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proceeding to propose an algorithm for general RMPs. A
numerical example on RMPs related to the graph realization
problem concludes the paper.

First, a few words on notation and background. We
denote the space of n × n real symmetric matrices by
Sn and its positive semidefinite subset by Sn

+; In will
denote the n × n identity matrix. For a vector x, Diag (x)
denotes the diagonal matrix of appropriate dimensions with
x on its diagonal. We note that Sn when equipped with
the trace inner product 〈., .〉 : Sn × Sn → R is a finite
dimensional inner product space. Moreover, the pointed
closed convex cone Sn

+ can be employed to define an order
on Sn, referred to as the positive-semidefinite ordering. In
this venue, for two matrices A,B ∈ Sn, we write A ≥ B
if and only if the matrix difference A − B is positive
semidefinite. Two operations on the cone Sn

+ are of our
particular interest in this paper, namely, the integer-valued
rank function rank Sn

+ → {0, 1, . . . , n} and the trace
functional trace Sn

+ → <+; the latter is a convex function
on Sn

+ while the former is clearly not convex. When a linear
matrix inequality is augmented with a rank constraint, the
resulting feasibility or optimization problem often becomes
much more difficult to solve. For example, rank constraints
can be used to express integrality of the sought solution-
this observation provides a direct link between RMPs and
integer programming. Minimizing or maximizing the trace
of a positive semidefinite matrix subject to linear matrix
inequalities, on the other hand, can be solved efficiently
by the recently proposed interior point methods. Although
minimizing the trace and the rank subject to LMI constraints
are two different classes of problems, we note some obvious
relationships between the two. For example, when the
feasible matrices are known to have zero-one eigenvalues,
the two optimization problems are clearly equivalent.

As it was pointed above, the RMP provides an interesting
framework to resolve some of the outstanding problems in
system and control synthesis. The RMPs are also of central
importance in other areas of system theory, to name a few,
in estimation theory (minimal order observers) and system
identification (model reduction). However, the applications
of RMPs go surprisingly further than system theory and
control engineering to diverse areas of applied and pure
mathematics such as differential geometry, statistics, cryp-
tosystems, and combinatorial optimization.

B. Related Works

The earliest result on the RMPs is possibly due to
Ledermann who encountered them in factorial analysis in
statistics [25]. In his work, Ledermann is concerned with



finding conditions under which the problem of minimizing
the rank and minimizing the trace functional, over a very
special class of linear matrix inequalities, are equivalent.
In the same spirit, motivated by problems in reduced order
synthesis, a restricted class of RMPs was considered in [26],
and subsequently generalized in [27]. In both of these
references, it was observed that in solving certain classes
of the RMPs, the objective of minimizing the rank can
be substituted by minimization of the trace. Consequently,
these class of problems can be solved via for example,
the interior point methods for semidefinite programming
(SDP) [28]. Moreover, in [17], [31], it was further noted
that some classes of the RMPs are in fact reducible to a
system of matrix equations and thus, can be approached
by a simple, non-interior point based, polynomial-time
algorithms.

For general RMPs the solution strategies and theoretical
analysis are rather limited. This is mainly due to the non-
convex nature of general RMPs and their NP-hardness [5]. It
thus seems natural that one pursues the following directions
in RMP research: (1) identify a wider class of RMPs that
can be solved efficiently, either reducible to SDPs, or ma-
trix equations, etc., (2) consider globally convergent RMP
algorithms- with possibly exponential running times, (3)
propose heuristic, approximate, or randomized algorithms,
for general or special classes of RMPs. A recent example of
the second approach via algebraic geometry can be found
in [7]. Specifically, in [7] the RMP is reformulated as a fi-
nite (possibly exponentially large) sequence of semidefinite
relaxations using the technique developed in [29]. In the
same spirit but along a different venue, we will propose an
algorithm for general RMPs in §III.

We conclude this section by briefly mentioning few RMP
related research works that aim to find RMP algorithms
with satisfactory practical performance. These methods
include those based on minimizing a generalized trace of
a matrix [10], [11], alternating projections methods [3],
inversion of analytic centering [6], potential reduction
methods [6], [20], coordinate descent methods [22], [33],
linearization [14], [18], [21], and those based on the cutting
plane algorithms [32].

II. SOME SPECIAL CLASSES OF RMPS

Closely related to the RMP is investigating the rank of
feasible matrices satisfying a system of matrix inequalities.
In this venue, let us consider the set of matrices Ai ∈ Sd

+

and bi ∈ R (i = 1, ...,m), and let

F(A1, . . . , Am, b) := {X ∈ Sd
+ | 〈Ai, X〉 ≥ bi,

i = 1, . . . ,m} (2.1)

and

Fr(A1, . . . , Am, b) := {X ∈ F(A1, . . . , Am, b) |

rank (X) = r}. (2.2)

Proposition 2.1: Let Ai ∈ Sd
+ (i = 1, ...,m). Then the

set F(A1, . . . , Am, 0) has a non-zero feasible matrix with a
distinct largest eigenvalue if and only if F1(A1, . . . , Am, 0)
is feasible.

Proof: Let 0 6= X ∈ F(A1, . . . , Am, 0). If rank X =
1, we are done. Otherwise, let X̃ := 1/λn(X)X , where
λn(X) denotes the distinct largest eigenvalue of the matrix
X; by assumption λr(X) > 0. The spectrum of X̃ thus
appears as

λ1(X̃) ≤ λ2(X̃) ≤ . . . ≤ λn−1(X̃)︸ ︷︷ ︸
<1

< λn(X̃)︸ ︷︷ ︸
=1

.

We note that for all k ≥ 1, the matrices X̃k belong
to F(A1, . . . , Am, 0). This follows from the observation
that if X̃ ∈ Sd

+ then X̃k ∈ Sd
+, and automatically,〈

Ai, X̃
k
〉

≥ 0, given that Ai ∈ Sd
+ for all i. Since

F(A1, . . . , Am, 0) is closed, it contains the limit of the
sequence X̃1, X̃2, . . . , X̃k, . . . ,, as k → ∞; denote this
limiting matrix by X∗. One has λ1(X̃

k), ..., λn−1(X̃
k) → 0

as k → ∞, since λj(X̃
k) = λj(X̃)k for all j and k ≥ 1.

Consequently, X∗ ∈ F(A1, . . . , Am, 0) and rank X∗ = 1.

When the definite-ness assumption on the matrices Ai is
relaxed, an extra qualification is needed to guarantee the
existence of a matrix of a given rank.

Proposition 2.2: Let Ai ∈ Sd (i = 1, ...,m) be given
such that F(A1, . . . , Am, 0) has a non-trivial feasible point.
Then for any r ∈ {1, . . . , n}, the set Fr(A1, . . . , Am, 0) is
non-empty if

∑m

i=1 η−(Ai) ≤ n − r, where η−(A) is the
number of negative eigenvalues of the matrix A.

Proof: Since X,Ai ∈ Sd (i = 1, . . . ,m), there
exist orthogonal matrices Pi (i = 1, . . . ,m) and Q such
that Ai = PiDiP

T
i and X = QΛQT , where Di (i =

1, . . . ,m) and Λ are diagonal matrices whose elements are
the eigenvalues of the matrices Ai’s and X , respectively,
ordered in the non-increasing manner. Thus

Di = Diag (di1, ..., din), and Λ = Diag (λ1, ..., λn),

and

〈Ai, X〉 =
〈
PiDiP

T
i , QΛQT

〉

=
〈
Di, P

T
i QΛ(PT

i Q)T
〉
. (2.3)

If X ∈ Fr(A1, . . . , Am, 0), then one has Λ =
Diag (λ1, ..., λr, 0, ..., 0), with λi > 0 for i = 1, . . . , r.
Moreover, expanding (2.3) and setting the resulting expres-
sion to be nonnegative, leads to the inequality

di1{λ1(p
T
i1q1)

2 + ... + λr(p
T
i1qr)

2} + ...

+din{λ1(p
T
inq1)

2 + ... + λr(p
T
inqr)

2} ≥ 0, (2.4)

where pij’s and qj are the j-th column of the matrices
Pi (i = 1, . . . ,m) and Q, respectively. Now, suppose that
dij < 0; in order to satisfy the inequality (2.4) one can set
dij{λ1(p

T
ijq1)

2 + ...+λr(p
T
ijqr)

2} = 0, which is possible if
pT

ij ⊥ qk for k = 1, . . . , r. If there are κ :=
∑m

i=1 η−(Ai)



such dij
′s for all i, j, then we can always find the required

vectors qk provided that κ < n. Furthermore, since Q
is an orthogonal matrix, finding the required vectors qk

(k = 1, . . . , r) to construct Q is feasible if κ + r − 1 < n;
this last observation completes the proof of the proposition.

We provide two more results in this direction.
Proposition 2.3: Let Ai ∈ Sd and bi ≥ 0 (i = 1, ...,m)

be given such that the corresponding set F(A1, . . . , Am, b)
(2.1) has a non-trivial feasible point. Then for any r ∈
{1, . . . , n}, the set Fr(A1, . . . , Am, b) is non-empty if∑m

i=1 η−(Ai) ≤ n − r, where η−(A) is the number
of negative eigenvalues of the matrix A. Consequently,
maxX∈F rank X ≥ n −

∑m

i=1 η−(Ai).
Let us denote by η+(A) the number of positive eigenvalues
of the matrix A (as before, η−(A) will denote the number
of negative eigenvalues of A).

Proposition 2.4: Let Ai ∈ Sd and bi < 0 (i = 1, . . . ,m).
Then there exists a nonzero matrix X ∈ F(A1, . . . , Am, b)
satisfying rank X ≤ r, where

r := min{ max
i=1,...,m

η+(Ai), max
i=1,...,m

η−(Ai)};

moreover, such a matrix can be obtained by solving the
following SDP:

min
X

〈Id, X〉 (2.5)

subject to

〈Ai, X〉 ≥ bi (i = 1, ...,m), (2.6)

〈Id, X〉 > 0, (2.7)

X ≥ 0. (2.8)
Proof: We provide a proof for the case where

r ≤ η+(Ai); the case of η− can be proved analogously.
Note that the constraint 〈Id, X〉 > 0 ensures X 6= 0. Now,
suppose that the rank of the optimal solution of the SDP
(2.5)-(2.8) is k > r. Let Ai = PiDiP

T
i and X = QΛQT ,

where Pi (i = 1, . . . ,m) and Q are orthonormal matrices,
and Di = D+

ir + D−

i(n−r) = Diag (di1, ..., did), with
D+

ir = Diag (di1, ..., dir, 0, ..., 0) ≥ 0, D−

i(n−r) =

Diag (0, ..., 0, di(r+1), ..., did) ≤ 0, and Λ =
Diag (λ1, ..., λk, 0, ..., 0). One can assume, without
loss of generality, that the matrices Ai’s (i = 1, . . . ,m)
admit the following decomposition

Ai = Pi

[
D+

ir 0r×(d−r)

0(d−r)×r D−

i(d−r)

]
PT

i for all i, (2.9)

where r = maxi=1,...,m η+(Ai). This assumption can
be justified by the following observation: define the new
matrices

X̃ =

[
X X12

XT
12 X22

]
, Ãi =

[
Ai 0d×p

0p×d 0p×p

]
,

where X12 ∈ R
d×p, X22 ∈ R

p×p, X̃ ∈ R
(d+p)×(d+p), and

the parameter p is chosen such that

Ãi = P̃i

[
D+

ir 0r×(d+p−r)

0(d+p−r)×r D−

i(d+p−r)

]
P̃T

i for all i.

Note that P̃i (i = 1, . . . ,m) are (d+p)×(d+p) orthonormal
matrices. Since

〈
Ãi, X̃

〉
= 〈Ai, X〉 and rank X̃ ≥ rank X,

one can always extract a matrix X ∈ F(A1, . . . , Am, b)
from the matrix X̃ with rank less or equal to r. Additionally,
pertaining to the SDP (2.5)-(2.8), as X̃ ∈ Sn+p

+ , the

constraint
〈
In, X̃αα

〉
> 0 with a suitable α ∈ {1, ..., n}

can replace the original constraint (2.8). Thereby, in view
of the decomposition (2.9), one has that the equivalence

〈Ai, X〉 ≥ bi if and only if
〈
RT

i DiRi,Λ
〉
≥ bi,

where Ri = PT
i Q. Now define Ri =

[
Ri11 Ri12

Ri21 Ri22

]
,

Di =

[
Di1 0
0 Di2

]
, and Λ =

[
Λ1 0
0 Λ2

]
, where Ri11,

Di1, Λ1 ∈ R
r×r, Ri12 ∈ R

r×(d−r), Ri21 ∈ R
(d−r)×r, and

Ri22, Di2, Λ2 ∈ R
(d−r)×(d−r). One has Di1 ≥ 0, Λ1 ≥ 0,

Λ2 ≥ 0, and Di2 ≤ 0 (i = 1, ...,m). It can then be shown
that

〈Ai, X〉 =
〈
RT

i DRi,Λ
〉

≥
〈
RT

i21Di2Ri21,Λ1

〉
+

〈
RT

i22Di2Ri22,Λ2

〉
.

Now consider the parametrized rank r matrix X∗
ρ defined

by

X∗
ρ = Q

[
Λ∗

1 0
0 Λ∗

2

]
QT = Q

[
ρΛ1 0
0 0

]
QT ;

we proceed to find a positive constant ρ such that X∗
ρ ∈

F(A1, . . . , Am, b). In fact, it suffices to show that for some
ρ,
〈
Ai, X

∗
ρ

〉
≥

〈
RT

i21Di2Ri21,Λ
∗
1

〉
+

〈
RT

i22Di2Ri22,Λ
∗
2

〉

≥ bi (i = 1, . . . ,m).

Since
〈
RT

i21Di2Ri21,Λ
∗
1

〉
+

〈
RT

i22Di2Ri22,Λ
∗
2

〉

=
〈
RT

i21Di2Ri21, ρΛ1

〉

= ρ
〈
RT

i21Di2Ri21,Λ1

〉
≥ bi

(i = 1, . . . ,m), (2.10)

we observe that

0 < ρ ≤
bi〈

RT
i21Di2Ri21,Λ∗

1

〉 =: βi (i = 1, . . . ,m).

One can let
〈
RT

i21Di2Ri21,Λ
∗
1

〉
6= 0 since the inequal-

ity (2.10) holds for any ρ if
〈
RT

i21Di2Ri21,Λ
∗
1

〉
= 0.

Setting ρ = mini=1,...,m{βi, 1}, results in having X∗
ρ ∈

F(A1, . . . , Am, b). Finally, we note that
〈
Id, X

∗
ρ

〉
=

ρ 〈Ir,Λ1〉 < 〈Id, X〉 = 〈Ir,Λ1〉+〈Id−r,Λ2〉, contradicting
the assumption that X is of minimal trace in SDP (2.5)-
(2.8). Hence the non-trivial optimal solution of the SDP
(2.5)-(2.8) has to satisfy rank X∗ ≤ r; this completes the
proof of the proposition.



III. AN ALGORITHM FOR GENERAL RMPS

In this section we consider rank-constrained linear matrix
inequalities of the form

P : 〈Ai, X〉 ≥ bi for i = 1, . . . ,m, (3.11)

rank X = r, (3.12)

X ∈ Sd
+, (3.13)

where r ≤ n and Ai ∈ Sd and bi ∈ R, for i = 1, . . . ,m.
Note note that the program P yields a solution to the
corresponding RMP by an iteration on the parameter r in
(3.12). Our first result serves as a bridge between such
matrix inequalities and the more familiar, yet still difficult
to solve, nonconvex quadratically constrained quadratic
programs.

Proposition 3.1: The problem P (3.11)-(3.13) is equiv-
alent to the following nonconvex quadratically constrained
quadratic program:

QP : zT Āiz ≥ b̄i, for i = 1, 2, . . . ,m,

zT Cjkz = 0, for j, k = 1, 2, . . . , r (j > k),

where Āi = Diag (Ai, Ai, . . . , Ai) ∈ R
(rd)×(rd), and Cjk

is a block-partitioned zero matrix with Id in the (j, k) and
(k, j) blocks.

Proof: When rank X = r, we can write X = q1q
T
1 +

q2q
T
2 + . . . + qrq

T
r , where qT

i qj = 0 (qi ∈ R
d), i, j =

1, . . . , r (i 6= j). Then 〈Ai, X〉 = qT
1 Aiq1 +qT

2 Aiq2 + . . .+
qT
r Aiqr; now let z = [qT

1 , qT
2 , . . . , qT

r ]T and observe the
stated equivalence between P and QP .

A. The algorithm

We will now propose an algorithm for finding a fea-
sible matrix for problem P (3.11)-(3.13), or in view of
Proposition 3.1, a feasible vector for problem QP (3.14)-
(3.14). In this venue we will first identify the norm of a
candidate solution satisfying the constraints in QP . Then
all the nonconvex constraints in QP are re-parametrized
in terms of convex constraints augmented with a norm
constraint. The proposed procedure then essentially generate
a sequence of vectors satisfying the convex constraints
while asymptotically assuming the prescribed norm.

Let us start by observing that each nonconvex quadratic
constraints in QP (3.14)-(3.14) of the form zT Âiz ≥ b̂i,

or equivalently, z̃T

[
Âi 0

0 −b̂i

]
z̃ ≥ 0, where z̃ = [z 1]T ,

can be written as,

z̃T Ãiz̃ ≤ η, (3.14)

where ωi > 0 is chosen such that,

Ãi = In+1 −
1

ωi

Diag (Âi,−b̂i) > 0 and η = z̃T z̃.

As in our subsequent discussions we will only work with
inequalities of the form (3.14), we write z instead of z̃
in (3.14)-type inequalities for notational convenience. Note

~p
i(n+1)

p
ij

p
~p

ij

ij

δ

α ~

Fig. 1. The construction of the principal vector pij with α > 0.

that since Ãi > 0, the inequality (3.14) defines a non-
degenerate ellipsoid. We define the principal vector pij (j =
1, 2, . . . , n + 1) of the ellipsoid (3.14) with η = 1, as1

pij := [αip̃ij , δ]T , (3.15)

where αi = ±
√

(1 − λ̃i(n+1)δ2)/λ̃ij , p̃ij (respectively, λ̃ij)

is the j-th unit eigenvector (respectively, eigenvalue) of Ãi,
and δ is a sufficiently small constant. Figure 1 illustrates
how the principal vector pij is constructed. Assuming that
the set defined by QP (3.14)-(3.14) is nonempty, our
proposed algorithm proceeds as follows:

1) Let k = 0, n = 0, and Ω(0) = {z | zT Ãiz ≤
1 (i = 1, . . . ,m + r(r − 1)), zT z ≤ 1}. Moreover,
find an initial vector zo ∈ R

rd+1 ∩ Ω(0) where the
last element of zo is strictly positive.

2) Solve the following convex program

CP : max
zn+1

zT
n zn+1 (3.16)

subject to

zn+1 ∈ Ω(k), (3.17)

cT zn+1 ≥ δ, (3.18)

where c = [0, 0, . . . , 0, 1]T and δ is a sufficiently
small constant. If ‖zn+1 − zn‖ < ε, let n = n + 1
and proceed with Step 3; otherwise, let n = n + 1
and repeat solving CP (3.16)-(3.18).

3) If for sufficiently small ε > 0,

‖zT
n zn − 1‖ < ε,

terminate the algorithm.
4) Find a feasible principal vector p (3.15) with ‖p‖ >

‖zn‖ and pT zn ≥ 0 such that z̄n ∈ Ω(k), where

z̄n = (1 + ε)
(1 − t)zn + tp

‖(1 − t)zn + tp‖
for small ε, t > 0;

if such a vector p exists, let zn = z̄n, and proceed
with Step 2. 2

5) Construct a new region Ω(k+1) by partitioning the
current feasible region Ω(k) via a hyperplane. In this
venue, first identify all the feasible principal vectors

1The subscript j runs up to 2(n+1) as each p̃ij essentially corresponds
to two pij ’s.

2The vector z̄n is feasible as the set Ω(k) is convex.



pi’s (i = 1, 2, . . .) with ‖pi‖ ≤ ‖zn‖ and pT
i zn ≥ 0

such that z̄n ∈ Ω(k), where

z̄n = (1 − ε)
(1 − t)zn + tpi

‖(1 − t)zn + tpi‖
for small ε, t > 0.

If cT zn = δ, where c = [0, 0, . . . , 0, 1]T , include the
vector [0, 0, . . . , 0, δ]T in the set of feasible principal
vectors pi’s. If the number of linearly independent
such pi’s is less than rd+1, terminate the algorithm.
Construct the hyperplane H = {x | hT x = γ} such
that: hT zn > γ, hT pi = γ for 1 ≤ i ≤ rd + 1, and
hT pi ≤ γ for i ≥ rd + 2. Define

Ω(k+1) := Ω(k) ∩ {x | hT x ≤ γ}; (3.19)

let k = k + 1, n = n + 1, zn = z̄n, and repeat Step
2.

Let us provide the justifications for the proposed algorithm.
The first result clarifies the role of parameter η in Step 1
of the algorithm.

Proposition 3.2: If the program QP (3.14)-(3.14) is fea-
sible, then there exists a unit magnitude feasible vector
ẑ ∈ R

rd+1 with the last entry zd+1 6= 0, such that

ẑT

[
Âi 0

0 −b̂i

]
ẑ ≥ 0, i = 1, 2, . . . ,m. (3.20)

Proof: If the program QP (3.14)-(3.14) is feasible,
then there exists a feasible solution z satisfying (3.20)
and zd+1 6= 0. As the right-hand side of (3.20) is zero,
the corresponding normalized vector ẑ, ‖ẑ‖ = 1, is also
feasible.

The next proposition clarifies the inclusion of the (3.18) in
the program CP (3.16)-(3.18).

Proposition 3.3: If QP is feasible then there exists a
feasible vector z ∈ R

rd+1 such that

z ∈ Ω(0) and cT z ≥ δ,

where c = [0, 0, . . . , 0, 1]T and δ > 0 is sufficiently small.
Proof: Suppose that z is a feasible for QP . Propo-

sition 3.2 implies that, without loss of generality, we can
assume z ∈ Ω(0) with η = 1 and zd+1 6= 0, i.e., |cT z| ≥ δ
for sufficiently small δ > 0. Since the vector −z is also
a feasible for QP , the statement of the proposition now
follows.

Proposition 3.4: The sequence generated by repeatedly
solving the convex program CP (3.16)-(3.18) converges.
Let us call the limit of the sequence generated by repeatedly
solving CP (3.16)-(3.18) with no norm-increasing feasible
directions available to it, an apex point. When the algorithm
reaches such an apex point, the algorithm determines a cut
in Step 5, i.e., a half space, that would exclude that apex
point in the subsequent iteration of the algorithm.

Proposition 3.5: If QP (3.14)-(3.14) is feasible, so is CP
(3.16)-(3.18). Moreover, for all k ≥ 0, one has dim(Ω(k)) =
rd + 1.

p
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z~

Fig. 2. Apex points (z, z̃), principal vectors (p, q), the separating
hyperplane (H) in Step 5, and the feasible set Ω(k) for some k ≥ 0 (dashed
area); p2−, q1− are the feasible principal vectors at z.
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~
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Fig. 3. The construction of the set Wij (dashed area)

Proposition 3.6: Let {zn}n≥0 denote the sequence gen-
erated by the proposed algorithm. If QP (3.14)-(3.14) is
feasible then

‖zT
n zn‖ → 1 as n → ∞.

The running time of the algorithm is proportional to the
number of apex points in the feasible set of CP (3.16)-
(3.18) with k = 0. We note that the number of apex
points however can be exponential in the dimension of QP .
Thus the proposed algorithm is not guaranteed to run in
polynomial-time; after all, RMPs are NP-hard! However,
as the example in §IV demonstrates, the number of visited
apex points is generally small as compared with the total
number of principal vectors p’s with ‖p‖ < 1, implying that
the proposed algorithm is potentially efficient in practice.
We close this section with a procedure that reduces the
number of apex points in the feasible set of CP when
k = 0. In this direction, first define the following sets
C = {zT z ≤ 1} (η > 0), Ei = {zT Ãiz ≤ 1} (Ãi ∈
Sd

+, i = 1, 2, . . . ,m), Hij = {x ∈ R
rd+1, p̃T

ij(x − xo) ≥
0}, Wij = C ∩ Ei ∩ Hij ∩ {z | cT z ≥ δ} (j = 1, . . . , βi),
where p̃ij is an eigenvector vector- which corresponds to
an eigenvalue greater than or equal to 1- of the matrix Ãi,
βi is the number of such p̃ij’s for each i, xo is chosen such
that Hij contains rd + 1 many intersection points of C, Ei,
and Hij (see Figure 3), and c = [0, 0, . . . , 1]T .

Proposition 3.7: If there exists a feasible solution z of



# of principal vectors p

d r # of constraints ‖p‖ ≥ 1 ‖p‖ < 1 # of cuts
3 2 8 82 30 1
4 3 18 372 96 1
5 2 22 396 88 1
5 4 32 1124 220 2
6 5 50 2680 420 1
10 2 92 3540 324 2

TABLE I

THE TOTAL NUMBER OF CONSTRAINTS, PRINCIPAL VECTORS, AND

CUTS (APEX POINTS VISITED) FOR VARIOUS VALUES OF d AND r

QP (3.14)-(3.14) then for any i, there exists an index j
such that z ∈ Wij .
Proposition 3.7 states that one can find a feasible solution of
QP by starting the algorithm from the region Wij , for fixed
i and j, instead of Ω(0)- and then repeating the algorithm
with Wij for different index j at most βi times. This parsing
technique on the other hand can significantly reduce the
number of apex points visited by the procedure.

IV. AN EXAMPLE

We now provide an numerical example for the graph real-
ization problem as formulated in terms of rank-constrained
matrix inequalities. The graph realization problem can be
stated as follows [1], [2]: suppose that we are given a
weighted graph G = (V,E; ρ), where V = {v1, v2, . . . , vd}
is the vertex set, E is the edge set, and ρ : E → R+

assigns to every edge (i, j) ∈ E a non-negative number
ρij = ‖vi − vj‖. We wish to verify whether v1, v2, . . . , vd

can be configured in R
r, i.e., examining if it is r-realizable.

The graph realization problems can be formulated in terms
of finding an n × n matrix X = [xij ] such that xij −
2xij + xjj = ρ2

ij , for all (i, j) ∈ E, while X ∈ Sd
+ and

rank X = r. For the purpose of measuring the numerical
performance of the proposed algorithm, we considered a
worst case r-realizable graph and compared the numbers
of apex points visited during the execution of the proposed
algorithm for various values of d, r. Table I indicates how
the number of principal vectors employed in the graph
realization problem grows as the parameters d or r are
increased. However, even in the presence of many principal
vectors with magnitude less than 1, the number of apex
points visited in our numerical examples was at most 2.
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