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Abstract— This paper is focused on the `2-induced control
of eventually periodic linear discrete-time systems. We prove
for such systems that a synthesis exists if and only if an
eventually periodic synthesis exists. We also consider specific
cases, where we show that the synthesis if existent can always
be chosen to be of the same eventually periodic class as the
plant. All the conditions derived are provided in terms of semi-
definite programming problems. The motivation for this work
is controlling nonlinear systems along prespecified trajectories,
notably those which eventually settle down into periodic orbits
and those with uncertain initial states.

I. INTRODUCTION

In this paper, we continue our work started in [3] on
the control of eventually periodic systems. Such systems
are aperiodic for an initial amount of time, and then
become periodic afterwards. Our work is motivated by the
desire to use robust control methods for the control of
nonlinear systems along prespecified trajectories. There are
two basic ways in which eventually periodic dynamics arise
when linearizing systems along trajectories: (1) the system
trajectory is an aperiodic maneuver joined to a subsequent
periodic orbit; or (2) the initial condition of the system is
uncertain. We remark that both finite horizon and periodic
systems are subclasses of eventually periodic systems.

One of the main contributions of [3] is the derivation
of necessary and sufficient conditions for the existence of
eventually periodic controllers, exhibiting equal transient
time variation and periodicity as the plant; such controllers
both stabilize and provide performance in closed-loop con-
trol systems. However, the invalidity of the said synthesis
conditions does not necessarily imply the non-existence of
a synthesis. In this paper, we improve on this result and
show that, for an eventually periodic plant, the existence of
a synthesis is equivalent to the existence of an eventually
periodic synthesis, having the same periodicity as the plant
but probably exhibiting longer transient time variation.
Furthermore, we consider certain cases where the synthesis
if existent can always be chosen to be of the same eventually
periodic class as the plant.

The general machinery used to obtain the results of this
paper is motivated by the work in [4], [8], [9], combined
with the time-varying system machinery developed in [2].
Also, see the closely related earlier work in [1], [6], [7] on
nonstationary systems. The literature in the area of time-
varying systems is vast, and we refer the reader to [5] for
a comprehensive list of general references.
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II. PRELIMINARIES

We now introduce our notation and gather some elemen-
tary facts. The set of real numbers and that of real n×m
matrices are denoted by R and R

n×m respectively. If Si is
a sequence of operators, then diag(Si) denotes their block-
diagonal augmentation.

Given two Hilbert spaces E and F , we denote the space of
bounded linear operators mapping E to F by L(E,F), and
shorten this to L(E) when E equals F . If X is in L(E,F),
we denote the E to F induced norm of X by ‖X‖E→F ; when
the spaces involved are obvious, we write simply ‖X‖. The
adjoint of X is written X∗. When an operator X ∈ L(E) is
self-adjoint, we use X < 0 to mean it is negative definite;
that is there exists a number α > 0 such that, for all nonzero
x ∈ E, the inequality 〈x,Xx〉 < −α‖x‖2 holds.

We will be primarily concerned with two Hilbert spaces
in this paper. The first is the standard space R

n with the in-
ner product given by 〈x,y〉

Rn = ∑n−1
t=0 xtyt = x∗y. The second

Hilbert space of interest is formed given an infinite sequence
{Rnt} of Hilbert spaces, and is denoted by `2({R

nt}). It
is defined as the subspace of the Hilbert space direct sum
⊕∞

t=0R
nt consisting of elements (x0,x1,x2, . . .) which satisfy

∑∞
t=0‖xt‖

2
R

nt < ∞. The inner product of x and y in `2({R
nt})

is defined by the infinite sum 〈x,y〉`2
=∑∞

t=0〈xt,yt〉R
nt . In

the sequel, we will frequently suppress the subscript on
the dimension symbol nt and accordingly use a shorter
notation for `2({R

nt}), namely `2(R
n). Also, when the

spatial dimensions nt are either evident or not relevant to
the discussion, we abbreviate further to `2. We will use ‖x‖
to denote

√

〈x,x〉, the standard norm on this space.
One of the most important operators used in the paper is

the unilateral shift operator Z defined as follows:

Z : `2({R
mk}) → `2({R

nk}), where mk = nk+1

(a0,a1,a2, . . .)
Z

7−→ (0,a0,a1,a2, . . .).

Following the notation and approach in [2], we start by
making the following definitions.

Definition 1: A bounded linear operator Q mapping
`2({R

mk}) to `2({R
nk}) is block-diagonal if there exists a

sequence of matrices Qk in R
nk×mk such that, for all w,z,

if z = Qw, then zk = Qkwk. Then Q has the representation
diag(Q0,Q1,Q2, . . .).

Definition 2: An operator P on `2 is (h,q)-eventually
periodic if, for some non-negative integer h, we have

Zq((Z∗)hPZh) = ((Z∗)hPZh)Zq. (1)

In the case where q = 1, P is called h-eventually time-
invariant. Also, when only the period length q is relevant,
we simply call P eventually q-periodic.



Note that when h = 0, equality (1) reduces to the following:
ZqP = PZq. Hence, in such a case, P simply commutes with
the q-shift, and we accordingly refer to P as a q-periodic
operator. Throughout the sequel we set h ≥ 0 and q ≥ 1 to
be some fixed integers.

We denote the first period truncation of a q-periodic
block-diagonal operator Q by Q̂, and define such a matrix
as Q̂ := diag(Q0, . . . ,Qq−1). Also, we define the cyclic shift
matrix Ẑ for q ≥ 2 by

Ẑ =









0 · · · 0 I

I
. . . 0
. . .

...
I 0









,

so that Ẑ∗Q̂Ẑ = diag(Q1, . . . ,Qq−1,Q0). For q = 1, set Ẑ = I.
Now suppose Q is an (h,q)-eventually periodic block-

diagonal operator, then we define the matrix Q̃ to be the
finite-horizon-first-period truncation of Q, namely Q̃ :=
diag(Q0, . . . ,Qh−1,Qh, . . . ,Qh+q−1). Furthermore, in the se-
quel, we will use the notation Ξ(Q̃) to denote the matrix
diag(Q1, . . . ,Qh+q−1,Qh).

Having established these definitions, we are now ready
to consider the main subject of this paper.

III. EVENTUAL PERIODICITY OF THE SYNTHESIS

Let G be a linear time-varying discrete-time system
defined by the following state space equation:





xk+1
zk
yk



=





Ak B1k B2k
C1k D11k D12k
C2k D21k 0









xk
wk
uk



 x0 = 0, (2)

for w ∈ `2. The signals xk, zk, wk, yk, and uk are real and
have time-varying dimensions which we denote by nk, nzk,
nwk, nyk, and nuk respectively. For notational simplicity, in
the following we frequently suppress the time-dependence
of the above dimensions. We make the assumption that all
the state space matrices are uniformly bounded functions
of time, and further assume the direct feedthrough term
D22 = 0. Also, we assume that the block-diagonal operators,
defined by the sequences of the above state space matrices,
are (h,q)-eventually periodic.

We suppose this system is being controlled by a controller
K whose state space equation is

[
xK

k+1
uk

]

=

[
AK

k BK
k

CK
k DK

k

][
xK

k
yk

]

xK
0 = 0.

The controller state vector xK
k ∈ R

r where the time depen-
dence of r is suppressed. Again, we assume that the block-
diagonal operators, defined by the matrix sequences AK

k , BK
k ,

CK
k , and DK

k , are (h,q)-eventually periodic. The connection
of G and K is shown in Figure 1. Since D22 = 0, this
interconnection is always well-posed.

We write the realization of the closed-loop system as

xL
k+1 = AL

kxk +BL
kwk

zk = CL
kxk +DL

kwk,
(3)

K

G
z w

Fig. 1. Closed-loop system

where xL
k contains the combined states of G and K, and

AL
k, BL

k, CL
k and DL

k are appropriately defined. Here AL
k ∈

R
(n+r)×(n+r), where n is the number of states of G and

r is the number of states of K. Note that the block-
diagonal operators AL, BL, CL and DL are (h,q)-eventually
periodic. The above closed-loop system may be written
more compactly in operator form as

xL = ZALxL +ZBLw
z = CLxL +DLw,

(4)

where Z is the shift operator on `2. Assuming the relevant
inverse exists, we can write the map from w to z as

w 7→ z = CL(I −ZAL)−1ZBL +DL.

It is possible to show that I−ZAL has a bounded inverse if
and only if the system xL

k+1 = AL
kxL

k is exponentially stable.
Remark 3: All finite horizon systems are stable due to

the underlying assumption that the state space matrices
are uniformly bounded functions of time. Hence, as far as
stability is concerned, an (h,q)-eventually periodic system
can be regarded as a q-periodic system with an initial
condition that is basically the final state, xh, obtained from
the finite horizon part. Thus, the stability of an eventually
periodic system boils down to the stability of its periodic
part, which, in turn, is equivalent to the invertibility of the
matrix I − ẐÂL

per, where ÂL
per = diag(AL

h, . . . ,A
L
h+q−1).

The following definition expresses our synthesis goal.
Definition 4: A controller K is an admissible synthesis

to G in Fig.1 if I−ZAL has a bounded inverse and the closed-
loop performance inequality ‖w 7→ z‖`2→`2

< 1 is achieved.
We now state the following result from [3], which

gives finite dimensional convex conditions, the validity of
which is equivalent to the existence of an admissible (h,q)-
eventually periodic synthesis.

Theorem 5: Suppose that G is (h,q)-eventually periodic.
There exists an admissible (h,q)-eventually periodic synthe-
sis K for G with state dimension r ≤ n if and only if there
exist block-diagonal matrices R̃ > 0 and S̃ > 0 satisfying

[
Ṽ ∗

1 Ṽ ∗
2

]
{

E

[
R̃

I

]

E∗−

[
Ξ(R̃)

I

]}[
Ṽ1
Ṽ2

]

< 0, (5)

[
Ũ∗

1 Ũ∗
2

]
{

E∗

[
Ξ(S̃)

I

]

E −

[
S̃

I

]}[
Ũ1
Ũ2

]

< 0, (6)
[

R̃ I
I S̃

]

≥ 0, (7)

where E =

[
Ã B̃1

C̃1 D̃11

]

, and, for i = 0, . . . ,h+q−1,

Im
[
V ∗

1i V ∗
2i

]∗
= Ker

[
B∗

2i D∗
12i

]
, V ∗

1iV1i +V ∗
2iV2i = I,

Im
[
U∗

1i U∗
2i

]∗
= Ker

[
C2i D21i

]
, U∗

1iU1i +U∗
2iU2i = I.



Solutions R̃ and S̃ can be used to construct an (h,q)-
eventually periodic controller K. The way to construct this
controller can be found in [2], [4], [9].

We remark that if the aforesaid synthesis conditions are
invalid, we can only say that there exists no admissible
(h,q)-eventually periodic synthesis; but this does not neces-
sarily imply the non-existence of a different admissible syn-
thesis. We will next show that the existence of an admissible
synthesis for an (h,q)-eventually periodic plant is equivalent
to the existence of an admissible (N,q)-eventually periodic
synthesis, for some N ≥ h. But first, we define the set X to
consist of positive definite operators X of the form

X = diag(X0,X1,X2, . . .) > 0, where Xi ∈ R
ni×ni . (8)

Theorem 6: Given an (h,q)-eventually periodic plant G,
then there exists an admissible synthesis K for G if and only
if there exists an admissible eventually q-periodic synthesis.

Proof: The proof of the “if” direction is immediate.
Following is the proof of the “only if” direction. From [2],
we know that an admissible synthesis K exists for G, with
state dimension r ≤ n, if and only if there exist operators
R,S ∈ X satisfying the following synthesis conditions:

F∗RF −V ∗
1 Z∗RZV1 +H < 0, (9)

J∗Z∗SZJ −U∗
1 SU1 +W < 0, (10)
[

R I
I S

]

≥ 0, (11)

where F = A∗V1 +C∗
1V2, J = AU1 +B1U2, H = M∗M−V ∗

2 V2,
M = B∗

1V1 + D∗
11V2, W = L∗L−U∗

2 U2, L = C1U1 + D11U2,
and Ui, Vi are defined as in Theorem 5.

Clearly, all of the operators in (9) and (10) are (h,q)-
eventually periodic block-diagonal operators. Furthermore,
from our definition of negative definite operators, there
exists a sufficiently small β > 0 such that the left-hand sides
of both (9) and (10) are each less than −β I. It turns out that
only the last instance of the finite horizon will be relevant to
this proof, and so, we will assume henceforth, without loss
of generality, that the finite horizon length h is equal to 1.
Then the state space operator A will have the representation:

A = diag(A0,Aper), with Aper = diag(Âper, Âper, . . .), (12)

Âper being the first period truncation of the q-periodic block-
diagonal operator Aper. Similar representations apply for the
other state space operators.

Now since there exists an admissible synthesis for the
(h,q)-eventually periodic plant, then definitely there exists
an admissible synthesis for the q-periodic portion of this
plant. Then invoking Theorem 22 of [2], we deduce that
there exists an admissible q-periodic synthesis for this
periodic part, and consequently, there exists positive definite
block-diagonal matrices R̂per and Ŝper satisfying

F̂∗
perR̂perF̂per −V̂ ∗

1,perẐ
∗R̂perẐV̂1,per + Ĥper < −β I,

Ĵ∗perẐ
∗ŜperẐĴper −Û∗

1,perŜperÛ1,per +Ŵper < −β I,
[

R̂per I
I Ŝper

]

≥ 0.

Then following a similar argument to that of the proof of
Lemma 7 in [3], we can construct (N,q)-eventually periodic
solutions to the synthesis conditions (9), (10) and (11), for
some N ≥ h, and use these solutions to form an admissible
(N,q)-eventually periodic synthesis for the plant G.

The question at this point is whether we can find at least
reasonable upper bounds on the finite horizon lengths for
such eventually q-periodic syntheses. This is not an easy
problem in the general case. However, if we are to consider
specific systems, such as those with exactly measurable
states or those in which the state disturbance is a linear
transformation of the sensor noise at each instance of the
finite horizon, then this problem becomes viably solvable.
In fact, it turns out that the synthesis condition (9), which
we will refer to hereafter as the forward synthesis condition
(FSC), always admits an (h,q)-eventually periodic solution
if feasible. This, however, cannot be said for the backward
synthesis condition (10), which we simply abbreviate as
BSC. Moreover, even if (9) and (10) both admit solutions
in the subclass of the (N,q)-eventually periodic operators of
X for some N ≥ h, none of these solutions might satisfy the
coupling condition (11), and hence we may need to settle
for a larger finite horizon length. However, in the case of the
said specific systems, the BSC simplifies significantly and
then the main focus becomes to show that the FSC admits
an (h,q)-eventually periodic solution in X if feasible.

We conclude this section with further comments on the
BSC. As previously mentioned, given an (h,q)-eventually
periodic plant, the existence of a solution in X to the
BSC does not necessarily imply the existence of an (h,q)-
eventually periodic solution in X. However, if we are to drop
the constraint that the solution has to be positive definite,
and expand our search for solutions to the set Xe, whose
elements are bounded, self-adjoint and of the same form
as those of the set X, but without the positive definiteness
restriction, then we have the following result.

Theorem 7: Given an (h,q)-eventually periodic plant,
there exists a solution in Xe to the BSC if and only if there
exists an (h,q)-eventually periodic solution in Xe.
The outline of the proof is as follows: first, we apply a
generalized version of Finsler’s lemma to the BSC, and then
we adopt a similar argument to that used in the proof of
the KYP lemma given in [3].

IV. FORWARD SYNTHESIS CONDITION

This section shows that, given an (h,q)-eventually pe-
riodic system G, then the feasibility of its FSC implies
the existence on an (h,q)-eventually periodic solution in
X satisfying the said condition. To start, suppose that there
exists an operator R ∈ X solving the FSC, namely

F∗RF −V ∗
1 Z∗RZV1 +H < 0,

where the above system operators are all (h,q)-eventually
periodic and block-diagonal, as defined in the preceding
proof. Then, it is obvious from Theorem 6 that there exists
an (N,q)-eventually periodic solution in X to the FSC,



for some N ≥ h. The next two subsections are devoted to
proving that N = h.

A. Technical machinery

We now develop some new tools that are essential to
proving the main result of this section. We start by defining
the following sets for non-negative integers i:

Di = {X > 0 : V ∗
1iXV1i −Hi > 0},

P
ni = {X ∈ R

ni×ni : X = X∗ ≥ 0}.

Also, for integers i ≥ 0, we define the sequence of maps
Ωi : Di → P

ni by Ωi(X) = Fi(V
∗
1iXV1i −Hi)

−1F∗
i .

Proposition 8: Suppose X > 0, i ≥ 0, and Y−1 ∈ Di. If
X ≤ Y , then X−1 ∈ Di and Ωi(X

−1) ≤ Ωi(Y
−1).

Proof: Given that X ,Y > 0, then applying the Schur
complement formula twice to the condition X ≤ Y , we get
the equivalent inequality: X−1 ≥Y−1. Then, from the latter
inequality, together with the fact that Y−1 ∈ Di, we have

V ∗
1iX

−1V1i −Hi ≥V ∗
1iY

−1V1i −Hi > 0. (13)

Hence, X−1 ∈ Di. Now, applying the Schur complement
formula twice to (13), we get the following:

(V ∗
1iX

−1V1i −Hi)
−1 ≤ (V ∗

1iY
−1V1i −Hi)

−1.

Pre- and post-multiplying both sides of this inequality by Fi
and F∗

i respectively, we obtain the following sought result:
Ωi(X

−1) ≤ Ωi(Y
−1).

Proposition 9: Suppose R ∈X solves the FSC. Then, for
each i≥ 0, both Ri+1 ∈Di and Ωi(Ri+1)+εI < R−1

i for some
sufficiently small ε > 0.

Proof: By assumption R ∈X and satisfies the FSC. Then
the following holds:

V ∗
1 Z∗RZV1 −H > F∗RF ≥ 0,

Hence, V ∗
1iRi+1V1i − Hi > 0 for all integers i ≥ 0, and

consequently, Ri+1 ∈ Di. Applying the Schur complement
formula to the FSC, we get

[
−(V ∗

1 Z∗RZV1 −H) F∗

F −R−1

]

< 0,

which, by invoking the Schur complement formula again,
leads to the inequality F(V ∗

1 Z∗RZV1 −H)−1F∗−R−1 < 0.
Then, from our definition of negative definite operators, we
know that there exists a sufficiently small ε > 0 such that
the left-hand side of the last inequality is less than −εI.
Thus, Ωi(Ri+1)+ εI < R−1

i for all integers i ≥ 0.
Throughout the remainder of this subsection, we fix ε

to be some positive real number. For q ≥ 2, we define the
domain set D̂ by

D̂={X ∈ Dh+q−1 : Θ ∈ Di−1 for all i = h+1, . . . ,h+q−1},

where Θ = Ωi

([

Ωi+1

([

· · ·
[
Tθ
]−1

· · ·
]−1
)

+ εI

]−1
)

+εI,

with Tθ = Ωh+q−2

([

Ωh+q−1(X)+ εI
]−1
)

+ εI.

For q = 1, we set D̂ = Dh+q−1. Associated with this domain
is the map Ω̂ : D̂ → P

nh defined by

Ω̂(X) = Ωh

([

Ωh+1

([

· · ·
[
Tθ
]−1

· · ·
]−1
)

+ εI

]−1
)

,

where Tθ is defined as before. Last, for some integer m ≥ 1,
we formally define Ω̂m(X) by

Ω̂m(X)=Ω̂([Ω̂([· · · [Ω̂([Ω̂
︸ ︷︷ ︸

m times

(X)+εI]−1)+εI]−1· · · ]−1)+εI]−1).

Pertaining to the map Ω̂, we have the following two very
important facts that follow directly from Proposition 8.

Corollary 10: Suppose X > 0 and Y−1 ∈ D̂.
(i) If X ≤ Y , then X−1 ∈ D̂ and Ω̂(X−1) ≤ Ω̂(Y−1);

(ii) If Ω̂(Y−1) ≤ Y , then, for all m ≥ 1, the following is
true: Ω̂m+1(Y−1) ≤ Ω̂m(Y−1) ≤ Y.

Part (i) of the claim follows routinely by an iterative
application of Proposition 8; Part (ii) is easily shown by
applying Part (i). We accordingly omit the proof.

A very useful corollary of Proposition 8 and Proposition 9
follows; recall that h and q are fixed in this section.

Corollary 11: Suppose R ∈X solves the FSC. Then, for
all m ≥ 1, Rh+mq ∈ D̂ and Ω̂(Rh+mq)+ εI < R−1

h+(m−1)q
for

some sufficiently small ε > 0.
The proof is immediate and so is not included.

B. Main Result

Now we can state the main result of this section.
Theorem 12: Given an (h,q)-eventually periodic plant,

then a solution in X exists for the FSC if and only if an
(h,q)-eventually periodic solution in X exists.

Proof: The proof of the “if” direction is immediate. We
now prove the “only if” direction. It turns out that only the
last instance of the finite horizon will be relevant to this
proof, and so, we may assume without loss of generality
that the finite horizon length h is equal to 1. Then the state
space operator A will have the following representation: A =
diag(A0, Âper, Âper, . . .), where Âper is defined as in (12).
Similar representations apply for the other system operators.

Now, by assumption, the FSC has a solution in X. Then,
by invoking Theorem 6, there exists an eventually q-periodic
operator R satisfying the FSC such that, for some non-
negative integer N,

R = diag(R0,R1, . . . ,RNq, R̄, R̄, . . .),

where R̄ = diag(RNq+1, . . . ,R(N+1)q). Invoking Proposition 9
and Corollary 11, we deduce that the FSC holds only
if the following sequence of inequalities holds for some
sufficiently small ε > 0:

Ω0(R1) < R−1
0

Ω̂(Rq+1)+ εI < R−1
1

...
Ω̂(RNq+1)+ εI < R−1

(N−1)q+1

Ω̂(RNq+1)+ εI < R−1
Nq+1.

(14)



Starting with the second last inequality, we can successively
apply part (i) of Corollary 10 to obtain the inequality

Ω̂N(RNq+1)+ εI < R−1
1 .

Invoking Proposition 8, the preceding inequality, along with
the inequality Ω0(R1) < R−1

0 from (14), guarantees the
validity of the following:

Ω0

([

Ω̂N(RNq+1)+ εI
]−1
)

< R−1
0 .

Set Q =
[

Ω̂N(RNq+1)+ εI
]−1

, then Ω0(Q) < R−1
0 . Also,

appealing to part (ii) of Corollary 10, we deduce that

Ω̂N+1(RNq+1) = Ω̂
([

Ω̂N(RNq+1)+ εI
]−1
)

≤ Ω̂N(RNq+1).

Defining

Γi

(

Ω̂N
(

RNq+1

))

= Ωi

([

Ωi+1

([

· · ·
[
Tγ
]−1

· · ·
]−1
)

+ εI

]−1
)

,

where Tγ = Ωq−1

(

[Ωq (Q)+ εI]−1
)

+ εI, for i = 2, . . . ,q,
we can equivalently write the above inequality as

Ω1

([

Γ2

(

Ω̂N
(

RNq+1

))

+ εI
]−1
)

≤ Ω̂N
(

RNq+1

)

< Q−1.

Also, we have Γi

(

Ω̂N
(

RNq+1

))

< Γi

(

Ω̂N
(

RNq+1

))

+ εI
for i = 2, . . . ,q, which leads to the following:

Ωi

([

Γi+1

(

Ω̂N
(

RNq+1

))

+εI
]−1
)

< Γi

(

Ω̂N
(

RNq+1

))

+εI,

for i = 2, . . . ,q−1, and

Ωq( [Ω̂N(RNq+1)+ εI]−1

︸ ︷︷ ︸

Q

) < Γq

(

Ω̂N
(

RNq+1

))

+ εI.

Therefore, the (1,q)-eventually periodic operator Reper =
diag(R0, R̂per, R̂per, . . .) ∈ X solves the FSC, where R̂per =
diag(Q,(Γ2(Ω̂

N(RNq+1))+εI)−1, . . . ,(Γq(Ω̂N(RNq+1))+εI)−1).
Thus, we have shown that, given an (h,q)-eventually peri-
odic plant, we can always construct from any solution of
the FSC an (h,q)-eventually periodic solution.

V. SPECIAL CASES

As mentioned earlier, given an (h,q)-eventually periodic
plant G, the feasibility of the BSC does not in general imply
the existence of an (h,q)-eventually periodic operator in
X that solves the said condition; it does imply, however,
that an eventually q-periodic solution in X exists. While
finding uppers bounds on the finite horizon lengths of
such eventually q-periodic solutions is one of the main
goals of this work, we will restrict our attention in the
current paper to situations where the BSC simplifies sig-
nificantly. This section consists of two subsections, where
the first considers systems with exactly measurable states
(i.e. C2 = I,D21 = 0), and the second deals with plants in
which the state disturbance is a linear transformation of the
sensor noise at each instance of the finite horizon.

A. Exactly measurable states

Suppose G is an (h,q)-eventually periodic plant with
exactly measurable states. Then, C2 = I,D21 = 0, and the
BSC simplifies to the following: B∗

1Z∗SZB1 < I −D∗
11D11.

Now since, in this case, DL = D11 +D12DKD21 = D11, then
in order for an admissible synthesis to exist, it is necessary
that we have ‖D11‖< 1. Hence, in such a scenario, the right-
hand side of the above linear operator inequality is always
positive definite, and so we can always find a solution S ∈X

satisfying the BSC. However, the choice of this solution can
not really be arbitrary due to the coupling condition (11).

Lemma 13: The following are equivalent:
(i) There exist operators S,R ∈ X such that

B∗
1Z∗SZB1 < I −D∗

11D11, (15)
[

R I
I S

]

≥ 0; (16)

(ii) There exists R ∈ X such that

B1(I −D∗
11D11)

−1B∗
1 < Z∗RZ. (17)

Proof: We first prove that (i) implies (ii). Applying
the Schur complement formula to (16), we get Z∗SZ ≥
Z∗R−1Z, which, together with (15), leads to the inequality
B∗

1Z∗R−1ZB1 < I − D∗
11D11. Applying the Schur comple-

ment formula to the preceding inequality gives (17). To
prove that (ii) implies (i), we simply set R = S−1, and then a
couple of applications of the the Schur complement formula
lead to (15) and (16).

Theorem 14: Suppose that plant G is (h,q)-eventually
periodic with C2 = I and D21 = 0. Then the existence of an
admissible synthesis for G is equivalent to the existence of
an (h,q)-eventually periodic static synthesis, which in turn
is equivalent to the existence of a block-diagonal matrix
R̃ > 0 satisfying

F̃∗R̃F̃ −Ṽ ∗
1 Ξ(R̃)Ṽ1 + H̃ < 0,

B̃1(I − D̃∗
11D̃11)

−1B̃∗
1 < Ξ(R̃).

Proof: The proof of the “if” direction is immediate. We
now prove the “only if” direction. Suppose there exists
a synthesis K for G. Then, by Lemma 13, the synthesis
conditions (9), (10), and (11) are equivalent to the FSC
and (17), which, by Theorem 6, admit an (N,q)-eventually
periodic solution R ∈ X for some N ≥ h. Appealing to the
proof of Theorem 12, we can construct an (h,q)-eventually
periodic operator Reper ∈X that solves the FSC and, due to
the way we form this operator, also satisfies inequality (17).
Now, since implicitly we have Reper = S−1

eper, and from [2],
[4], [9] we know that we can construct a controller with
state dimension ri = rank(I −Reper,iSeper,i), then clearly we
can form a static (h,q)-eventually periodic controller.

Once we find a solution R̃ to the synthesis conditions
of Theorem 14, we can solve the following linear matrix
inequality for D̃K :






−Ξ(R̃) Ã+ B̃2D̃K B̃1 0
(Ã+ B̃2D̃K)∗ −R̃−1 0 (C̃1 + D̃12D̃K)∗

B̃∗
1 0 −I D̃∗

11
0 C̃1 + D̃12D̃K D̃11 −I






<0, (18)



and the state-feedback control law would then be u = DKy.
Alternatively, instead of first trying to find R and then,

if successful, solving for DK , we may lump both of these
steps into one, as shown in the following theorem.

Theorem 15: Suppose that plant G is (h,q)-eventually
periodic with C2 = I and D21 = 0. Then there exists an
admissible (h,q)-eventually periodic static synthesis for G
if and only if there exist block-diagonal matrices R̃ > 0 and
Q̃ satisfying






−Ξ(R̃) ÃR̃+ B̃2Q̃ B̃1 0
(ÃR̃+ B̃2Q̃)∗ −R̃ 0 (C̃1R̃+ D̃12Q̃)∗

B̃∗
1 0 −I D̃∗

11
0 C̃1R̃+ D̃12Q̃ D̃11 −I







< 0.

If the above problem is feasible, then D̃K = Q̃R̃−1.
The proof consists of pre- and post-multiplying (18) by
diag(I, R̃, I, I), and then setting Q̃ = D̃K R̃.

Remark 16: It is not difficult to construct counter exam-
ples to demonstrate that, if we are to include sensor noise,
i.e. D21 6= 0, then the BSC might not admit (h,q)-eventually
periodic solutions in X even when feasible.

B. Related state and measurement disturbances

In this subsection, we consider (h,q)-eventually periodic
plants in which the state disturbance is a linear transforma-
tion of the sensor noise at each instance of the finite horizon,
i.e., for i = 0,1, . . . ,h− 1, there exists Ti ∈ R

ni+1×nyi such
that B11i = TiD21i. We will show that, for such systems, a
solution in X exists for the BSC if and only if an (h,q)-
eventually periodic solution in X exists. Furthermore, if
we start with eventually q-periodic solutions for the FSC
and BSC, satisfying the coupling condition (11), then we
can construct from these solutions (h,q)-eventually periodic
solutions that still satisfy the coupling condition.

Lemma 17: Suppose that the relevant system operators
are (h,q)-eventually periodic and block-diagonal, and that,
for i = 0,1, . . . ,h − 1, we have B11i = TiD21i for some
Ti ∈ R

ni+1×nyi . Then there exists a solution in X to the
BSC if and only if there exists an (h,q)-eventually periodic
solution in X.

Proof: The proof of the “if” direction is immediate.
We now prove the “only if” direction. By assumption,
there exists a solution in X satisfying the BSC, then,
by Theorem 6, there exists an (N,q)-eventually periodic
solution S = diag(S0, . . . ,SN−1, Ŝper, Ŝper, . . .) ∈ X for some
N ≥ h, where Ŝper = diag(SN , . . . ,SN+q−1). Now, recall that
C2iU1i + D21iU2i = 0, and hence, for i = 0,1, . . . ,h − 1,
we have B11iU2i = TiD21iU2i = −TiC2iU1i. Then, the finite
horizon part of the BSC can be equivalently rewritten as

U∗
1i

((
Ai −TiC2i

)∗
Si+1

(
Ai −TiC2i

)
−Si

)
U1i +Wi < 0,

for i = 0,1, . . . ,h−1. Now defining

S̄h−1 = P∗
h−1SNPh−1 +Sh−1 > 0,

and, for i = h−2,h−3, . . . ,0,

S̄i = P∗
i S̄i+1Pi +Si > 0,

where Pi = Ai − TiC2i, it is quite obvious that the opera-
tor Seper = diag(S̄0, S̄1, . . . , S̄h−1, Ŝper, Ŝper, . . .) is an (h,q)-
eventually periodic solution in X to the BSC.

Theorem 18: Suppose that plant G is (h,q)-eventually
periodic, and that, for all i = 0,1, . . . ,h − 1, we have
B11i = TiD21i for some Ti ∈ R

ni+1×nyi . Then there exists
an admissible synthesis K for G with state dimension r ≤ n
if and only if there exist block-diagonal matrices R̃ > 0 and
S̃ > 0 satisfying (5), (6), and (7).
The key point of the proof of this theorem is to realize
that, given eventually q-periodic operators solving the FSC
and BSC and satisfying the coupling condition, the way we
construct (h,q)-eventually periodic solutions from the said
operators, as demonstrated in the proofs of Theorem 12
and Lemma 17, allows to form such solutions while still
maintaining the validity of the coupling condition.

Remark 19: Suppose the existence of a synthesis. If the
matrices D21i, for i = 0,1, . . . ,h−1, have each full column
rank, then the condition B11i = TiD21i becomes trivial, and
an (h,q)-eventually periodic synthesis exists. Also, the case
where the finite horizon matrices U1i have each full column
rank warrants (h,q)-eventually periodic syntheses.

VI. CONCLUSIONS

In this paper, we have shown that, given an (h,q)-
eventually periodic system, then there exists an admissible
synthesis for this system if and only if there exists an even-
tually q-periodic synthesis. Furthermore, we have proven
that the forward synthesis condition if feasible always
admits an (h,q)-eventually periodic solution. But the same
thing cannot be said for the backward synthesis condition;
also, the coupling condition might pose some restrictions
as well. Lastly, we have considered systems with exactly
measurable states as well as systems with related state and
measurement disturbances, and shown that, for such (h,q)-
eventually periodic systems, the synthesis if existent can
always be chosen to be (h,q)-eventually periodic.
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