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Abstract

In this paper we investigate the problem of searching
for a hidden target in a bounded region of the plane,
by an autonomous robot which is only able to use lim-
ited local sensory information. We formalize a discrete
version of the problem as a “reward-collecting” path
problem and provide efficient approximation algorithms
for various cases.

I. Introduction and Motivation

The problem addressed in this paper concerns search-
ing for a hidden evader by an autonomous robot.
Suppose that a “honey-pot” is hidden in a bounded
region R (typically a subset of the plane R

2 of the
3-dimensional space R

3). The exact position x∗ of the
honey-pot is not known but we do know the probability
density f of x∗. The goal is to find the honey-pot using
a point robot that moves in R and is able to see only
a small region around it. If the robot get sufficiently
close, it will detect the honey-pot and the search is
over. Given a finite amount of time T , which translates
into a finite-length path for the robot, one would like
to find a path that maximizes the probability of finding
the honey-pot. To formalize this problem, let us denote
by S[x] ⊂ R the set of points in R that the robot can
see from some position x ∈ R. Our search problem is
then as follows.

Problem 1 (Continuous Honey-pot Search). Find a
continuously differentiable path ρ : [0, T ] → R,
with ‖ρ̇(t)‖ ≤ 1 for all t ∈ [0, T ], that mini-
mizes Pc[ρ] =

∫
x∈Spath[ρ] f(x)dx, where Spath[ρ] =

{x ∈ R : x ∈ S[ρ(t)] for some t ∈ [0, T ]} denotes the set
of points that the robot can scan along the path ρ.

In the above formulation of the problem, the implicit
assumption is that it is possible to “insert” the robot
at an optimal starting point. This formulation is appro-
priate for problems in which a fast movement (not in
“search mode”) to a desired location is possible, such
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as in land rescue missions where a team is deposited by
air at a starting point. A variant of the problem would
be that in which the initial point is fixed. Our hardness
results still apply to this variant, but the approximation
results need further elaboration and will be addressed
in future research. In an even more general version
of this problem, the region that the robot sees from
the position x may depend on the robot’s orientation.
In this case, we would define S[x, v] ⊂ R to be the
set of points in R that the robot sees when it is at
position x ∈ R with orientation v, and define Spath[ρ] =
{x ∈ R : x ∈ S[ρ(t), ρ̇(t)] for some t ∈ [0, T ]}.

The origin of this honey-pot search problem can be
traced back to the pioneering work of Stone [9]; see
also [10] and the references therein for a summary of
part of this work with motivating applications in search
operations by the U.S. Navy. Recently, Hespanha, Kim
and Sastry [3] considered probabilistic approaches to
a more difficult type of searching problem where the
agents are mobile (trying to avoid being captured) and
proposes a greedy strategy that leads to capture with
probability one; however, there is no claim of optimality
or ε-optimality there. In the above formulation of our
problem, the assumption is that the region in which the
search takes place is known via some a priori “map-
learning” phase (e.g., see [4, 11, 12] for the general case
and [2] for the simpler rectilinear case).

A. Discrete Search

Problem 1 can be discretized by breaking R into a
finite number of tiles {Rk ⊂ R : k ∈ K}, where K is
a finite index set. Typically, the tiles are rectangular
or hexagonal forming a regular lattice. We assume that
the size of the tiles is chosen so that when the robot is
located at the center of one tile it can scan the whole tile
in one unit of time. One can then restrict the search
to paths that go from tile to tile, remaining on each
tile for one unit of time. Let pk =

∫
Rk

f(x)dx denote
the probability that the honey-pot is in the kth tile.
Then, the probability that the honey-pot will be found
as the robot follows a path ρ, defined by a sequence of
tiles σ = {k1, k2, . . . , kN}, is given by Pd[σ] =

∑
k∈Σ pk

where Σ is the set of distinct elements in the sequence
σ. The time needed to transverse the path is given by
T [σ] :=

∑N−1
i=1 tki,ki+1 where tki,ki+1 denotes the time it

takes for the robot to move from tile ki to tile ki+1.
The discretized version of the problem can then be



formalized as follows:

Problem 2 (Discrete Honey-pot Search). Find a se-
quence of tiles σ := {k1, k2, . . . , kN} that maximizes
Pd[σ] :=

∑
k∈σ pk subject to the constraint that T [σ] :=∑N−1

i=1 tki,ki+1 ≤ T .

B. A Summary of Our Results

Motivated by Problem 2, we formulate the following
Reward Budget (RB) problem on graphs:

Problem 3 (Reward Budget (RB)).

Instance:〈G, c, r, L〉, where L is an integer and G =
(V, E) is a graph with an edge cost function
c : E → [0,∞) and a vertex reward function
r : V → [0,∞).

Valid Solutions:A (possibly self-intersecting) path p =
(v1, v2, . . . , vk) in G with vi ∈ V such that
C[p] :=

∑k−1
i=1 c(vi, vi+1) ≤ L.

Objective:maximize the total reward R[p] =
∑

v∈P r(v)
where P denotes the set of vertices in p.

For any reasonable application of the RB problem
to the actual honey-pot search problem, the under-
lying graph must at least be planar; an interest-
ing case of significance is when G is a unit grid,
i.e. V = {(i, j) ∈ [0, m − 1] × [0, n − 1]}, E =
{{(i, j), (k, �)} : |i − j| + |k − �| = 1} and c(e) = 1 for
every e ∈ E. An ε-approximate solution (or simply an
ε-approximation) of a maximization problem is defined
to be a solution with an objective value no smaller than
1/ε times the value of the optimum. A list of our main
results are as follows1:

Lemma 1. The RB problem is NP-hard even when (a)
r(v) = 1 for every v ∈ V , c(e) = 1 for every e ∈ E
and the graph G is planar bipartite with the maximum
degree of any vertex being 3, or (b) G is a unit grid
graph and r(v) ∈ {0, 1} for every vertex v.

Theorem 1. (a) For any constant ε > 0,
an r-approximate solution to the RB problem
can be found in polynomial time where r ={

2 + ε if c(e) = 1 for every e ∈ E

5 + ε otherwise
.

(b) If r(v) = 1 for every v ∈ V and c(e) = 1 for every
e ∈ E, then a 2-approximate solution to the RB problem
can be computed in O(|V | + |E|) time.

C. A Summary of Proof Techniques Used

For the NP-hardness results in Lemma 1 we use the
results of Itai et al. [5] and Garey et al. [6].

1At the time of submission, we were informed that the 5 + ε-
approximation result in Theorem 1(a) was independently obtained
by several other researchers in a paper that will be published in
another conference in the future.

To prove the results in Theorem 1(a), we first need
to consider a dual version of the RB problem and show
that a good approximate solution to the dual problem
translates to a corresponding good approximate solution
of the RB problem via a binary search similar to that
by Johnson et al. [8], path decompositions and Eulerian
tours via doubling edges. To solve this dual problem, we
need to use the (2 + ε)-approximation results on the k-
MST problem by Arora and Karakostas [1] that builds
upon the 3-approximation results on the same problem
by Garg [7].

The result in Theorem 1(b) can be proved via DFS
and Eulerian tours with doubled edges.

II. Proofs

In this section, we provide proofs of Lemma 1 and
Theorem 1. For the purpose of investigating com-
putational complexities of the RB problem, it will
be convenient to consider the Reward Quota (RQ)
problem, which can be intuitively thought of as a dual of
the RB problem. The RQ problem is defined as follows:

Problem 4 (Reward Quota (RQ)).

Instance:〈G, s, c, r, R〉, where G = (V, E) denotes a
graph with vertex set V and edge set E, s ∈ V
is a specified vertex, c : E → [0,∞) is an edge
cost function, r : V → [0,∞) is a vertex reward
function, and R a positive integer.

Valid Solution:A (possibly self-intersecting) path p = (v1 =
s, v2, . . . , vk) in G with vi ∈ V such that
R[p] :=

∑
v∈P r(v) ≥ R where P denotes the

set of vertices in the path p.
Objective:minimize the total cost C[p] :=∑k−1

i=1 c(vi, vi+1).

For computational complexity results we restrict cost
and reward values in the above problems to take
integer values. The decision problem for RB (as required
for NP-hardness proofs) provides an additional real
number R and asks if there is a valid solution of total
reward at least R. An ε-approximate solution (or simply
an ε-approximation) of a maximization problem is a
solution with an objective value no smaller than 1/ε
times the value of the optimum. Analogously, an ε-
approximation of a minimization problem is a solution
with an objective value no larger than ε times the
value of the optimum. We will also use the following
notations/conventions consistently throughout the rest
of the paper (unless otherwise stated explicitly):

• OPTRB(L) (or, simply OPT(L)) denotes the opti-
mum value of the objective function for a given
instance 〈G, s, c, r, L〉 of the RB problem as a
function of L.

• OPTRQ(R) denotes the optimum value of the
objective function for a given instance 〈G, s, c, r, R〉
of the RB problem as a function of R,



Although the RB and RQ problems defined above seem
to be novel, there are a few related problems that will
be useful to us:

The budget and quota problems in [8]:
These are similar to the problems defined
above, except that they only searched for
a subtree (vertex induced subgraph with no
cycles), which may not necessarily be a path2.
Nonetheless many of the ideas there are also
of use to us.

Metric k-TSP
An input to the metric k-traveling salesman
problem problem is a weighted graph in which
the edge costs satisfy the triangle inequality,
i.e., for every three vertices u, v and w the edges
costs satisfy the inequality c(u, v) + c(v, w) ≥
c(u, w). The goal is to produce a simple (i.e.,
non-self-intersecting) cycle of minimum total
edge cost visiting at least k vertices that
includes a specified vertex s. The authors in [1]
provide a 2 + ε-approximate solution to this
problem via a primal-dual schema.

A. Proof of Lemma 1 (NP-hardness Results)

We prove part (a) as follows. The Hamiltonian path
problem for a graph G is NP-complete even if G is
planar bipartite with maximum degree of any vertex
being 3 [5]. One can see that setting r(v) = 1 for every
v ∈ V , c(e) = 1 for every e ∈ E and L = n − 1, G has
a Hamiltonian path if and only if OPT(n− 1) = n− 1.

We can also prove part (b) as follows. It is known that
the Hamiltonian path problem is NP-hard for graphs
which are vertex-induced subgraphs of a unit grid [5].
Given an instance I of the Hamiltonian path problem
on such graphs, we consider a corresponding instance I ′

of the RB problem in which the graph is a minimal unit
grid graph G′ = (V ′, E′) containing the vertex-induced
subgraph G = (V, E) of I,

r(v) =

{
1 if v ∈ V

0 otherwise

and L = |V |−1. Obviously, if I has a Hamiltonian cycle
then I ′ has a solution with a maximum total reward of
|V |. Conversely, suppose that I ′ has a solution with a
maximum total reward of |V |. Then, this solution must
visit all the vertices in V using |V | − 1 edges and thus
it is a Hamiltonian path of G.

B. Proof of Theorem 1 (Approximation Algorithms)

A proof of the theorem is provided in the next three
subsections.

2By doubling every edge in a subtree and finding an Eulerian
tour on the new graph, we do get a self-intersecting cycle; however,
the total edge cost of such a path is twice that of the given subtree.

1) Relating Path and Cycle Versions of RB and RQ:
For the purpose of designing efficient algorithms for the
RB problem, it would be more convenient sometimes to
consider this problem for a (possibly self-intersecting)
cycle, i.e., a (possibly self-intersecting) path that starts
and ends on the same vertex s. The following lemma
states that these two versions of this problem are
essentially similar in their approximability issues.

Lemma 2. Assume that we have a polynomial time r-
approximation algorithm (for some constant r ≥ 1) for
the version of RB in which we are seeking a cycle instead
of a path. Then, for any constant ε > 0, there is a
polynomial time (r + ε)-approximation algorithm for
RB.

Proof: [Proof of Lemma 2.] Let OPT and OPT′

denote the optimum solutions for the path and the cycle
versions of the RB problem and let A′ be the solution
returned by the r-approximate algorithm for the cycle
version of the RB problem. Hence, A′ ≥ 1

r OPT′. Set
x = 1 + r

ε . Since x is a constant, we can solve the
RB problem for paths involving at most x edges in
polynomial time (e.g., by checking all

(|E|
x

)
subsets of

x edges for a possible solution). Otherwise, an optimal
solution for RB for paths (and hence for cycles as well)
involves more than x edges. Thus, by removing the least
cost edge from the solution for A′, we get a solution
A >

(
1 − 1

x

)
A′ of the RB problem for paths. Since

OPT ≤ OPT′, we get

A

OPT
>

(
1 − 1

x

)
A′

OPT′ ≥
(

1 − 1
x

)
1
r

=
1

r + ε

2) Relating the RQ Problem to the RB Problem: In
this section, we show that an approximate solution to
the RQ problem can be used to provide an approximate
solution to the RB problem.

Lemma 3. Assume that we have a polynomial time
r-approximation algorithm for RQ for some constant
r ≥ 1. Then, for any constant ε > 0, there is a
polynomial time approximation algorithm for the RB
problem that returns a solution with a total reward of
at least 1

1+ε OPT
(

1
r L

)
.

Proof: [Proof of Lemma 3.] Our proof is similar in
nature to a proof in [8] that related the budget and
quota problems for connected subtrees of a graph. We
can do a binary search over the range [0,

∑n
i=1 r(vi)] for

the total reward in the algorithm for the RQ problem
to provide us in polynomial time a total reward value A
such that the solution obtained by the approximation
algorithm has a cost of at most L if the total reward
is at least A, but has a cost greater than L if the total
reward is at least A(1+ε). We then output the solution
to the RQ problem with a total reward of at least A as
our approximate solution to the RB problem. By choice
of A, an optimal solution to the RQ problem with a



total reward of at least A(1 + ε) must have a total cost
greater than 1

r L. Hence OPT
(

1
r L

) ≤ A(1 + ε).

Remark 1. Clearly Lemma 3 holds when we consider
the cycle versions of both the RB and the RQ problems.

3) Completing a Proof of Theorem 1: The following
proposition is needed in our proof of Theorem 1 to relate
suboptimal solutions of the RB problem (for either the
path or the cycle version).

Proposition 1.
(a) OPT(1

2L) ≥ 1
3 OPT(L).

(b) OPT( 1
2+εL) ≥ 1

5 OPT(L) for any ε > 0.
(c) Assume that c(e) = 1 for all e ∈ E. Then,

OPT(
⌈

L
k

⌉
) ≥ 1

k OPT(L) for any integer 1 ≤ k ≤
L.

Proof: [Proof of Proposition 1.] To prove (a),
assume that p = (v1, v2, . . . , vk) be an optimal solution
with a total reward of OPT(L). If r(vi) ≥ 1

3 OPT(L)
then obviously our claim is true. Otherwise, starting
with the first edge in p, partition p into two disjoint
subpaths such that total reward of the first subpath is
greater than 1

3 OPT(L) but the total reward of the first
subpath excluding its last edge is at most 1

3 OPT(L). It
follows then that the total reward of the first subpath
is less than 2

3 OPT(L) and hence the total reward of
the second subpath is at least 1

3 OPT(L). At least one
the two subpaths must have a total cost of at most 1

2L.
The proof of (b) if similar to that of (a).
To prove (c), note that an optimal path of total cost
L can be partitioned into k disjoint paths each of total
cost at most

⌈
L
k

⌉
. At least one of these paths must have

a total reward of at least 1
k OPT(L).

We prove Theorem 1(a) by using the results in [1]
together with applications of Lemma 3 (via Remark 1)
and Proposition 1. In the sequel, we refer to the cycle
version of the RQ and RB problems. Implicitly replace
every vertex v with r(v) > 0 by one original vertex v′

of reward 0 (which will be connected to other vertices
in the graph) and an additional r(v) vertices, each of
reward 1, connected to v′ with edges of zero costs.
Obviously, an optimal solution of the RQ problem in
the original graph remains an optimal solution of the
RQ problem in this new graph.

Now we run the polynomial time (2 + µ)-
approximation algorithm for the metric R-TSP problem
in [1] on our new graph (with s as the specified vertex).
We observe the following:

• The new zero-cost edges connected to a vertex v is
dealt implicitly in one step in the TREEGROW
step in [1] by coalescing the vertices together.
This ensures that the algorithm indeed runs in
polynomial time (as opposed to pseudo-polynomial
time).

• The metric property of the graph is necessary to
avoid self-intersection of the solution path in the

R-TSP problem. Since the RQ problem allows self-
intersection, we do not need the metric property.

• The authors in [1] solve the problem by finding a
solution of the R-MST problem, doubling every
edge and then taking short-cuts (to avoid self-
intersection) to get exactly R vertices. However,
for the RQ problem we do not count the reward
of the same vertex twice, hence taking a simple
Eulerian tour on the solution of the R-TSP problem
with every edge doubled does not change the total
reward.

As a result, we are able to obtain a in polynomial time
a (2+µ)-approximate solution (for any constant µ > 0)
to the RQ problem. Applying Lemma 3 (via Remark 1)
with a constant ρ > 0, we can obtain in polynomial
time a solution to the RB problem that returns a total
reward of at least 1

1+ρ OPT
(

L
2+µ

)
. We can now apply

Proposition 1 to get a (5 + 5ρ)-approximation for the
general case and a ((1 + ρ)(2 + µ))-approximation for
the case when c(e) = 1 for all e (for the cycle version of
the RB problem). Finally, using Lemma 2 to relate path
and cycle versions of the RB problem, we can obtain,
for any constant ν > 0, a (5+5µ+ν)-approximation for
the general case and a ((1+ρ)(2+µ)+ν)-approximation
for the case when c(e) = 1 for all e for the RB problem.
The result now follows by setting the constants ρ, µ and
ν appropriately.

To prove Theorem 1(b) we do a depth-first-search
(DFS) on G starting at s that computes a DFS tree.
Now we replace every edge in the DFS tree by two
edges, compute an Eulerian cycle and output the path
consisting of the first L edges starting at s in this
Eulerian cycle. Obviously, OPT(L) ≤ L. Since we
replaced each undirected edge by two directed edges,
we collect a total reward of at least L

2 + 1.
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